JPH0754982Y2 - Winding structure of static induction - Google Patents

Winding structure of static induction

Info

Publication number
JPH0754982Y2
JPH0754982Y2 JP1989128998U JP12899889U JPH0754982Y2 JP H0754982 Y2 JPH0754982 Y2 JP H0754982Y2 JP 1989128998 U JP1989128998 U JP 1989128998U JP 12899889 U JP12899889 U JP 12899889U JP H0754982 Y2 JPH0754982 Y2 JP H0754982Y2
Authority
JP
Japan
Prior art keywords
winding
cylindrical
windings
radial direction
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989128998U
Other languages
Japanese (ja)
Other versions
JPH0367414U (en
Inventor
政芳 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1989128998U priority Critical patent/JPH0754982Y2/en
Publication of JPH0367414U publication Critical patent/JPH0367414U/ja
Application granted granted Critical
Publication of JPH0754982Y2 publication Critical patent/JPH0754982Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は、変圧器やリアクトルなどの静止誘導電器、
とくにこの巻線構造に関する。
[Detailed Description of the Invention] [Industrial field of application] This invention relates to a static induction electric device such as a transformer or a reactor,
Especially, this winding structure is concerned.

〔従来の技術〕[Conventional technology]

第3図は静止誘導電器の従来における巻線の結線配置図
であり、巻線は鉄心1と、それぞれが絶縁被覆された2
本の導線2A,2Bを半径方向に重ね鉄心1にソレノイド状
に巻回して形成された円筒巻線2とにより構成され、導
線2A,2Bの内径側と外径側とを入れ換える転位が円筒巻
線2の中央部3で行われ、導線2A,2Bの両端部4A,4Bはそ
れぞれ並列に結線されている。
FIG. 3 is a layout diagram of conventional windings of a static induction electric generator. The windings include an iron core 1 and two windings each of which has an insulating coating.
A cylindrical winding 2 formed by stacking two conductors 2A, 2B in a radial direction on a core 1 in a solenoidal manner, and dislocations that switch the inner and outer diameter sides of the conductors 2A, 2B are cylindrical windings. This is performed in the central portion 3 of the wire 2, and both ends 4A and 4B of the conductors 2A and 2B are connected in parallel.

一般に、並列巻線における各導線は、巻回されたときの
直径が厳密には同一にならないので、それぞれの導線と
交差する漏れ磁束の量が異なる。そのためにそれぞれの
導線に誘起される電圧が異なり、並列巻線には不平衡電
流が循環電流となって流れて損失が発生することにな
る。このような不平衡電流を減らすために並列巻線に
は、交差する漏れ磁束の量を同じにする転位が行われ
る。第3図では円筒巻線2の中央部3で転位が行われて
いるので、導線2Aと2Bはそれぞれ同一の直径で巻回され
ている軸方向長さがまったく等しくなっている。従っ
て、導線2A,2Bのそれぞれと交差する磁束の量が同じと
なるので、不平衡電流の発生が抑えられている。
Generally, since the conductors in the parallel winding do not have exactly the same diameter when wound, the amount of leakage flux intersecting each conductor is different. Therefore, the voltages induced in the respective conductors are different, and the unbalanced current flows as a circulating current in the parallel windings, resulting in loss. In order to reduce such an unbalanced current, the parallel windings are transposed so that the amount of leakage magnetic flux intersecting is the same. In FIG. 3, since the dislocation has occurred in the central portion 3 of the cylindrical winding 2, the conductors 2A and 2B are wound with the same diameter, and the lengths in the axial direction are exactly the same. Therefore, the amount of magnetic flux intersecting each of the conductors 2A and 2B is the same, so that generation of an unbalanced current is suppressed.

また、第4図は静止誘導電器の従来における異なる巻線
の結線配置図であり、この巻線は鉄心1と、それぞれが
絶縁被覆された2本の導線を半径方向に重ね鉄心1にソ
レノイド状に巻回して形成された円筒巻線5とにより構
成され、その円筒巻線5は互いに半径方向に対向するよ
うに配置された内側円筒巻線6と外側円筒巻線7の2巻
線より形成され、導線の内径側と外径側とを入れ換える
転位が円筒巻線5の中央部8で行われると共に、円筒巻
線5の一方端9では内側円筒巻線6を構成する導線およ
び外側円筒巻線7を構成する導線のそれぞれが並列に結
線され、円筒巻線5の他方端では内側円筒巻線6と外側
円筒巻線7とを直列に結線する渡り部10が備えられてい
る。この場合も円筒巻線5の中央部8で転位が行われて
いるので、内側円筒巻線6,外側円筒巻線7のそれぞれに
おいて導線の内径側において巻回されている長さと外径
側において巻回されている長さとがまったく等しくな
り、2本の導線のそれぞれに交差する磁束の量が同じと
なるので、不平衡電流の発生が抑えられている。
Further, FIG. 4 is a connection layout diagram of different windings in the conventional static induction electric generator. In this winding, an iron core 1 and two conductive wires each having an insulating coating are laminated in a radial direction on the iron core 1 in a solenoid shape. And a cylindrical winding 5 formed by winding the inner cylindrical winding 5 and an outer cylindrical winding 7 arranged so as to face each other in the radial direction. The inner wire side and outer wire side of the cylindrical winding 5 are transposed so that the inner diameter side and the outer diameter side of the conductor wire are exchanged with each other. Each of the conductors forming the wire 7 is connected in parallel, and the other end of the cylindrical winding 5 is provided with a transition portion 10 that connects the inner cylindrical winding 6 and the outer cylindrical winding 7 in series. In this case as well, since the dislocation is performed in the central portion 8 of the cylindrical winding 5, the inner cylindrical winding 6 and the outer cylindrical winding 7 are wound on the inner diameter side of the conductor and on the outer diameter side. Since the length of winding is exactly the same and the amount of magnetic flux intersecting each of the two conductors is the same, the generation of unbalanced current is suppressed.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

しかしながら、前述したような従来の巻線構造は導線を
転位させる位置が巻線の中央部にあるために、事故の短
絡電流によって生ずる電磁機械力に対して巻線が非常に
弱いという欠点があった。
However, the conventional winding structure as described above has a drawback that the winding is extremely weak against the electromagnetic mechanical force generated by the short-circuit current of an accident because the position where the conducting wire is displaced is at the center of the winding. It was

一般に、巻線に短絡電流Iが流れた場合、巻線の受ける
機械力Fは、 F∝B・I ……(1) で表わすことができる。ここで、Bは短絡電流によって
生ずる巻線各部の漏れ磁束密度である。第5図は、変圧
器の一例について漏れ磁束分布を示した断面図であり、
鉄心1を巻回し半径方向に対向する2つの巻線11A,11B
に短絡電流が流れた場合の漏れ磁束12が示されている。
短絡電流は巻線11Aと11Bとでは逆方向に流れるので、電
磁機械力Fは矢印のように半径方向に互いに反発するよ
うな方向に発生する。一般に、巻線の中央部の漏れ磁束
密度は最も大きく、巻線の上下端に近づくに従って漏れ
磁束密度が小さくなる。そのために、巻線の中央部にお
ける電磁機械力Fが最も大きくなり、巻線自体の機械強
度は中央部の耐力によって決まる。
Generally, when a short-circuit current I flows through the winding, the mechanical force F received by the winding can be expressed by F∝B · I (1). Here, B is the leakage magnetic flux density of each part of the winding caused by the short circuit current. FIG. 5 is a cross-sectional view showing a leakage magnetic flux distribution for an example of a transformer,
Two windings 11A, 11B wound around the iron core 1 and facing each other in the radial direction
The leakage flux 12 is shown when a short circuit current flows in the.
Since the short-circuit current flows in the opposite directions in the windings 11A and 11B, the electromagnetic mechanical force F is generated in a direction in which the electromagnetic mechanical forces F repel each other in the radial direction. Generally, the leakage magnetic flux density in the central portion of the winding is the largest, and the leakage magnetic flux density becomes smaller as it approaches the upper and lower ends of the winding. Therefore, the electromagnetic mechanical force F in the central portion of the winding becomes the largest, and the mechanical strength of the winding itself is determined by the proof stress in the central portion.

従来における巻線構造では、巻線の中央部3,8で転位が
行われていたので、この転位部において重ね巻きされて
いた導線は捩じるようにして折り曲げられ、内径側の導
線は外径側へ移るように変形されると共に外径側の導線
は内径側へ移るように変形されていた。このように、大
きな曲げ変形が加えられた部分は外部から加えられる機
械力に対してはどうしても耐力が低下して来るので、転
位部の機械的耐力を確保するために、必要以上に太い導
線が巻線に使われる場合もある。
In the conventional winding structure, the dislocations were performed at the central portions 3 and 8 of the windings.Therefore, the wires that were overlapped and wound at this dislocation part were twisted and bent, and the wires on the inner diameter side were external. The conductor on the outer diameter side was deformed so as to move to the diametric side, and the conductor wire on the outer diameter side was deformed so as to move to the inner diameter side. In this way, the portion subjected to large bending deformation inevitably decreases the proof stress against the mechanical force applied from the outside, so in order to secure the mechanical proof strength of the dislocation part, a thicker wire than necessary should be used. It may be used for winding.

この考案の目的は、転位する位置を巻線の中央部から避
けることによって電磁機械力に対して強靱な巻線構造を
提供することにある。
It is an object of the present invention to provide a winding structure that is strong against electromagnetic mechanical force by avoiding a dislocation position from the center of the winding.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記課題を解決するために、この考案によれば、それぞ
れが絶縁被覆された2本の導線を半径方向に重ね1つの
鉄心脚に巻回して形成された2つの円筒巻線が、互いに
半径方向に対向するように配置された内側円筒巻線と外
側円筒巻線とにより構成され、前記2つの円筒巻線の一
方端ではそれぞれの円筒巻線を構成する各2本の導線を
それぞれの円筒巻線内で並列に結線し、前記2つの円筒
巻線の他方端ではそれぞれの円筒巻線と他方の円筒巻線
とを相互に結線する渡り部を設け、前記渡り部において
いずれか一方の円筒巻線を構成する2本の導線の内径側
と外径側とを入れ換えて転位させてなるものとする。
In order to solve the above-mentioned problems, according to the present invention, two cylindrical windings, which are formed by overlapping two conductive wires, each of which has an insulating coating, in a radial direction and winding the core wire in one iron core leg, are arranged in a radial direction. The inner cylindrical winding and the outer cylindrical winding that are arranged so as to face each other. At one end of the two cylindrical windings, each of the two conductive wires forming each of the cylindrical windings is connected to each of the cylindrical windings. Wires are connected in parallel in the wire, and at the other end of the two cylindrical windings, there is provided a crossover portion for mutually connecting the respective cylindrical windings and the other cylindrical winding, and at the crossover portion, either one of the cylindrical windings is wound. It is assumed that the inner diameter side and the outer diameter side of the two conductive wires forming the wire are interchanged and dislocated.

〔作用〕[Action]

この考案の構成によれば、それぞれが絶縁被覆された2
本の導線を半径方向に重ね1つの鉄心脚に巻回して形成
された2つの円筒巻線が、互いに半径方向に対向するよ
うに配置された内側円筒巻線と外側円筒巻線とにより構
成され、前記2つの円筒巻線の一方端ではそれぞれの円
筒巻線を構成する各2本の導線をそれぞれの円筒巻線内
で並列に結線し、前記2つの円筒巻線の他方端ではそれ
ぞれの円筒巻線と他方の円筒巻線とを相互に結線する渡
り部を設けたものにおいて、前記渡り部で2本の導線の
転位が行われたので、2本の導線のそれぞれと交差する
磁束の量はほとんど同じであると共に、転位する位置が
巻線の中央部から避けられ電磁機械力の最も小さい巻線
端部となり機械的に強靱な巻線構造となる。
According to the structure of the present invention, each of the two insulated
Two cylindrical windings, which are formed by stacking a plurality of conductive wires in a radial direction and winding them around one iron core leg, are composed of an inner cylindrical winding and an outer cylindrical winding that are arranged so as to face each other in the radial direction. , At the one end of the two cylindrical windings, each of the two conducting wires forming the respective cylindrical windings is connected in parallel in the respective cylindrical windings, and at the other end of the two cylindrical windings, the respective cylindrical windings are connected. In the case where the crossover portion for connecting the winding wire and the other cylindrical winding wire to each other is provided, since the two conductor wires are dislocated in the crossover portion, the amount of magnetic flux intersecting with each of the two conductor wires. Are almost the same, and the dislocation position is avoided from the central part of the winding, and the winding end has the smallest electromagnetic mechanical force, resulting in a mechanically tough winding structure.

〔実施例〕〔Example〕

以下この考案を実施例に基づいて説明する。 The present invention will be described below based on embodiments.

第1図はこの考案の参考例にかかる静止誘導電器の巻線
を示す結線配置図であり、巻線は鉄心1と、それぞれが
絶縁被覆された2本の導線20A,20Bを半径方向に重ね鉄
心1にソレノイド状に巻回して形成された円筒巻線20と
により構成され、導線20A,20Bの両端部40A,40Bはそれぞ
れ並列に結線されている。導線の転位は導線20A,20Bの
両端部40A,40Bのそれぞれから円筒巻線20の軸方向長l
の4分の1ほど円筒巻線側に入った位置30A,30Bにおい
て行われている。
FIG. 1 is a connection layout diagram showing windings of a static induction electric generator according to a reference example of the present invention. The windings are composed of an iron core 1 and two conductive wires 20A and 20B, each of which is insulated and coated in a radial direction. A cylindrical winding 20 is formed by winding the iron core 1 in a solenoid shape, and both ends 40A, 40B of the conductors 20A, 20B are connected in parallel. The dislocation of the conducting wire is caused by the axial length l of the cylindrical winding 20 from both ends 40A, 40B of the conducting wire 20A, 20B.
This is done at positions 30A and 30B, which are about one-fourth of the positions on the cylindrical winding side.

図において、2本の導線20A,20Bはそれぞれ同一の直径
で巻回されている軸方向長さがまったく等しいので、巻
線20A,20Bのそれぞれを交差する磁束の量は同じとなり
不平衡電流は生じない。しかも、転位の実施位置を巻線
中央部から避けたので従来の構造より電磁機械力に強い
巻線構造となる。
In the figure, since the two conductors 20A and 20B are wound with the same diameter and have the same axial length, the amount of magnetic flux intersecting each of the windings 20A and 20B is the same and the unbalanced current is Does not happen. Moreover, since the position where the dislocation is carried out is avoided from the central portion of the winding, the winding structure has a stronger electromagnetic mechanical force than the conventional structure.

第2図はこの考案の実施例にかかる静止誘導電器の巻線
を示す結線配置図であり、巻線は鉄心1と、それぞれが
絶縁被覆された2本の導線を半径方向に重ね鉄心1にソ
レノイド状に巻回して形成された円筒巻線50とにより構
成されている。この円筒巻線50は互いに半径方向に対向
するように配置された内側円筒巻線60と外側円筒巻線70
の2巻線より形成され、一方端90では内側円筒巻線60を
構成する導線および外側円筒巻線70を構成する導線のそ
れぞれが並列に結線され、円筒巻線50の他方端では内側
円筒巻線60と外側円筒巻線70とを直列に結線する渡り部
100が備えられている。導線の転位は円筒巻線端部の渡
り部100に続く位置において行われている。
FIG. 2 is a wiring arrangement diagram showing windings of a static induction electric generator according to an embodiment of the present invention. The windings are composed of an iron core 1 and two conductive wires each of which is insulated and coated in a radial direction on the iron core 1. And a cylindrical winding 50 formed by winding in a solenoid shape. The cylindrical winding 50 includes an inner cylindrical winding 60 and an outer cylindrical winding 70 which are arranged to face each other in the radial direction.
, The conductor wire forming the inner cylindrical winding 60 and the conductor wire forming the outer cylindrical winding 70 are connected in parallel at one end 90, and the inner cylindrical winding is formed at the other end of the cylindrical winding 50. A crossover connecting the wire 60 and the outer cylindrical winding 70 in series
100 is equipped. The dislocation of the conducting wire is performed at a position following the connecting portion 100 at the end of the cylindrical winding.

図において、内側円筒巻線60において内径側に配されて
いた導線は外側円筒巻線70に渡った後に外径側へ移り、
一方、内側円筒巻線60において外径側に配されていた導
線は外側円筒巻線70に渡った後に内径側へ移っている。
この場合における2本の導線は、同一の直径で巻回され
ている軸方向長さが必ずしも厳密には等しくないが、導
線に生ずる不平衡電流を求めると定格電流の約5%以下
と非常に小さく、誤差の範囲に入っていることが判っ
た。第2図において、円筒巻線端部の位置50Aで転位が
行われないとすると、定格電流の50%も大きい不平衡電
流が発生することから判断すると、位置50Aにおける転
位の効果は非常に大きいことが判る。さらに、発生する
電磁機械力の最も小さい巻線端部で転位が実施されてい
るので、巻線の機械的耐力も非常に強くなる。
In the figure, the conductor wire arranged on the inner diameter side in the inner cylindrical winding 60 moves to the outer diameter side after crossing the outer cylindrical winding 70,
On the other hand, the conductor wire arranged on the outer diameter side in the inner cylindrical winding 60 crosses the outer cylindrical winding 70 and then moves to the inner diameter side.
The two conductors in this case do not have exactly the same length in the axial direction wound with the same diameter, but the unbalanced current generated in the conductors was calculated to be about 5% or less of the rated current. It turned out to be small and within the margin of error. In Fig. 2, assuming that dislocation does not occur at position 50A at the end of the cylindrical winding, judging from the fact that an unbalanced current that is as large as 50% of the rated current will occur, the effect of dislocation at position 50A is very large. I understand. Further, since the dislocation is performed at the winding end portion where the electromagnetic mechanical force generated is the smallest, the mechanical resistance of the winding becomes very strong.

〔考案の効果〕[Effect of device]

この考案は前述のように、それぞれが絶縁被覆された2
本の導線を半径方向に重ね1つの鉄心脚に巻回して形成
された2つの円筒巻線が、互いに半径方向に対向するよ
うに配置された内側円筒巻線と外側円筒巻線とにより構
成され、前記2つの円筒巻線の一方端ではそれぞれの円
筒巻線を構成する各2本の導線をそれぞれの円筒巻線内
で並列に結線し、前記2つの円筒巻線の他方端ではそれ
ぞれの円筒巻線と他方の円筒巻線とを相互に結線する渡
り部を設けたものにおいて、前記渡り部で2本の導線の
転位が行われたので、従来の巻線では転位が中央部で実
施され機械的耐力が弱いという欠点があったのを、電磁
機械力に対して非常に強い巻線構造を提供することがで
きる。
As mentioned above, this device has two insulating coatings.
Two cylindrical windings, which are formed by stacking a plurality of conductive wires in a radial direction and winding them around one iron core leg, are composed of an inner cylindrical winding and an outer cylindrical winding that are arranged so as to face each other in the radial direction. , At the one end of the two cylindrical windings, each of the two conducting wires forming the respective cylindrical windings is connected in parallel in the respective cylindrical windings, and at the other end of the two cylindrical windings, the respective cylindrical windings are connected. In the case where the crossover portion that connects the winding wire and the other cylindrical winding wire to each other is provided, since two conductors are transposed at the crossover portion, the transposition is performed at the central portion in the conventional winding wire. Although it has a drawback of low mechanical strength, it is possible to provide a winding structure that is very strong against electromagnetic mechanical force.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの考案の参考例を示す巻線の結線配置図、第
2図はこの考案の実施例を示す巻線の結線配置図、第3
図および第4図は従来の巻線の結線配置図、第5図は変
圧器の漏れ磁束分布を示す断面図である。 1:鉄心、2,5,20,50:円筒巻線、2A,2B,20A,20B:導線、3,
8:中央部、4A,4B,40A,40B:端部、6,60:内側円筒巻線、
7,70:外側円筒巻線、9,90:一方端、10,100:渡り部、11
A,11B:巻線、12:漏れ磁束。
FIG. 1 is a wiring layout diagram showing a reference example of the present invention, FIG. 2 is a winding wiring layout diagram showing an embodiment of the present invention, and FIG.
FIG. 4 and FIG. 4 are conventional wiring connection layout diagrams, and FIG. 5 is a sectional view showing the leakage flux distribution of the transformer. 1: Iron core, 2, 5, 20, 50: Cylindrical winding, 2A, 2B, 20A, 20B: Conductor wire, 3,
8: central part, 4A, 4B, 40A, 40B: end part, 6, 60: inner cylindrical winding,
7,70: Outer cylindrical winding, 9,90: One end, 10,100: Crossover part, 11
A, 11B: winding, 12: leakage flux.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】それぞれが絶縁被覆された2本の導線を半
径方向に重ね1つの鉄心脚に巻回して形成された2つの
円筒巻線が、互いに半径方向に対向するように配置され
た内側円筒巻線と外側円筒巻線とにより構成され、前記
2つの円筒巻線の一方端ではそれぞれの円筒巻線を構成
する各2本の導線をそれぞれの円筒巻線内で並列に結線
し、前記2つの円筒巻線の他方端ではそれぞれの円筒巻
線と他方の円筒巻線とを相互に結線する渡り部を設け、
前記渡り部においていずれか一方の円筒巻線を構成する
2本の導線の内径側と外径側とを入れ換えて転位させて
なる静止誘導電器の巻線構造。
1. An inner side in which two cylindrical windings, each of which is formed by overlapping two conductive wires, each of which has an insulating coating, in a radial direction and winding the core wire around one iron core leg, are arranged to face each other in a radial direction. A cylindrical winding and an outer cylindrical winding, and at each one end of the two cylindrical windings, two conductors forming the respective cylindrical windings are connected in parallel in the respective cylindrical windings, At the other end of the two cylindrical windings, there is provided a connecting portion that connects the respective cylindrical windings and the other cylindrical winding to each other.
A winding structure of a static induction electric machine, wherein the inner diameter side and the outer diameter side of two conductor wires constituting either one of the cylindrical windings in the crossover portion are interchanged and displaced.
JP1989128998U 1989-11-02 1989-11-02 Winding structure of static induction Expired - Lifetime JPH0754982Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989128998U JPH0754982Y2 (en) 1989-11-02 1989-11-02 Winding structure of static induction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989128998U JPH0754982Y2 (en) 1989-11-02 1989-11-02 Winding structure of static induction

Publications (2)

Publication Number Publication Date
JPH0367414U JPH0367414U (en) 1991-07-01
JPH0754982Y2 true JPH0754982Y2 (en) 1995-12-18

Family

ID=31676665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989128998U Expired - Lifetime JPH0754982Y2 (en) 1989-11-02 1989-11-02 Winding structure of static induction

Country Status (1)

Country Link
JP (1) JPH0754982Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126078A1 (en) * 2016-01-21 2017-07-27 三菱電機株式会社 Reactor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257122A (en) * 2000-03-13 2001-09-21 Hitachi Ltd Structure of winding of transformer
JP2012119617A (en) * 2010-12-03 2012-06-21 Mitsubishi Electric Corp Reactor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS456031Y1 (en) * 1967-08-18 1970-03-25
JPS51103225A (en) * 1975-03-10 1976-09-11 Hitachi Ltd DAIDENRYUHENATSUKI MAKISEN

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126078A1 (en) * 2016-01-21 2017-07-27 三菱電機株式会社 Reactor
JPWO2017126078A1 (en) * 2016-01-21 2018-01-25 三菱電機株式会社 Reactor

Also Published As

Publication number Publication date
JPH0367414U (en) 1991-07-01

Similar Documents

Publication Publication Date Title
EP0698896B1 (en) Printed coil
US7227438B2 (en) Superconducting wire transposition method and superconducting transformer using the same
JP3458916B2 (en) Rotary transformer type resolver
US6356182B1 (en) Planar EMI inductor
WO1988002177A1 (en) Formed metal core blocking
JPH0754982Y2 (en) Winding structure of static induction
JP2000134844A (en) Motor
US6278355B1 (en) Transformer winding
JP3533252B2 (en) Transformer
JP2012119617A (en) Reactor
US6002320A (en) Electrical coil assembly having a plurality of coils arranged in pairs
JPS59119810A (en) Interphase reactor device
WO2021123152A1 (en) A field coil for an electric machine
JPS5936123Y2 (en) Lebel transition coil for rotating electrical machines
JPS6214656Y2 (en)
JP2755680B2 (en) Transformer coil
US4010436A (en) Electrical inductive apparatus
EP0632924A4 (en) Improved core-form transformer.
JPH0534090Y2 (en)
JPH04364011A (en) Helical coil
JPH0236254Y2 (en)
JPS61166015A (en) High tension transformer
JPS598314A (en) Winding for stationary induction electrical apparatus
KR810000666B1 (en) Electrical inductive apparatus
JPH09205024A (en) Electromagnetic induction machine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term