JPH0754575B2 - Magnetic recording medium - Google Patents
Magnetic recording mediumInfo
- Publication number
- JPH0754575B2 JPH0754575B2 JP61037205A JP3720586A JPH0754575B2 JP H0754575 B2 JPH0754575 B2 JP H0754575B2 JP 61037205 A JP61037205 A JP 61037205A JP 3720586 A JP3720586 A JP 3720586A JP H0754575 B2 JPH0754575 B2 JP H0754575B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- recording medium
- magnetic recording
- substrate
- corrosion resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Magnetic Record Carriers (AREA)
- Thin Magnetic Films (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は磁気記録媒体、特にCo-Ni系の金属膜に特定
の金属元素を含有させて磁気特性をそこなわず耐食性を
向上させた磁気記録媒体に関するものである。The present invention relates to a magnetic recording medium, in particular, a magnetic film in which a specific metal element is contained in a Co—Ni-based metal film so as not to impair magnetic properties and to improve corrosion resistance. The present invention relates to a recording medium.
γ‐Fe2O3やFeなどの磁性粉末と合成樹脂バインダーと
を混練して得られる混練物を、非磁性基板上に塗布して
なる磁気記録媒体が従来から使用されている。A magnetic recording medium has been conventionally used in which a kneaded material obtained by kneading a magnetic powder such as γ-Fe 2 O 3 or Fe and a synthetic resin binder is coated on a non-magnetic substrate.
この種の塗布型の磁気記録媒体に対して基板上に金属磁
性薄膜を形成した高密度記録の可能な磁気記録媒体が開
発されている。A magnetic recording medium capable of high-density recording has been developed in which a metal magnetic thin film is formed on a substrate for this type of coating type magnetic recording medium.
この金属薄膜タイプの磁気記録媒体を形成する方法とし
ては、(a)湿式法としての化学メッキ法、(b)乾式
法としてのスパッタリング法、イオンプレーティング
法、真空蒸着法などが採用されている。As a method for forming this metal thin film type magnetic recording medium, (a) a chemical plating method as a wet method, (b) a sputtering method as a dry method, an ion plating method, a vacuum deposition method, etc. are adopted. .
一般には(a)の湿式法に比較して、基板に施す下地処
理や磁性層の長手方向や幅方向に対する均質性などの点
から、(b)の乾式法による方が良好な磁気記録媒体が
得られると考えられている。Generally, in comparison with the wet method of (a), the dry method of (b) provides a better magnetic recording medium in terms of the surface treatment applied to the substrate and the homogeneity of the magnetic layer in the longitudinal and width directions. It is believed to be obtained.
しかし、この乾式法によって形成された金属薄膜型磁気
記録媒体は酸化物磁性粉末に比べ熱力学的安定性は極め
て低く、且つ、空孔が多い構成であり、空気中において
腐食し性能の低下を招きやすい。However, the metal thin film type magnetic recording medium formed by this dry method has extremely low thermodynamic stability as compared with the oxide magnetic powder and has a large number of pores, so that it corrodes in the air and deteriorates the performance. Easy to invite.
従来から、磁気記録媒体に対して磁気特性を低下させる
ことなく、耐食性を向上させることを目的とする試みが
なされている。例えば、特開昭55-105302号、同56-1501
4号、同57-170505号、同57-170506号に添加金属を添加
したり、オゾンと酸素との混合ガスを磁性層形成部分に
差し向けたり、あるいは酸素原子数を定量的に設定した
りして磁気記録媒体の耐食性を向上させることが開示さ
れている。Conventionally, attempts have been made to improve the corrosion resistance of a magnetic recording medium without deteriorating its magnetic properties. For example, JP-A-55-105302 and JP-A-56-1501.
No.4, No.57-170505, No.57-170506, adding an additive metal, directing a mixed gas of ozone and oxygen to the magnetic layer forming part, or setting the number of oxygen atoms quantitatively. Then, it is disclosed that the corrosion resistance of the magnetic recording medium is improved.
しかし、これらにおいてはいずれも耐食性の向上は僅か
には認められるが充分でなく、場合によっては飽和磁化
や残留磁化が減少し磁気記録媒体の再生出力の低下が生
じてしまうこともある。However, in each of these, the corrosion resistance is slightly improved, but it is not sufficient, and in some cases, the saturation magnetization and the residual magnetization are decreased, and the reproduction output of the magnetic recording medium may be decreased.
この発明は、前述の従来の磁気記録媒体での欠点を解決
し、Co-Ni系の金属薄膜タイプの磁気記録媒体に特定の
金属元素を添加させることにより、磁気特性をそこなわ
ず耐食性を向上させたものを提供することを目的とす
る。The present invention solves the above-mentioned drawbacks in the conventional magnetic recording medium and improves the corrosion resistance without impairing the magnetic characteristics by adding a specific metal element to the Co-Ni-based metal thin film type magnetic recording medium. The purpose is to provide the above.
この発明では、非磁性基板上にCo,Ni,Cu、元素M1または
元素M1と元素M2および酸素よりなる磁性層が形成され、
元素M1はB 1種もしくはB、Pの2種、元素M2はTi,V,C
r,Zr,Nb,Sn,Ta,Siのうちの1種以上からなり、この磁性
層の組成は、重量にてNi8〜20%、Cu0.5〜5%、元素M1
0.05〜3%または元素M10.01〜2.5%と元素M20.5〜6
%、酸素3〜13%、残部Coなる構成となっている。In the present invention, a magnetic layer comprising Co, Ni, Cu, element M 1 or element M 1 and element M 2 and oxygen is formed on a non-magnetic substrate,
Element M 1 is B 1 or 2 types of B and P, element M 2 is Ti, V, C
The magnetic layer is composed of one or more of r, Zr, Nb, Sn, Ta, and Si. The composition of this magnetic layer is Ni 8 to 20% by weight, Cu 0.5 to 5%, and the element M 1
0.05 to 3% or element M 1 0.01 to 2.5% and element M 2 0.5 to 6
%, Oxygen 3 to 13%, and the balance Co.
以下、本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.
まず、非磁性基板上に形成される磁性層の組成限定理由
について説明する。First, the reasons for limiting the composition of the magnetic layer formed on the non-magnetic substrate will be described.
Niは基本的には磁気記録媒体の残留磁化を減少させる傾
向を有するものであるが、Coを主体とする金属の磁性層
の耐食性を向上させるために必要である。8重量%未満
では、上記効果が充分発揮されず、一方20重量%を超え
て含有させると、磁性層の残留磁化が大幅に低下し、再
生出力が低下してしまう。Ni basically has a tendency to reduce the remanent magnetization of the magnetic recording medium, but it is necessary for improving the corrosion resistance of the magnetic layer of a metal mainly containing Co. If it is less than 8% by weight, the above effect is not sufficiently exhibited, while if it exceeds 20% by weight, the remanent magnetization of the magnetic layer is significantly reduced and the reproduction output is reduced.
CuはCo-Ni系の金属の磁性層の耐食性を向上させるため
に添加含有させる。0.5重量%未満では、上記効果が充
分でなく、一方5重量%を超えて含有させても耐食性の
効果は向上せず、又飽和磁化Msが低下してしまう。Cu is added in order to improve the corrosion resistance of the magnetic layer of a Co-Ni-based metal. If it is less than 0.5% by weight, the above effect is not sufficient, while if it exceeds 5% by weight, the effect of corrosion resistance is not improved and the saturation magnetization Ms is lowered.
B 1種もしくはB、Pの2種よりなる元素M1およびTi,V,
Cr,Zr,Nb,Sn,Ta,Siのうちの1種以上よりなる元素M
2は、Co-Ni系金属磁性層の磁気特性をそこなわず耐食性
を向上させるために添加含有させる。元素M1を添加し元
素M2を添加しなくて、M1の量が0.05重量%未満である
か、元素M1と元素M2とを添加して、M1の量が0.01重量%
未満および、またはM2の量が0.5重量%未満であるかす
ると、耐食性の向上が充分でない。一方、元素M1を添加
し元素M2を添加しなくて、M1の量が3重量%を超える
か、元素M1と元素M2とを添加して、M1の量が2.5重量%
を超えおよび、またはM2の量が6重量%を超えるかする
と、磁気特性が低下する。Element M 1 consisting of B 1 or two kinds of B and P and Ti, V,
Element M consisting of one or more of Cr, Zr, Nb, Sn, Ta, Si
2 is added in order to improve the corrosion resistance without impairing the magnetic characteristics of the Co-Ni based metal magnetic layer. An element M 1 without adding an element M 2 is added, or the amount of M 1 is less than 0.05 wt%, with the addition of the element M 1 and the element M 2, the amount of M 1 0.01 wt%
And less than, or the amount of M 2 is either less than 0.5 wt%, is not sufficient improving corrosion resistance. On the other hand, without adding an element M 2 added element M 1, or the amount of M 1 is more than 3 wt%, by adding the element M 1 and the element M 2, the amount of M 1 is 2.5 wt%
And / or the amount of M 2 exceeds 6% by weight, the magnetic properties deteriorate.
酸素は、磁気記録媒体の保磁力の向上を目的として、一
部は金属と化合して酸化物金属膜を形成し、他は磁気記
録媒体の磁性層中に吸着され、磁気記録媒体内に含有さ
れる。3重量%未満であると、酸素の添加含有の効果は
認められず磁気記録媒体の保磁力は向上せず、又耐食性
が劣化する。一方、13重量%を超えて含有されると、酸
化の影響が大きく現われ、金属酸化物の比率が増加して
しまって充分な耐食性が得られず又飽和磁化Msが低下し
てしまう。For the purpose of improving the coercive force of the magnetic recording medium, oxygen partially combines with the metal to form an oxide metal film, and the other part is adsorbed in the magnetic layer of the magnetic recording medium and contained in the magnetic recording medium. To be done. If it is less than 3% by weight, the effect of the addition of oxygen is not recognized, the coercive force of the magnetic recording medium is not improved, and the corrosion resistance is deteriorated. On the other hand, if the content is more than 13% by weight, the effect of oxidation is greatly exerted, the ratio of the metal oxide is increased, sufficient corrosion resistance cannot be obtained, and the saturation magnetization Ms is lowered.
以上のような本発明組成の磁性層の厚みは0.1μmから
1.0μm程度が望ましい。0.1μm未満では充分な再生出
力が得られずまた厚みが1μmを超えると、基板の可撓
性が低下し記録密度を上げることが難かしくなる。The thickness of the magnetic layer of the composition of the present invention as described above is from 0.1 μm
About 1.0 μm is desirable. If the thickness is less than 0.1 μm, a sufficient reproduction output cannot be obtained, and if the thickness exceeds 1 μm, the flexibility of the substrate decreases and it becomes difficult to increase the recording density.
このような磁性層が形成される非磁性基板としては適度
の可撓性と抗張性を有し蒸着時の耐熱性を有する例えば
厚みが5〜25μmのポリエステル、アセテート、ポリカ
ーボネート、ポリイミドなどのプラスチックフィルム、
あるいはディスク状基板としてガラス基板、Alなどの金
属基板なとが使用される。As a non-magnetic substrate on which such a magnetic layer is formed, a plastic such as polyester, acetate, polycarbonate, or polyimide having a thickness of 5 to 25 μm, which has appropriate flexibility and tensile strength and heat resistance during vapor deposition. the film,
Alternatively, a glass substrate or a metal substrate such as Al is used as the disc-shaped substrate.
次に、本発明の磁気記録媒体の作成法について説明す
る。この場合、高密度記録化の要請から、形成される磁
性層の保磁力が高く、且つ飽和磁束密度が高いことが要
求されるので、スパッタリング法、イオンプレーティン
グ法、真空蒸着法などのような乾式法を採用することが
望ましい。Next, a method for producing the magnetic recording medium of the present invention will be described. In this case, due to the demand for high-density recording, it is required that the magnetic layer to be formed have high coercive force and high saturation magnetic flux density. Therefore, such as sputtering method, ion plating method, vacuum deposition method, etc. It is desirable to use the dry method.
乾式法においては、保磁力を向上させるために、基板に
対して斜めに組成原子を入射させて金属薄膜を形成させ
ることにより、保磁力を向上させることが可能であり、
この点では保磁力の大きな磁気記録媒体が得られるとい
う塗布型にはない特長を有している。基板に対して斜め
に組成原子を入射させると、針状の金属薄膜組織が結晶
の配向方向を基板に対して斜めにして成長する。このよ
うな状態では結晶の配向及び形状異方性が磁気異方性特
性の原因となり、このように磁気異方性が増加すること
により磁気記録媒体の保磁力が向上する。さらに乾式法
では、磁性層の磁気特性の再現性に優れ、且つ長手方
向、幅方向に対して均一のものが製作し易いという製作
上での特長をも具備している。In the dry method, in order to improve the coercive force, it is possible to improve the coercive force by obliquely injecting composition atoms into the substrate to form a metal thin film,
In this respect, the coating type has a feature that a magnetic recording medium having a large coercive force can be obtained. When the constituent atoms are obliquely incident on the substrate, the acicular metal thin film structure grows with the crystal orientation direction oblique to the substrate. In such a state, the crystal orientation and shape anisotropy cause the magnetic anisotropy characteristic, and the coercive force of the magnetic recording medium is improved by increasing the magnetic anisotropy. In addition, the dry method is excellent in reproducibility of the magnetic characteristics of the magnetic layer, and has a manufacturing feature that it is easy to manufacture a magnetic layer that is uniform in the longitudinal direction and the width direction.
非磁性基板には、磁性層との密着性を向上させるため
に、コロナ放電処理やプライマー処理などの下地処理を
行うことが望ましい。It is desirable that the non-magnetic substrate be subjected to a base treatment such as a corona discharge treatment or a primer treatment in order to improve the adhesion with the magnetic layer.
以下、この発明の磁気記録媒体をその実施例に対し図面
を使用し、その製造法に従って詳細に説明する。Hereinafter, the magnetic recording medium of the present invention will be described in detail according to its manufacturing method with reference to the drawings for its embodiments.
第1図は、この発明の磁気記録媒体の実施例の製造装置
の断面構成を示すもので、ほぼベル状の真空蒸着槽11が
形成される。この真空蒸着槽11には、真空ポンプ12が接
続され、真空ポンプ12を駆動させることにより、真空蒸
着槽11内を所定の真空度に設定可能な構成となってい
る。FIG. 1 shows a cross-sectional structure of a manufacturing apparatus of an embodiment of a magnetic recording medium of the present invention, in which a substantially bell-shaped vacuum vapor deposition tank 11 is formed. A vacuum pump 12 is connected to the vacuum vapor deposition tank 11, and by driving the vacuum pump 12, the inside of the vacuum vapor deposition tank 11 can be set to a predetermined degree of vacuum.
真空蒸着槽11の底板13上に電子ビーム蒸発源14が設けら
れ、この電子ビーム蒸発源14内に強磁性金属15が配置さ
れる。強磁性金属15は、Co,Ni,Cu並びにB 1種もしくは
B、Pの2種よりなる元素M1または元素M1とTi,V,Cr,Z
r,Nb,Sn,Ta,Siのうちの1種以上よりなる金属元素M2よ
りなり、その組成比が所定の膜組成となるように設定さ
れている。An electron beam evaporation source 14 is provided on the bottom plate 13 of the vacuum evaporation tank 11, and a ferromagnetic metal 15 is arranged in the electron beam evaporation source 14. The ferromagnetic metal 15 is an element M 1 consisting of Co, Ni, Cu and B 1 or B and P, or an element M 1 and Ti, V, Cr, Z.
The metal element M 2 is made of at least one of r, Nb, Sn, Ta, and Si, and its composition ratio is set to a predetermined film composition.
一方、酸素ボンベ16からバリアブルリークバルブ17を介
して導入管18が導出され、導入管18の端部が底板13を貫
通して真空蒸着槽11内に挿入されている。真空蒸着槽11
内に回動自在に送り出しロール21及び巻取りロール22が
設けられ、これら送り出しロール21及び巻取りロール22
間には、キャン23が回動自在に設けられる。On the other hand, an introduction pipe 18 is led out from the oxygen cylinder 16 via a variable leak valve 17, and an end portion of the introduction pipe 18 penetrates the bottom plate 13 and is inserted into the vacuum vapor deposition tank 11. Vacuum deposition tank 11
A feed roll 21 and a take-up roll 22 are rotatably provided inside the feed roll 21 and the take-up roll 22.
A can 23 is rotatably provided between them.
電子ビーム蒸発源14とキャン23間にシャッタ25が設けら
れる。このシャッタ25は、回転可能であり、成膜時のみ
開かれる。遮断片26,27により、蒸発物の基板に対する
最大入射角θ2,最小入射角θ1が調整できるようにな
っている。A shutter 25 is provided between the electron beam evaporation source 14 and the can 23. This shutter 25 is rotatable and is opened only during film formation. The blocking pieces 26, 27 allow adjustment of the maximum incident angle θ 2 and the minimum incident angle θ 1 of the evaporated material with respect to the substrate.
送り出しロール21に対して非磁性基板30が巻装され、こ
の非磁性基板30の端部が引き出され、キャン23を介して
巻取りロール22に巻き付けられる。非磁性基板30として
は、厚みが12μmのポリエステルフィルムが使用され
た。The non-magnetic substrate 30 is wound around the delivery roll 21, the end portion of the non-magnetic substrate 30 is pulled out, and the non-magnetic substrate 30 is wound around the winding roll 22 via the can 23. As the non-magnetic substrate 30, a 12 μm-thick polyester film was used.
送り出しロール21及び巻取りロール22が駆動され、非磁
性基板30がキャン23の周面と対接して例えば、15m/min
の速度で移送される。真空ポンプ12が駆動され、真空蒸
着槽11内を5×10-6torr以下になるように排気して、電
子ビーム蒸発源14内の強磁性金属15を一定速度で蒸発さ
せる。同時に開閉コック17を開いて導入管18から酸素ガ
スを真空蒸着槽11内に放出させる。酸素ガスの真空蒸着
槽11内への供給も、膜の酸素組成が所定のものとなるよ
うに設定される。The delivery roll 21 and the winding roll 22 are driven, and the non-magnetic substrate 30 is in contact with the peripheral surface of the can 23, for example, 15 m / min.
It is transported at the speed of. The vacuum pump 12 is driven to evacuate the inside of the vacuum vapor deposition tank 11 to 5 × 10 −6 torr or less to evaporate the ferromagnetic metal 15 in the electron beam evaporation source 14 at a constant speed. At the same time, the opening / closing cock 17 is opened to release the oxygen gas from the introduction pipe 18 into the vacuum vapor deposition tank 11. The supply of oxygen gas into the vacuum vapor deposition tank 11 is also set so that the oxygen composition of the film becomes a predetermined value.
シャッタ25の開放によって電子ビーム蒸発源14から放出
される強磁性金属15は、非磁性基板30に対して所定の角
度範囲で斜めに入射するもののみが遮断片26,27を通過
して非磁性基板30に達する。Of the ferromagnetic metal 15 emitted from the electron beam evaporation source 14 when the shutter 25 is opened, only the one that is obliquely incident on the non-magnetic substrate 30 within a predetermined angle range passes through the blocking pieces 26 and 27 and is non-magnetic. Reach substrate 30.
即ち、電子ビーム蒸発源14から放出される強磁性金属15
のうち、非磁性基板30の板面の法線に対して第1図に示
すように最小角度θ1から最大角度θ2までの角度範囲
のものだけが、シャッタ25を通過して非磁性基板30に対
して斜めに入射される。このようにして、0.2μmの厚
さの磁性層を形成した。That is, the ferromagnetic metal 15 emitted from the electron beam evaporation source 14
Among them, only those in the angle range from the minimum angle θ 1 to the maximum angle θ 2 with respect to the normal line of the plate surface of the non-magnetic substrate 30 pass through the shutter 25 and the non-magnetic substrate 30. It is obliquely incident on 30. Thus, a magnetic layer having a thickness of 0.2 μm was formed.
得られた磁気記録媒体は切断し、一部を磁気特性、他を
耐食性の評価に供した。The obtained magnetic recording medium was cut, and a part of the magnetic recording medium was evaluated for magnetic properties, and the other was evaluated for corrosion resistance.
磁気特性は、試料振動型磁力計により測定した。また、
耐食性の評価は、電気化学的測定法のなかで線形分極抵
抗法により行なった。分極抵抗Rpは、次式によって与え
られる。The magnetic characteristics were measured by a sample vibrating magnetometer. Also,
The corrosion resistance was evaluated by the linear polarization resistance method among the electrochemical measurement methods. The polarization resistance Rp is given by the following equation.
ここでiは電流、ΔEは電圧、ba,bcはそれぞれアノー
ド、カソードターフェル勾配、icorrは測定した試料の
腐食電流密度でありこの値の大きいものが耐食性が低
い。液中にて自由に腐食しつつある薄膜試料の電位をポ
テンショスタットにてΔE=10〜20mV変えるために必要
な外部電流iを測定すると、その傾きからRpが求められ
る。Rpは1/icorrに比例するからターフェル勾配を仮定
することにより上式からicorrを求めることができ耐食
性を評価することができる。ba=bc=0.1と仮定しても
電圧ΔE=20mVで生じる誤差は約0.8mVである。 Here, i is the current, ΔE is the voltage, ba and bc are the anode and cathode Tafel slopes, respectively, and icorr is the measured corrosion current density of the sample. The larger this value, the lower the corrosion resistance. When the external current i required to change the potential of the thin film sample which is freely corroded in the liquid by ΔE = 10 to 20 mV is measured by the potentiostat, Rp is obtained from the inclination. Since Rp is proportional to 1 / icorr, icorr can be calculated from the above equation by assuming a Tafel slope, and corrosion resistance can be evaluated. Even assuming ba = bc = 0.1, the error that occurs at voltage ΔE = 20 mV is about 0.8 mV.
第1表に、測定に供された薄膜試料の組成、測定された
磁気特性並びに3重量%NaCl溶液及び3重量%Na2SO3溶
液中にて電位走査速度1mV/secにて求めた腐食電流密度i
corrを示す。なお、薄膜試料の組成分析は、EPMA分析と
化学分析とを併用して行なった。Table 1 shows the composition of the thin film sample used for the measurement, the measured magnetic properties, and the corrosion current obtained in a 3 wt% NaCl solution and a 3 wt% Na 2 SO 3 solution at a potential scanning rate of 1 mV / sec. Density i
Indicates corr. The composition analysis of the thin film sample was performed using both EPMA analysis and chemical analysis.
第1表から次のようなことが判る。即ち、従来例No.1は
薄膜組成のうち酸素以外の添加元素が、比較例No.10は
酸素が、同No.12はCuが、同No.14は添加元素M2が、そし
て同No.15はM1が本発明の組成範囲から外れたものであ
り、磁気特性、耐食性のいずれか又は両方が劣っている
ことを示しているが、一方実施例No.2、4、5、7〜9
は、磁気特性をそこなわず、耐食性が優れていることを
示している。 The following can be seen from Table 1. That is, the conventional example No. 1 is an additive element other than oxygen in the thin film composition, the comparative example No. 10 is oxygen, the same No. 12 is Cu, the same No. 14 is an additive element M 2 , and the same No. .15 indicates that M 1 is out of the composition range of the present invention and is inferior in magnetic properties and / or corrosion resistance. On the other hand, Example No. 2, 4, 5, 7 ~ 9
Indicates that the magnetic properties are not impaired and the corrosion resistance is excellent.
以上から明らかなように、この発明は、従来のCo-Ni系
磁気記録媒体に比較して、磁気特性をそこなわず耐食性
の優れたものを提供することができる。As is clear from the above, the present invention can provide a magnetic recording medium having excellent corrosion resistance without impairing the magnetic characteristics as compared with the conventional Co-Ni magnetic recording medium.
第1図はこの発明の磁気記録媒体の製造装置の要部の構
成を示す断面図である。 11:真空蒸着槽、12:真空ポンプ、14:電子ビーム蒸発
源、15:強磁性金属、16:酸素ボンベ、21:ロール、22:巻
取りロール、23:キャン、25:シャッタ、30:非磁性基
板。FIG. 1 is a sectional view showing the structure of the main part of a magnetic recording medium manufacturing apparatus according to the present invention. 11: Vacuum deposition tank, 12: Vacuum pump, 14: Electron beam evaporation source, 15: Ferromagnetic metal, 16: Oxygen cylinder, 21: Roll, 22: Winding roll, 23: Can, 25: Shutter, 30: Non Magnetic substrate.
Claims (2)
Ni 8〜20%、Cu 0.5〜5%、B 1種もしくはB、Pの2
種0.05〜3%、酸素3〜13%、残部Coで構成されている
ことを特徴とする磁気記録媒体。1. A composition formed by weight on a non-magnetic substrate.
Ni 8-20%, Cu 0.5-5%, B 1 type or B, P 2
A magnetic recording medium characterized by being comprised of seeds 0.05 to 3%, oxygen 3 to 13%, and the balance Co.
Ni 8〜20%、Cu 0.5〜5%、B 1種もしくはB、Pの2
種0.01〜2.5%、Ti、V、Cr、Zr、Nb、Sn、Ta、Siのう
ちの1種以上0.5〜6%、酸素3〜13%、残部Coで構成
されていることを特徴とする磁気記録媒体。2. Formed on a non-magnetic substrate, the composition by weight
Ni 8-20%, Cu 0.5-5%, B 1 type or B, P 2
0.01 to 2.5% of species, 0.5 to 6% of Ti, V, Cr, Zr, Nb, Sn, Ta and Si, 3 to 13% of oxygen, and the balance Co. Magnetic recording medium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61037205A JPH0754575B2 (en) | 1986-02-24 | 1986-02-24 | Magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61037205A JPH0754575B2 (en) | 1986-02-24 | 1986-02-24 | Magnetic recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62195718A JPS62195718A (en) | 1987-08-28 |
JPH0754575B2 true JPH0754575B2 (en) | 1995-06-07 |
Family
ID=12491085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61037205A Expired - Lifetime JPH0754575B2 (en) | 1986-02-24 | 1986-02-24 | Magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0754575B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57170505A (en) * | 1981-04-13 | 1982-10-20 | Nippon Gakki Seizo Kk | Tape for magnetic recording |
JPS57170506A (en) * | 1981-04-13 | 1982-10-20 | Nippon Gakki Seizo Kk | Tape for magnetic recording |
JPS57192009A (en) * | 1981-05-21 | 1982-11-26 | Nippon Gakki Seizo Kk | Tape for magnetic recording |
JPS58209104A (en) * | 1982-05-29 | 1983-12-06 | Tdk Corp | Magnetic recording medium and manufacture thereof |
-
1986
- 1986-02-24 JP JP61037205A patent/JPH0754575B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62195718A (en) | 1987-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4323629A (en) | Metallic thin film magnetic recording medium | |
US5587026A (en) | Ferromagnetic film | |
JPH0546014B2 (en) | ||
EP0261240A1 (en) | Magnetic recording medium | |
US5316631A (en) | Method for fabricating a magnetic recording medium | |
US5434014A (en) | Magnetic recording medium and method of manufacturing same | |
JPH056738B2 (en) | ||
JPH0777018B2 (en) | Magnetic recording medium | |
JPH0754575B2 (en) | Magnetic recording medium | |
JPS59119534A (en) | Magnetic recording medium | |
JPH01238106A (en) | Corrosion-resistant ferromagnetic thin-film | |
JPH05315135A (en) | Co/ni artificial lattice film, magnetoresistance element, magnetic head and magnetic recording medium, and manufacture of co/ni artificial lattice film | |
KR960010327B1 (en) | Magnetic recording medium | |
JPS623419A (en) | Magnetic recording medium | |
JPS62150518A (en) | Magnetic recording medium | |
JPH0462163B2 (en) | ||
JPS61294629A (en) | Magnetic recording medium | |
JPS6365604A (en) | Iron magnetic film | |
JPH0618135B2 (en) | Perpendicular magnetic recording medium | |
JPS62132216A (en) | Magnetic recording medium | |
JPS62229520A (en) | Magnetic recording medium | |
JPH0311531B2 (en) | ||
JPS62141627A (en) | Magnetic recording medium | |
JPS61110328A (en) | Vertical magnetic recording medium and its production | |
JPH0337724B2 (en) |