JPH0754754A - High efficient operating method for hydraulic machine and the hydraulic machine - Google Patents

High efficient operating method for hydraulic machine and the hydraulic machine

Info

Publication number
JPH0754754A
JPH0754754A JP5198084A JP19808493A JPH0754754A JP H0754754 A JPH0754754 A JP H0754754A JP 5198084 A JP5198084 A JP 5198084A JP 19808493 A JP19808493 A JP 19808493A JP H0754754 A JPH0754754 A JP H0754754A
Authority
JP
Japan
Prior art keywords
suction pipe
flow
hydraulic machine
center
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5198084A
Other languages
Japanese (ja)
Inventor
Norio Otake
典男 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5198084A priority Critical patent/JPH0754754A/en
Publication of JPH0754754A publication Critical patent/JPH0754754A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)
  • Control Of Water Turbines (AREA)

Abstract

PURPOSE:To prevent a decrease in water turbine efficiency by balancing the respective flow amount of a flow path, and improving draft tube efficiency, in a water turbine provided with a center pier for dividing the flow path in a tube into two equal parts in a draft tube enlarged part. CONSTITUTION:A point end part 10 of a center pier 9, provided by dividing a flow path into two equal parts in a draft tube enlarged part 8 which is partly a draft tube 5 for guiding water flowing out from a runner 4 to the outside, is made turnable with a shaft 11 vertical to upper/bottom wall surfaces of the enlarged part serving as the center, to control the point end part 10 in accordance with an operating condition of a water turbine, and an opening of each flow path inlet is adjusted, so as to balance a flow amount of each flow path regardless of the operating condition of the water turbine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水車またはポンプ水車等
であって、その吸出管の流路内に強度部材としてセンタ
ピアが設けられた水力機械の高効率運転方法およびその
水力機械に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water turbine, a pump turbine, or the like, which is provided with a center pier as a strength member in a flow path of a suction pipe thereof, and a method for highly efficient operation of the hydraulic machine.

【0002】[0002]

【従来の技術】図4(a)は一般的なフランシス水車の
縦断面図、図4(b)はその要部平面図である。これら
の図において、1はフランシス水車のケーシング、2は
ステーベーン、3はガイドベーン、4はランナである。
ランナ4から流れ出た水は吸出管5に導かれる。吸出管
5はランナ4から流れ出た水の速度エネルギーを効率よ
く圧力エネルギーに変換する役目を有するものであるか
ら、流路断面積を徐々に増大させる形状としてある。な
お、上記吸出管5はランナ4に近い方から順に上部吸出
管6、吸出管エルボ部7、吸出管拡大部8を連ねて構成
されている。また、吸出管5には図4に示したエルボ型
吸出管のほかに、ランナ出口から流出した水をそのまま
水車軸に平行に流すコーン型吸出管等がある。
2. Description of the Related Art FIG. 4 (a) is a vertical sectional view of a general Francis turbine, and FIG. 4 (b) is a plan view of its main part. In these drawings, 1 is a Francis turbine casing, 2 is a stay vane, 3 is a guide vane, and 4 is a runner.
The water flowing out from the runner 4 is guided to the suction pipe 5. Since the suction pipe 5 has a role of efficiently converting velocity energy of water flowing out from the runner 4 into pressure energy, the suction pipe 5 has a shape that gradually increases the flow passage cross-sectional area. The suction pipe 5 is formed by connecting an upper suction pipe 6, a suction pipe elbow portion 7, and a suction pipe enlarged portion 8 in this order from the side closer to the runner 4. In addition to the elbow-type suction pipe shown in FIG. 4, the suction pipe 5 includes a cone-type suction pipe or the like in which water flowing out from the runner outlet is directly flowed in parallel to the water wheel shaft.

【0003】水力機械の吸出管は、羽根車から溢れ出た
水の速度エネルギーを効率よく回収する重要な役割を担
っている。そのため、吸出管内流路断面積は徐々に増大
する形状として流水の速度を徐々に減少させ、効率のよ
いエネルギー交換をさせ得るように設計されている。し
たがって、吸出管内に上記エネルギーの交換を妨げる要
因があるときは、吸出管効率が低下し水車効率は著しく
低下される。
A suction pipe of a hydraulic machine plays an important role in efficiently collecting velocity energy of water overflowing from an impeller. Therefore, the cross-sectional area of the flow path in the suction pipe is designed to gradually increase so that the velocity of the flowing water is gradually decreased and the energy can be efficiently exchanged. Therefore, when there is a factor that hinders the exchange of energy in the suction pipe, the suction pipe efficiency is reduced and the turbine efficiency is significantly reduced.

【0004】一般的に、吸出管内における損失としては
ランナベーンから流出した水の有する旋回流の大きさに
基づく渦損失、吸出管流路断面積が拡大することによる
拡大損失、流水が接する面積の大きさによる摩擦損失が
ある。また、エルボ型吸出管の場合には流れの90°方
向変換による曲り損失がある。さらに、吸出管の構造上
強度部材として設けられるセンタピアの先端に水流が衝
突することに起因する衝突損失等がある。上記列挙した
損失の大きさは、すべて吸出管内を流れる流水の速度の
2乗に比例する。
In general, the loss in the suction pipe is eddy loss due to the size of the swirling flow of water flowing out from the runner vane, the expansion loss due to the expansion of the cross-sectional area of the suction pipe flow passage, and the size of the area in contact with the running water. There is friction loss due to Further, in the case of the elbow type suction pipe, there is a bending loss due to the 90 ° direction change of the flow. Further, there is a collision loss and the like due to the water flow colliding with the tip of the center pier provided as a structurally strong member of the suction pipe. The magnitudes of the losses listed above are all proportional to the square of the velocity of the flowing water flowing in the suction pipe.

【0005】[0005]

【発明が解決しようとする課題】上記構成の吸出管5に
おいて、吸出管拡大部8は土木上の製作範囲に属してお
りコンクリートによって構成されているため、溶接構造
によって作られたエルボ部7に比して強度上劣る点があ
る。そのため、補強部材として支柱状のセンタピア9が
吸出管流路断面を2等分するように、吸出管流路拡大部
8の流路内にその入り口部から出口部にわたって設けら
れている。大型水力機械の場合には吸出管寸法が大きく
なるため、上記センタピアは2本になることもある。ま
た、小型の水力機械においては省略されることもある。
In the suction pipe 5 having the above structure, since the suction pipe expanded portion 8 belongs to the production range on civil engineering and is made of concrete, the suction pipe enlarged portion 8 is attached to the elbow portion 7 formed by the welded structure. There is a point that the strength is inferior to that. Therefore, a pillar-shaped center pier 9 as a reinforcing member is provided in the flow passage of the suction pipe flow passage enlarged portion 8 from the inlet to the outlet so as to divide the suction pipe flow passage cross section into two equal parts. In the case of a large hydraulic machine, the size of the suction pipe becomes large, so the number of center piers may be two. It may also be omitted in small hydraulic machines.

【0006】以下、図5(a)、図5(b)、図5
(c)を参照してランナ4から流出した水の挙動につき
説明する。ランナ羽根は、設計落差近傍の運転において
はランナ4から流出した水の旋回速度成分がほぼ零とな
るように設計されている。従って、図5(a)に示すよ
うにランナから流れ出た水は吸出管内では吸い出し管軸
方向の流れが主流となっている。しかしながら、図5
(b)、図5(c)に示すように設計落差から離れた落
差領域での運転状態では、ランナから流れ出る水に旋回
方向の流れが残存しており、吸出管内においてもその流
れが持続され、吸出管中心から外壁に向かう流れが主流
となる。図6は図4に示した吸出管拡大部8のセンタピ
ア9の先端から下流点『W断面』位置での、センタピア
9中心を境界とする流路の左右対称の位置A、Bにおけ
る流束分布を模型試験によって測定した結果を示す。こ
の図において、横軸は前記W断面位置における吸出管底
面から上壁面までの垂直距離Lとし、縦軸は管軸方向の
流速として示す流速分布図である。但し、縦軸における
管軸方向の流速は、その断面における断面積から求めた
平均流速Voによって、管軸方向の流速測定値を無次元
化(V/Vo)して示す。設計落差相当の運転状態で
は、そこ壁面から上壁面までに若干流速が変化する傾向
はあるが、測定点A、Bの測定結果共に平均流速Voに
よって無次元化した結果、すなわちV/Vo=1.0と
なっており、吸出管左右の断面にほぼ均等な流量が流れ
ていることが分る。
Hereinafter, FIG. 5 (a), FIG. 5 (b), and FIG.
The behavior of water flowing out of the runner 4 will be described with reference to (c). The runner blade is designed such that the swirling velocity component of the water flowing out from the runner 4 becomes substantially zero in the operation near the design head. Therefore, as shown in FIG. 5A, the water flowing out from the runner has a main flow in the axial direction of the suction pipe in the suction pipe. However, FIG.
As shown in (b) and (c) of FIG. 5, in the operating state in the free fall region apart from the design free drop, the flow in the swirling direction remains in the water flowing out from the runner, and the flow is maintained even in the suction pipe. The main flow is from the center of the suction pipe to the outer wall. FIG. 6 shows the flux distribution at the symmetrical positions A and B of the flow path with the center of the center pier 9 as a boundary at the downstream point “W cross section” position from the tip of the center pier 9 of the expanded suction pipe 8 shown in FIG. The result of having measured by the model test is shown. In this figure, the horizontal axis is the vertical distance L from the bottom surface of the suction pipe to the upper wall surface at the W cross-section position, and the vertical axis is the flow velocity distribution chart showing the flow velocity in the pipe axis direction. However, the flow velocity in the pipe axis direction on the vertical axis is shown by making the flow velocity measurement value in the pipe axis direction dimensionless (V / Vo) by the average flow velocity Vo obtained from the cross-sectional area of the cross section. In an operating state corresponding to the design head, there is a tendency that the flow velocity slightly changes from the wall surface to the upper wall face, but the measurement results of measurement points A and B are dimensionless by the average flow velocity Vo, that is, V / Vo = 1. It is 0.0, and it can be seen that a substantially uniform flow rate is flowing in the left and right cross sections of the suction pipe.

【0007】一方、高落差相当運転時にあっては測定点
Aでの流速は平均流速の約2倍程度であり、測定点Bで
の平均流速は測定点Aの約半分程度に落ちていることが
分る。また、低落差相当運転時にあっては上記傾向が逆
転していることが分る。これはランナ出口における速度
三角形からも明らかなように、高落差側の運転ではラン
ナの回転方向に対して逆転方向、低落差側の運転ではラ
ンナの回転方向の旋回流がそれぞれ残存しているためで
ある。すなわち、高落差側の運転では測定点Aのある右
側流路に、低落差側の運転では測定点Bのある左側流路
に水が流れやすい流れが主流となるためである。さら
に、カプラン水車の場合にはランナベーンの開度が運転
状態に応じて変化し、常時最高効率点近傍の無旋回領域
に近い状態で運転できる利点があるが、フランシス水車
ではランナーベーンが可動ではないため部分負荷運転、
過負荷運転の何れにおいても旋回流が発生し、上記のよ
うな現象を生じる。
On the other hand, the flow velocity at the measurement point A is about twice the average flow velocity during the operation corresponding to the high head, and the average flow velocity at the measurement point B has dropped to about half of the measurement point A. I understand. Further, it can be seen that the above tendency is reversed at the time of low head equivalent operation. This is because, as is clear from the velocity triangle at the runner outlet, the swirling flow in the reverse direction with respect to the rotation direction of the runner in the operation on the high head side and the swirling flow in the rotation direction of the runner in the operation on the low head side remain. Is. That is, the main flow is water that easily flows to the right flow passage having the measurement point A in the high head operation and to the left flow passage having the measurement point B in the low head operation. Furthermore, the Kaplan turbine has the advantage that the runner vane opening changes according to the operating state, and it can always operate in a state near the non-turning region near the maximum efficiency point, but in the Francis turbine the runner vane is not movable. For partial load operation,
A swirl flow is generated in any of the overload operations, and the above phenomenon occurs.

【0008】以上に説明したように、運転状態によって
吸出管センタピアを境界とした左右の流路には、流量分
布を異にする流れが生じることとなり、それぞれの流路
には設計時に想定された以上の損失が発生し水車効率の
低下を引き起こす原因となっている。
As described above, flows having different flow distributions are generated in the left and right flow passages with the suction pipe center pier as a boundary depending on the operating state, and the flow passages are assumed at the time of design. The above losses occur and cause the reduction of turbine efficiency.

【0009】また、吸出管内の流れに旋回流が残存する
ことから、吸出管センタピア先端部ではセンタピアの取
付角に対して大きな偏向角を持つ流れとなり、センタピ
ア先端部では大きな衝突損失が生じ、水車効率低下の大
きな原因となっている。
Further, since the swirling flow remains in the flow in the suction pipe, the flow has a large deflection angle with respect to the mounting angle of the center pier at the tip of the suction pipe center pier, and a large collision loss occurs at the tip of the center pier. This is a major cause of reduced efficiency.

【0010】本発明は上記の事情に基づきなされたもの
で、センタピアを境界とする2個の流路の流量を均一化
して、上記流量の不均一による水車効率の低下を防止し
得る軸流水車の高効率運転方法を提供する。
The present invention has been made based on the above circumstances, and an axial flow turbine capable of making the flow rates of two flow passages having a center pier as a boundary uniform and preventing a reduction in turbine efficiency due to the non-uniform flow rate. To provide a highly efficient driving method.

【0011】[0011]

【課題を解決するための手段】本発明の水車の高効率運
転方法は、水力機械の吸出管拡大部にその流路を2等分
して設けられたセンタピアの先端部を、上記センタピア
中心線を含む面内にあり前記吸出管拡大部の上面壁、底
面壁に垂直な軸を中心として可回動のものとし、水力機
械の運転状態に応じて上記センタピア先端部の設定角度
を制御して、運転状態の如何にかかわらず前記2等分さ
れた各流路の流量を均衡させるようにしたことを特徴と
する。
According to the method for highly efficient operation of a water turbine of the present invention, a tip end of a center pier, which is provided in an enlarged portion of a suction pipe of a hydraulic machine, is divided into two equal parts, and In the plane including the above, and is rotatable about an axis perpendicular to the top wall and bottom wall of the expansion pipe, and the set angle of the tip of the center pier is controlled according to the operating state of the hydraulic machine. It is characterized in that the flow rate of each of the two halves is balanced regardless of the operating state.

【0012】[0012]

【作用】上記の本発明の水車の高効率運転方法によれ
ば、センタピア線端部がセンタピアにより2等分された
吸出管の各流路の流量が均衡する設計点近傍での運転時
には、前記2流路の入口をほぼ同等に開放する位置に設
定され、高落差運転時、低落差運転時にはそれぞれ前記
2流路の中で流量が増大される側の流路入口を狭める位
置に設定されるので、運転状態にかかわらず吸出管の効
率は高められ、水車効率の低下は防止される。
According to the above-described highly efficient operation method of the water turbine of the present invention, when the operation is performed in the vicinity of the design point where the flow rates of the respective flow paths of the suction pipe whose center pier line end is bisected by the center pier are balanced, The inlets of the two flow passages are set to be substantially equally opened, and at the time of high head operation and low head operation, the inlets of the two flow paths on the side where the flow rate is increased are narrowed. Therefore, the efficiency of the suction pipe is enhanced regardless of the operating state, and the reduction of the turbine efficiency is prevented.

【0013】[0013]

【実施例】以下、本発明の詳細を図面を参照して説明す
る。図4(a)、図4(b)と同一部分には同一符号を
付した図1(a)は、本発明一実施例の断面図、図1
(b)はその要部の平面図、図2は本発明の運転方法の
効果を効果を示す線図、図3は本発明の運転方法による
水車効率の改善状態を示す線図である。これらの図にお
いて、センタピア9の先端部10はセンタピア9の中心
線を含む平面内にあり、吸出管の上面壁、底面壁に垂直
な軸11を中心として可回動とされている。なお、図1
(a)、図1(b)において、他の部分は図4の同一符
号に対応する部分と同一構成とされいるので、説明は省
略する。なお、図1(b)において10a、10b、1
0cは水車の運転状態に応じて作動された先端部10の
位置をそれぞれ示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the drawings. 1 (a), in which the same parts as those in FIGS. 4 (a) and 4 (b) are denoted by the same reference numerals, FIG.
(B) is a plan view of the main part thereof, FIG. 2 is a diagram showing the effect of the operating method of the present invention, and FIG. 3 is a diagram showing a state of improvement in water turbine efficiency by the operating method of the present invention. In these figures, the tip portion 10 of the center pier 9 is in a plane including the center line of the center pier 9, and is rotatable about an axis 11 perpendicular to the top wall and the bottom wall of the suction pipe. Note that FIG.
In (a) and FIG. 1 (b), the other parts have the same configuration as the parts corresponding to the same reference numerals in FIG. In addition, in FIG. 1B, 10a, 10b, 1
Reference numeral 0c indicates the position of the tip portion 10 operated according to the operating state of the water turbine.

【0014】上記構成のフランシス水車において、設計
点に近い状態の運転ではセンタピア9の先端部10を図
中10aで示された位置に設定し、高落差側の運転では
前記先端部10を図中10bで示された位置に設定し、
低落差側の運転では前記先端部10を図中10cで示さ
れた位置に設定する。すなわち、設計点に近い状態の運
転では旋回流による影響が殆ど無視し得る程度であるた
め、センタピア9の先端部10はその中心線がセンタピ
ア9の中心線と合致する位置10aに設定され、センタ
ピア9により2等分された各流路の流量は図2に示すよ
うにほぼ均一化される。また、高落差側の運転では図1
bに点線矢符で示すように、ランナ4の回転方向に対し
て逆転方向の旋回流があり、測定点Aのある流路の流量
が大きくなるので、センタピア9の先端部10を図示1
0bのように測定点Aのある流路の入口を狭める位置に
設定する。さらに、低落差側の運転では図1(b)に実
線矢符で示すようにランナ4の回転方向の旋回流があ
り、測定点Bのある流路の流量が大きくなるので、セン
タピア9の先端部10を図示10cのように測定点Bの
ある流路の入口を狭める位置に設定する。
In the Francis turbine of the above construction, the tip portion 10 of the center pier 9 is set to the position indicated by 10a in the figure for operation in a state close to the design point, and the tip portion 10 for operation on the high head side in the figure. Set to the position indicated by 10b,
In the operation on the low head side, the tip portion 10 is set to the position indicated by 10c in the figure. That is, since the influence of the swirling flow is almost negligible in the operation close to the design point, the tip portion 10 of the center pier 9 is set at the position 10a where the center line of the center pier 9 coincides with the center line of the center pier 9, and The flow rate of each flow path divided into two by 9 is made substantially uniform as shown in FIG. In the operation on the high head side,
As indicated by a dotted arrow in b, there is a swirling flow in the reverse direction with respect to the rotation direction of the runner 4, and the flow rate in the flow path at the measurement point A becomes large.
0b is set at a position where the inlet of the flow path having the measurement point A is narrowed. Further, in the operation on the low head side, there is a swirling flow in the rotation direction of the runner 4 as shown by the solid line arrow in FIG. 1B, and the flow rate of the flow path having the measurement point B becomes large, so the tip of the center pier 9 The portion 10 is set at a position where the inlet of the flow path having the measurement point B is narrowed as shown in FIG. 10c.

【0015】上記のようにすることにより、センタピア
9によって2等分された吸出管拡大部8の各流路の流量
を均一化させることができ、上記流量の不均一に基づく
水車効率の低下を防止することができる。なお、本発明
は上記実施例のみに限定されない。例えば、水車のみで
なくポンプ01等の運転にも適用することができる。
By the above, the flow rate of each flow path of the suction pipe expansion portion 8 which is bisected by the center pier 9 can be made uniform, and the reduction of the turbine efficiency due to the non-uniform flow rate. Can be prevented. The present invention is not limited to the above embodiment. For example, it can be applied not only to the water turbine but also to the operation of the pump 01 and the like.

【0016】[0016]

【発明の効果】上記から明らかなように本発明の水力機
械の運転方法によれば、水力機械の運転状態に応じてセ
ンタピア先端部の設定位置を変更して、センタピアによ
り2等分された吸出管の各流路の流量を均一化すること
ができるので、吸出管効率を上昇させることができ、上
記流量の不均一に基づく水力機械の効率低下を防止し得
る。さらに、センタピアの先端部の位置を上記のように
制御するために、センタピアを境界とする2つの流路の
流れの不安定を抑止することができ、振動、水圧脈動等
の発生を低減させることができるので、水車等の信頼性
を向上させることができる。
As is apparent from the above, according to the operating method of the hydraulic machine of the present invention, the set position of the tip end of the center pier is changed according to the operating state of the hydraulic machine, and the suction halved by the center pier is changed. Since the flow rate of each flow path of the pipe can be made uniform, the suction pipe efficiency can be increased, and the efficiency reduction of the hydraulic machine due to the non-uniformity of the flow rate can be prevented. Further, since the position of the tip portion of the center pier is controlled as described above, it is possible to suppress the instability of the flow of the two flow passages having the center pier as a boundary, and reduce the occurrence of vibration, water pressure pulsation and the like. Therefore, the reliability of the water turbine or the like can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明一実施例の断面図、(b)はそ
の要部の平面図。
FIG. 1A is a sectional view of an embodiment of the present invention, and FIG. 1B is a plan view of a main part thereof.

【図2】本発明の運転方法の効果を効果を示す線図。FIG. 2 is a diagram showing the effects of the driving method of the present invention.

【図3】本発明の運転方法による水車効率の改善状態を
示す線図
FIG. 3 is a diagram showing a state where the turbine efficiency is improved by the driving method of the present invention.

【図4】(a)は一般的なフランシス水車の縦断面図、
(b)はその要部平面図。
FIG. 4A is a vertical cross-sectional view of a general Francis turbine,
(B) The principal part top view.

【図5】(a)は従来の水車の設計点での運転状態にお
ける吸出管内の水の流れを示す模式的平面図、(b)は
同じく低落差運転状態での吸出管内での水の流れを示す
模式的平面図、(c)は同じく高落差運転状態での吸出
管内での水の流れを示す模式的平面図。
FIG. 5 (a) is a schematic plan view showing the flow of water in the suction pipe in the operating state at the design point of the conventional water turbine, and FIG. 5 (b) is the flow of water in the suction pipe in the same low head operating state. FIG. 3C is a schematic plan view showing the flow of water in the suction pipe in the high head operation state.

【図6】従来の水車の吸出管内の流速分布を示す線図。FIG. 6 is a diagram showing a flow velocity distribution in a suction pipe of a conventional water turbine.

【符号の説明】[Explanation of symbols]

1…ケーシング 2…ステーベーン 3…ガイドベーン 4…ランナ 5…吸出管 6…上部吸出管 7…吸出管エルボ部 8…吸出管拡大部 9…センタピア 10…センタピア先端部 11…軸 1 ... Casing 2 ... Stay vane 3 ... Guide vane 4 ... Runner 5 ... Suction pipe 6 ... Upper suction pipe 7 ... Suction pipe elbow 8 ... Suction pipe expansion 9 ... Center pier 10 ... Center pier tip 11 ... Shaft

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水力機械の吸出管拡大部にその流路を2
等分して設けられたセンタピアの先端部を、上記センタ
ピア中心線を含む面内にあり前記吸出管拡大部の上面
壁、底面壁に垂直な軸を中心として可回動のものとし、
水力機械の運転状態に応じて上記センタピア先端部の設
定角度を制御して、運転状態の如何にかかわらず前記2
等分された各流路の流量を均衡させるようにしたことを
特徴とする水力機械の運転方法。
1. A flow passage is provided in an enlarged portion of a suction pipe of a hydraulic machine.
The tip end of the center pier, which is equally divided, is rotatable about an axis in the plane including the center pier center line and perpendicular to the top wall and the bottom wall of the suction pipe expansion portion,
The setting angle of the tip portion of the center pier is controlled according to the operating state of the hydraulic machine, so that the above 2 can be performed regardless of the operating state.
A method of operating a hydraulic machine, characterized in that the flow rate of each of the equally divided flow paths is balanced.
【請求項2】 水力機械の吸出管拡大部にその流路を2
等分して設けられたセンタピアの先端部を、上記センタ
ピア中心線を含む面内にあり前記吸出管拡大部の上面
壁、底面壁に垂直な軸を中心として可回動のものとし、
水力機械の運転状態に応じて上記センタピア先端部の設
定角度を制御するようにしたことを特徴とする水力機
械。
2. The flow passage is provided in the enlarged portion of the suction pipe of the hydraulic machine.
The tip end of the center pier, which is equally divided, is rotatable about an axis in the plane including the center pier center line and perpendicular to the top wall and the bottom wall of the suction pipe expansion portion,
A hydraulic machine characterized in that the set angle of the tip of the center pier is controlled according to the operating state of the hydraulic machine.
JP5198084A 1993-08-10 1993-08-10 High efficient operating method for hydraulic machine and the hydraulic machine Pending JPH0754754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5198084A JPH0754754A (en) 1993-08-10 1993-08-10 High efficient operating method for hydraulic machine and the hydraulic machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5198084A JPH0754754A (en) 1993-08-10 1993-08-10 High efficient operating method for hydraulic machine and the hydraulic machine

Publications (1)

Publication Number Publication Date
JPH0754754A true JPH0754754A (en) 1995-02-28

Family

ID=16385248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5198084A Pending JPH0754754A (en) 1993-08-10 1993-08-10 High efficient operating method for hydraulic machine and the hydraulic machine

Country Status (1)

Country Link
JP (1) JPH0754754A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2083168A2 (en) 2008-01-16 2009-07-29 Hitachi Ltd. Draft tube of hydraulic machinery
KR100917850B1 (en) * 2007-12-31 2009-09-18 한국수자원공사 A method for calculating the strength index of spiral-vortex-flow

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100917850B1 (en) * 2007-12-31 2009-09-18 한국수자원공사 A method for calculating the strength index of spiral-vortex-flow
EP2083168A2 (en) 2008-01-16 2009-07-29 Hitachi Ltd. Draft tube of hydraulic machinery

Similar Documents

Publication Publication Date Title
US4626174A (en) Turbine blade
CA1179238A (en) Hydropower turbine system
US6729843B1 (en) Partial splitter vane for reaction hydraulic turbine
KR101636841B1 (en) Method of refurbishing an energy conversion facility and refurbished energy conversion facility
US7438521B2 (en) Hydraulic turbine and stay ring
JP2014080929A (en) Hydraulic machinery
JP4776333B2 (en) Hydraulic machine guide vane and hydraulic machine equipped with the guide vane
JPH0754754A (en) High efficient operating method for hydraulic machine and the hydraulic machine
CN103114953A (en) Mixed-flow type water turbine reversed S-shaped rotating wheel with long and short blades
JP4846139B2 (en) Hydraulic machine
US4108570A (en) Francis-type runner for pump-turbine
CN108533559B (en) A kind of rebound jetting type deflector electrohydraulic servo valve with hydrostatic support
CN103244749B (en) Pressure reducing valve
CN108396712A (en) A kind of embedded parts structure and its gate system
CN201588723U (en) Lamp-bulb angled-discharge water turbine
CN208235448U (en) A kind of embedded parts structure and its gate system
WO2020104536A1 (en) Hydroturbine runner crown with balancing slots
CN110410259A (en) A kind of leaf head cantilever type runner
JPH0335511B2 (en)
JP5197805B2 (en) Hydraulic machine
CN109778773A (en) A kind of discrete packaged type diversion pier of "-" type for pumping plant water inlet structure
JPS6241904A (en) Steam turbine
JPH0754752A (en) Runner vane of axial flow water turbine
JP2957891B2 (en) Suction channel for pump station
CN116877312A (en) Movable guide vane and water turbine