JPS6241904A - Steam turbine - Google Patents

Steam turbine

Info

Publication number
JPS6241904A
JPS6241904A JP17865085A JP17865085A JPS6241904A JP S6241904 A JPS6241904 A JP S6241904A JP 17865085 A JP17865085 A JP 17865085A JP 17865085 A JP17865085 A JP 17865085A JP S6241904 A JPS6241904 A JP S6241904A
Authority
JP
Japan
Prior art keywords
turbine
steam
flow path
opening
final stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17865085A
Other languages
Japanese (ja)
Inventor
Kenji Natori
名取 顕二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17865085A priority Critical patent/JPS6241904A/en
Publication of JPS6241904A publication Critical patent/JPS6241904A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To reduce pressure loss and improve efficiency by providing a flow path regulating plate for changing the area of a steam path according to turbine load in an outlet of a final stage moving blade of a turbine. CONSTITUTION:In an outlet of a final stage moving blade 37 of a turbine exhaust chamber is provided a flow path regulating plate 50. And the regulating plate 50 is controlled to provide an optimum steam path area for steam flow according to turbine load. Thus, the pressure loss in the outlet of the final stage moving blade can be reduced to improve efficiency.

Description

【発明の詳細な説明】 (発明の技術分野〕 本発明は、最終段動翼出口から排気室にいたる蒸気通路
部をエネルギー損失が少なくなるよう改良した蒸気ター
ビンに関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a steam turbine in which a steam passage from a final stage rotor blade outlet to an exhaust chamber is improved so as to reduce energy loss.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、蒸気タービン発電プラントにおいては、蒸気ター
ビンの単機容量が増大する傾向にある。
In recent years, in steam turbine power plants, there has been a tendency to increase the capacity of a single steam turbine.

この場合、タービンを通過する蒸気量は膨大なものとな
り、蒸気通路部に生ずる流体力学的抵抗によるエネルギ
損失は無視できなくなってきている。
In this case, the amount of steam passing through the turbine becomes enormous, and energy loss due to hydrodynamic resistance occurring in the steam passage cannot be ignored.

特に低圧タービン最終段から復水器に至る蒸気通路部で
生ずるエネルギ損失は、発電プラント全体の効率に大き
な影響を及ぼす点から重要な事項である。
In particular, energy loss occurring in the steam passage from the final stage of the low-pressure turbine to the condenser is an important issue because it has a large effect on the efficiency of the entire power plant.

又、近年の原子力発電による発電量の増加にともない、
従来はベース運用を行なってきた火力発電プラン1〜や
新設の火力発電プラントにおいても中間負荷運用を行な
うに至っている。
In addition, with the increase in the amount of electricity generated by nuclear power generation in recent years,
Thermal power generation plans 1~ and newly built thermal power plants, which have traditionally been operated under base operation, are now operating under intermediate load operation.

一般に、最終段はプラント全体の効率に大きな影響を及
ぼし、最終段から復水器に至る蒸気通路部で生ずる排気
損失は、タービンの損失のうちのかなりの割合を占める
。一方、最終段及び排気室等の蒸気通路部は、100%
負荷運転を行なった場合に蒸気通路部が最適となるよう
に設計されている。したがって中間負荷運転の場合、前
記通路部面積は、タービン内部を流れる蒸気流量に対し
て広すぎ、はとんど流れない領域や逆流領域が生じ、内
部損失が増加して発電プラント効率の低下をひきおこし
ている。
In general, the final stage has a large effect on the efficiency of the entire plant, and the exhaust loss occurring in the steam path from the final stage to the condenser accounts for a considerable proportion of the turbine loss. On the other hand, steam passages such as the final stage and exhaust chamber are 100%
The steam passage is designed to be optimal during load operation. Therefore, in the case of intermediate load operation, the area of the passage is too wide for the flow rate of steam flowing inside the turbine, resulting in regions where steam hardly flows or regions where reverse flow occurs, increasing internal losses and reducing power plant efficiency. It's arousing.

ところで、低圧タービンの最終段動翼から復水器に至る
蒸気通路部で生ずる排気損失は、タービン全体の損失の
うちかなりの割合をしめている。
Incidentally, the exhaust loss occurring in the steam passage from the final stage rotor blades to the condenser of the low-pressure turbine accounts for a considerable proportion of the loss of the entire turbine.

この傾向は、特に中間負荷運転の場合に顕著であり、タ
ービン損失を大きくして発電プラント効率の大幅な低下
をひきおこし、大きな問題となっている。
This tendency is particularly noticeable in the case of intermediate load operation, and is a major problem as it increases turbine loss and causes a significant drop in power plant efficiency.

従来の低圧タービンにおいて、蒸気通路部は100%負
荷運転時に蒸気の流れ方が最適となるように設計を行な
っている。部分負荷運転時においては、100%負荷運
転時に比べ蒸気流量が少ないため、 タービン段落内の
蒸気圧力は100%負荷運転時に比べ低くなる。又、タ
ービン動翼入口においては、通常翼先端部の圧力の方が
翼根本部の圧力より高くなっている。ところが、復水器
の真空度は部分負荷運転時においても100%負荷運転
時とほとんど変わらず、最終段動翼の出口圧力も部分負
荷運転時と1.00%負荷運転時とではほとんど変わら
ない。したがって、部分負荷運転時には、最終段動翼の
出口圧力が最終段動翼の入口根本部や最終段動翼の蒸気
通路部内根本部の圧力より高くなってしまう。
In conventional low-pressure turbines, the steam passage section is designed to optimize the flow of steam during 100% load operation. During partial load operation, the steam flow rate is lower than during 100% load operation, so the steam pressure in the turbine stage is lower than during 100% load operation. Further, at the inlet of a turbine rotor blade, the pressure at the tip of the blade is usually higher than the pressure at the root of the blade. However, the degree of vacuum in the condenser is almost the same during partial load operation as it is during 100% load operation, and the outlet pressure of the final stage rotor blades is also almost the same between partial load operation and 1.00% load operation. . Therefore, during partial load operation, the outlet pressure of the final stage rotor blade becomes higher than the pressure at the inlet root portion of the final stage rotor blade or the root portion within the steam passage portion of the final stage rotor blade.

その結果、第7図に示されるように、従来の低圧タービ
ンにおいては、部分負荷運転時に、最終亨 段動g37の根本部では、蒸気流量がなくなり、流=3
− れの剥離が生じて最終段動翼37の出口でも蒸気が流れ
ない領域が生じる。この領域は圧力が低いので最終的に
は逆流領域41となり、大きな渦ができて非常に大きな
圧力損失を生じている。
As a result, as shown in FIG. 7, in the conventional low-pressure turbine, during partial load operation, there is no steam flow at the root of the final stage motion g37, and the flow = 3.
- Separation occurs and there is a region where steam does not flow even at the exit of the final stage rotor blade 37. Since the pressure in this region is low, it ultimately becomes a backflow region 41, creating a large vortex and causing a very large pressure loss.

したがって第6図に示す比タービン効率とタービン負荷
との関係図に示すように従来の蒸気タービンにおいては
、特性T、に示すようにタービン負荷が低下するにした
がい、比タービン効率は低下して特に60%負荷付近か
ら急激に低下する。この結果、従来の蒸気タービンでは
部分負荷運転時に発電プラント効率が大幅に低下すると
いう問題を生じていた。なお、第6図の縦軸に示す比タ
ービン効率は、 タービン効率を100%負荷における
タービン効率でねった値である。
Therefore, as shown in the relationship diagram between specific turbine efficiency and turbine load shown in Fig. 6, in conventional steam turbines, as the turbine load decreases as shown in characteristic T, the specific turbine efficiency decreases, especially It suddenly decreases from around 60% load. As a result, conventional steam turbines have had the problem of significantly reducing power plant efficiency during partial load operation. Note that the specific turbine efficiency shown on the vertical axis in FIG. 6 is a value obtained by multiplying the turbine efficiency by the turbine efficiency at 100% load.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、タービンの負荷状態に応じて低圧ター
ビン最終段動翼の出口の蒸気流路面積を変え、従来例に
おいて問題となっていた逆流領域をなくし、逆流に伴う
圧力損失を低減させ、発電プラン1−効率の向上を図る
ことのできる蒸気タービンを提供しようとするものであ
る。
The purpose of the present invention is to change the steam flow path area at the outlet of the final stage rotor blade of a low-pressure turbine according to the load condition of the turbine, eliminate the backflow region that has been a problem in conventional examples, and reduce pressure loss due to backflow. , Power generation plan 1 - attempts to provide a steam turbine capable of improving efficiency.

〔発明の概要〕[Summary of the invention]

本発明による蒸気タービンは、タービンケーシングの側
端部に形成されるタービンロータの最終段動翼出口につ
ながる排気室を復水器本体胴の上端開口部に直接開口し
た蒸気タービンにおいて、前記排気室の最終段動翼出口
の根本部に、そのタービン軸側に一端を回動自在にとり
つけ他端を放射状に開閉することが可能な複数枚の流路
調整板を設けたことを特徴とするものである。
A steam turbine according to the present invention is a steam turbine in which an exhaust chamber connected to an outlet of a final stage rotor blade of a turbine rotor formed at a side end of a turbine casing is opened directly into an upper end opening of a condenser main body body. A plurality of flow path adjustment plates are provided at the root of the final stage rotor blade outlet, one end of which is rotatably attached to the turbine shaft side, and the other end of which can be opened and closed radially. It is.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を第1図、第2図および第3図に示す実施例
にもとすいて説明する。低圧タービンを示す第1図にお
いて、外部ケーシング30の内部には、内部ケーシング
32が補強板33を介して設けられている。タービンロ
ータ34には、タービン翼36および最終段動翼37が
放射状に円環列となって設定されている。また内部ケー
シング32には、ノズル35が各タービン翼列間に設置
されるように保持されている。
The present invention will be explained below with reference to the embodiments shown in FIGS. 1, 2, and 3. In FIG. 1 showing the low pressure turbine, an inner casing 32 is provided inside an outer casing 30 with a reinforcing plate 33 interposed therebetween. In the turbine rotor 34, turbine blades 36 and final stage rotor blades 37 are arranged radially in an annular row. Further, a nozzle 35 is held in the inner casing 32 so as to be installed between each row of turbine blades.

外部ケーシング30と内部ケーシング32とには、蒸気
管31が接続されており、駆動蒸気がこの蒸気管31か
ら内部ケーシング32に注入されてその内部に設けられ
たタービン段落に流入される。また蒸気は矢示40に示
すようにタービン段落で仕事をし、最終段動翼37を出
たのち、外部ケーシング30の下部に設けられた復水器
へ流入してこ\で凝縮したのち復水どなる。
A steam pipe 31 is connected to the outer casing 30 and the inner casing 32, and driving steam is injected from the steam pipe 31 into the inner casing 32 and flows into a turbine stage provided therein. Further, as shown by the arrow 40, the steam performs work in the turbine stage, and after leaving the final stage rotor blade 37, it flows into the condenser installed at the bottom of the outer casing 30, where it is condensed and then condensed. bawl.

本発明においては、この低圧タービンの外部ケーシング
30の最終段動翼37の根本部に対向する排気室内部コ
ーン壁57に流路調整板50を設けたことを特徴として
いる。この流路調整板50は、詳細構造を第4図に示す
ようにその一端が排気室内部コーン壁57のタービンロ
ータ34側に設けた取付具52にピン54で揺動自在に
設けられ、その自由端は図示のように蒸気の流れの矢示
40の方向に延長されている。この流路調整板50の自
由端には、押上棒56がピン53を介して取りつけられ
、この押上棒56は外部ケーシング30の外側に設けた
押」ニピス1〜ン5]のロッド)こ連結されている。
The present invention is characterized in that a flow path adjusting plate 50 is provided on the exhaust chamber internal cone wall 57 facing the root portion of the final stage rotor blade 37 of the external casing 30 of the low pressure turbine. As shown in FIG. 4, one end of the flow path adjusting plate 50 is swingably attached to a fixture 52 provided on the turbine rotor 34 side of the cone wall 57 inside the exhaust chamber with a pin 54. The free end extends in the direction of steam flow arrow 40 as shown. A push-up rod 56 is attached to the free end of the flow path adjustment plate 50 via a pin 53, and this push-up rod 56 connects the push-up rods 1 to 5 provided on the outside of the external casing 30. has been done.

したがって流路調整板50の先端は、押上ピストン51
の操作によってピン54を中心に矢示55の方向に揺動
することになり、その角度Oをピストン51によって任
意に設定することができる。また流路調整板50は、第
2図に示すように複数枚に分割されており、この各流路
調整板50は開度が最大となった状態でも、花びらのよ
うに重なり合う構造になっている。その蒸気通路部とし
ては、流路調整板50の表面において隙間のない状態を
形成することが可能である。そして流路調整板50の開
口部の開口部圧力PAと取付部圧力PBとは、pA= 
PBとなって蒸気が流路調整板50の裏側に流れ込むこ
とはない。これは蒸気の流れが流路調整板50によって
矢示40の方向に案内されること、分割された各流路調
整板50の相互間に蒸気が流れこむ流路が生じないこと
に起因する。
Therefore, the tip of the flow path adjusting plate 50 is connected to the push-up piston 51.
As a result of this operation, it swings about the pin 54 in the direction of the arrow 55, and its angle O can be arbitrarily set by the piston 51. In addition, the flow path adjustment plate 50 is divided into a plurality of pieces as shown in FIG. There is. As the steam passage portion, it is possible to form a state in which there is no gap on the surface of the flow path adjustment plate 50. The opening pressure PA of the opening of the flow path adjustment plate 50 and the mounting pressure PB are pA=
The steam does not become PB and flow into the back side of the flow path adjustment plate 50. This is because the flow of steam is guided in the direction of the arrow 40 by the flow path adjustment plate 50, and there is no flow path for steam to flow between the divided flow path adjustment plates 50.

また流路調整板50の開度調整装置としては、第4図に
示すようにタービン負荷を検出するタービン負荷検出器
M1から入力した信号を開度演算器M2に入力し、ニー
でこの入力信号に基づいて流路調整板50の開度0をH
J算して開度信号を出力する。
As shown in FIG. 4, the opening adjustment device for the flow path adjusting plate 50 inputs a signal input from a turbine load detector M1 that detects the turbine load to an opening calculation unit M2. The opening degree of the flow path adjusting plate 50 is set to H based on
Calculate J and output the opening signal.

この開度信号を入力した開度調節器M3はこの開度信号
に対応する押」ニビス1ヘン51の押上棒56の伸縮量
を変化させる開度調節信号を出力し、この開度調節信号
を押上ピストン51に送って流路調整板50の開度調整
を行なう。なお押上ピストン51の作動媒体は油又は空
気を使用する。
The opening adjuster M3, which receives this opening signal, outputs an opening adjustment signal that changes the amount of expansion and contraction of the push-up rod 56 of the push-up rod 51 of the pusher nib 1 hem 51 corresponding to this opening signal. It is sent to the push-up piston 51 to adjust the opening of the flow path adjusting plate 50. Note that oil or air is used as the working medium for the push-up piston 51.

しかして、従来の低圧タービンにおいては、タービン負
荷が減少したときにともなう蒸気流量の減少に対して、
最終段動翼出口の蒸気通路部は全く変化することができ
ず、蒸気通路部面積が広すぎて逆流が生じて大きな圧力
損失を生じていた。
However, in conventional low-pressure turbines, when the turbine load decreases, the steam flow rate decreases.
The steam passage section at the exit of the final stage rotor blade could not be changed at all, and the area of the steam passage section was too wide, causing backflow and large pressure loss.

これに対し、本発明においては、第5図に示すように開
度をタービン負荷に応じて調整する流路調整板50によ
って蒸気通路部面積をタービン負荷に応じた蒸気流量に
対して最適となるように変えることが可能となる。
In contrast, in the present invention, as shown in FIG. 5, the steam passage area is optimized for the steam flow rate according to the turbine load by means of a flow passage adjustment plate 50 that adjusts the opening according to the turbine load. It is possible to change it like this.

また従来中間負荷時に逆流が生じていた領域を流路調整
板50と排気室内部コーン壁57で囲こみ、さらに開口
部圧力PAと取付部圧力paとを等しく保持することが
できるので、逆流を生じることがなくなり、従来問題に
なっていた大きな圧力損失が生じるということもなくな
り、第6図に示す破線の特性T2のように大幅に発電プ
ラント効率を向上させることができる。
In addition, the area where backflow conventionally occurred during intermediate loads is surrounded by the flow path adjustment plate 50 and the cone wall 57 inside the exhaust chamber, and furthermore, the opening pressure PA and the mounting pressure pa can be maintained equal, thereby preventing backflow. This eliminates the occurrence of large pressure loss, which has been a problem in the past, and it is possible to significantly improve the efficiency of the power plant, as shown by the broken line characteristic T2 shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明においては、最終段動翼出口にその
蒸気通路部面積をタービン負荷に応じた蒸気流量に対し
て最適となるよう変える流路調整板を設けたことにより
、最終段動翼出口の圧力損失を大幅に低減する高効率の
蒸気タービンを得ることができる。
As described above, in the present invention, by providing a flow path adjusting plate at the outlet of the final stage rotor blade, which changes the area of the steam passage part to be optimal for the steam flow rate according to the turbine load, the final stage rotor blade A highly efficient steam turbine can be obtained that significantly reduces pressure loss at the outlet.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による蒸気タービンの低圧タービン部の
一実施例を示す断面図、第2図は第1図A−A線に沿う
断面図、第3図は低圧タービン部の最終段動翼部分を拡
大して示す断面図、第4図は本発明によって設けた流路
調整板の開度制御機構を説明するためのブロック図、第
5図は本発明によって設けた流路調整板の比開度とター
ビン負荷との関係を示す特性図、第6図は本発明と従来
の蒸気タービンの比タービン効率とタービン負荷との関
係を示す特性図、第7図は従来の低圧タービンにおける
蒸気の流れを示す説明図である。 30・・・外部ケーシング  31・・・蒸気管32・
・・内部ケーシング  34・・・タービンロータ37
・・・最終段動翼    40・・・蒸気の流れ50・
・・流路調整板    51・・・押上ピストン52・
・・取付具 (8733)代理人 弁理士  猪 股 祥 晃(ばか
1名)第4図 D  10 10.3040 、!;D 60 70 
 δ0 ’/D 100ノーど゛ン神荷(X) D  IOZO3040♂D  GC)  7080 
′IP0100ノーとン卿背 (X) 第6図
FIG. 1 is a cross-sectional view showing an embodiment of the low-pressure turbine section of a steam turbine according to the present invention, FIG. 2 is a cross-sectional view taken along line A-A in FIG. 1, and FIG. 3 is a final stage rotor blade of the low-pressure turbine section. FIG. 4 is a block diagram for explaining the opening control mechanism of the flow path adjusting plate provided according to the present invention, and FIG. 5 is a cross-sectional view showing the enlarged portion of the flow path adjusting plate provided according to the present invention. FIG. 6 is a characteristic diagram showing the relationship between the opening degree and turbine load. FIG. 6 is a characteristic diagram showing the relationship between the specific turbine efficiency and turbine load of the present invention and a conventional steam turbine. FIG. It is an explanatory diagram showing a flow. 30... External casing 31... Steam pipe 32.
...Inner casing 34...Turbine rotor 37
...Final stage rotor blade 40...Steam flow 50.
・Flow path adjustment plate 51 ・Push-up piston 52 ・
... Fixture (8733) Agent Patent Attorney Yoshiaki Inomata (1 idiot) Figure 4 D 10 10.3040,! ;D 60 70
δ0'/D 100 No Don Divine Goods (X) D IOZO3040♂D GC) 7080
'IP0100 No Ton Kyousei (X) Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)タービンケーシングの側端部に形成されるタービ
ンロータの最終段動翼出口につながる排気室を復水器本
体胴の上端開口部に直接開口してなる蒸気タービンにお
いて、前記排気室の最終段動翼出口の根本部に、そのタ
ービン軸側に一端を回動自在にとりつけ他端を放射状に
開閉することが可能な複数枚の流路調整板を設けたこと
を特徴とする蒸気タービン。
(1) In a steam turbine in which an exhaust chamber connected to the outlet of the final stage rotor blade of the turbine rotor formed at the side end of the turbine casing is opened directly to the upper end opening of the condenser body shell, the exhaust chamber A steam turbine characterized in that a plurality of flow path adjustment plates are provided at the roots of stage rotor blade outlets, one end of which is rotatably attached to the turbine shaft side, and the other end of which can be opened and closed radially.
(2)流路調整板を開閉する押上ピストンを具備し、さ
らに蒸気タービン負荷を検出するタービン負荷検出器と
、このタービン負荷検出器からの出力信号を入力してこ
の出力信号に基づいて流路調整板の開度を計算し開度信
号を出力する開度演算器と、この開度信号に基づいて前
記押し上げピストンへ開度調節信号を出力する開度調節
器とを具備したことを特徴とする特許請求の範囲第1項
記載の蒸気タービン。
(2) It is equipped with a push-up piston that opens and closes the flow path adjusting plate, and further includes a turbine load detector that detects the steam turbine load, and an output signal from this turbine load detector is input, and the flow path is adjusted based on this output signal. The present invention is characterized by comprising an opening calculator that calculates the opening of the adjustment plate and outputs an opening signal, and an opening adjuster that outputs an opening adjustment signal to the push-up piston based on the opening signal. A steam turbine according to claim 1.
(3)複数枚の流路調整板は、花びら形に周縁が重なっ
て蒸気流路を形成するよう構成したことを特徴とする特
許請求の範囲第1項記載の蒸気タービン。
(3) The steam turbine according to claim 1, wherein the plurality of flow path adjustment plates are configured such that their peripheral edges overlap in a petal shape to form a steam flow path.
JP17865085A 1985-08-15 1985-08-15 Steam turbine Pending JPS6241904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17865085A JPS6241904A (en) 1985-08-15 1985-08-15 Steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17865085A JPS6241904A (en) 1985-08-15 1985-08-15 Steam turbine

Publications (1)

Publication Number Publication Date
JPS6241904A true JPS6241904A (en) 1987-02-23

Family

ID=16052169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17865085A Pending JPS6241904A (en) 1985-08-15 1985-08-15 Steam turbine

Country Status (1)

Country Link
JP (1) JPS6241904A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128567U (en) * 1990-04-06 1991-12-25
JPH0420876U (en) * 1990-06-12 1992-02-21
CN108952821A (en) * 2018-09-25 2018-12-07 中国船舶重工集团公司第七0三研究所 A kind of fixed marine turbing deflector structure
US10895169B2 (en) 2017-02-14 2021-01-19 Mitsubishi Power, Ltd. Exhaust casing, and steam turbine provided with same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128567U (en) * 1990-04-06 1991-12-25
JPH0420876U (en) * 1990-06-12 1992-02-21
JPH085901Y2 (en) * 1990-06-12 1996-02-21 セイレイ工業株式会社 Steering switching device for self-propelled lifting workbench
US10895169B2 (en) 2017-02-14 2021-01-19 Mitsubishi Power, Ltd. Exhaust casing, and steam turbine provided with same
CN108952821A (en) * 2018-09-25 2018-12-07 中国船舶重工集团公司第七0三研究所 A kind of fixed marine turbing deflector structure
CN108952821B (en) * 2018-09-25 2023-12-08 中国船舶重工集团公司第七0三研究所 Fixed marine steam turbine guide plate structure

Similar Documents

Publication Publication Date Title
US5215436A (en) Inlet casing for steam turbine
US2846185A (en) Full admission impulse turbine
JPH08260904A (en) Exhaust chamber of steam turbine
EP0549637A1 (en) Diverter valves
JPS6241904A (en) Steam turbine
CN107100677A (en) A kind of nozzle ring assemblies of fixed blade and adjustable vane combination
US4870823A (en) Low load operation of steam turbines
JP3898311B2 (en) Water wheel or pump water wheel
CN214366425U (en) Compressor and active flow control device for compressor transition section
JP2915885B1 (en) Gas turbine combined cycle system
JPH0768884B2 (en) Full-circle injection steam turbine
JPS6113112B2 (en)
CN206668332U (en) A kind of nozzle ring assemblies of fixed blade and adjustable vane combination
JPS59150909A (en) Steam turbine plant
JPS636750B2 (en)
US6386829B1 (en) Multi-valve arc inlet for steam turbine
CN220828274U (en) Mixed flow turbine structure suitable for medium power unit
JPS6250663B2 (en)
JPS59168277A (en) Operation control of multistage hydraulic machine
JPH0553922B2 (en)
JPS62121805A (en) Internal pressure variable type turbine
JP2005337124A (en) Valve type water turbine power generation facility
JPH07208108A (en) Steam turbine and increasing method of output thereof
JPS59180075A (en) Control of operation of multistage hydraulic machine
JPS60159310A (en) Thermal stress control device for double casing of steam turbine