JPH075415B2 - Method for manufacturing ceramic rotating body - Google Patents

Method for manufacturing ceramic rotating body

Info

Publication number
JPH075415B2
JPH075415B2 JP28231987A JP28231987A JPH075415B2 JP H075415 B2 JPH075415 B2 JP H075415B2 JP 28231987 A JP28231987 A JP 28231987A JP 28231987 A JP28231987 A JP 28231987A JP H075415 B2 JPH075415 B2 JP H075415B2
Authority
JP
Japan
Prior art keywords
ceramic
pores
rotating body
shaft portion
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28231987A
Other languages
Japanese (ja)
Other versions
JPH01122985A (en
Inventor
光雄 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP28231987A priority Critical patent/JPH075415B2/en
Publication of JPH01122985A publication Critical patent/JPH01122985A/en
Publication of JPH075415B2 publication Critical patent/JPH075415B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Supercharger (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は車両用タービンホイール等のように軸部とロー
タ部(羽部)を有する回転体の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a rotating body having a shaft portion and a rotor portion (wing portion) such as a vehicle turbine wheel.

(従来の技術) 車両用タービンホイールとしてロータ部をセラミックに
て構成したものが知られている。このようにロータ部を
セラミックにて構成した場合、熱膨張率の差が大きい軸
部とロータ部とを接合しなければならず、このため特公
昭60−255678号にあっては、Wc-Co合金プレートを緩衝
層としてロータ部を軸部に嵌合し、実開昭61−200401号
にあってはろう付け層を介してロータ部を軸部に嵌合
し、特開昭62−119176号にあってはロータ部と軸部をネ
ジ結合し、特開昭62−119177号にあってはロータ部と軸
部をピン結合している。
(Prior Art) There is known a turbine wheel for a vehicle in which a rotor portion is made of ceramic. When the rotor portion is made of ceramic in this way, the shaft portion and the rotor portion, which have a large difference in coefficient of thermal expansion, must be joined. Therefore, in Japanese Patent Publication No. 60-255678, Wc-Co The rotor portion is fitted to the shaft portion using the alloy plate as a buffer layer, and the rotor portion is fitted to the shaft portion through the brazing layer in Japanese Utility Model Laid-Open No. 61-200401. In this case, the rotor portion and the shaft portion are screwed together, and in JP-A-62-119177, the rotor portion and the shaft portion are screwed together.

(発明が解決しようとする問題点) 上述した従来技術のうち、緩衝層やろう付け層を介して
接合した場合には、これら各層の厚さをある程度厚くし
ないと効果がなく、且つ高温下になるとこれらの層が酸
化劣化、熱劣化及び電気的な腐食劣化を起こす。
(Problems to be Solved by the Invention) Among the above-mentioned conventional techniques, in the case of joining via a buffer layer or a brazing layer, it is not effective unless the thickness of each of these layers is increased to some extent, and at high temperatures. If so, these layers cause oxidative deterioration, thermal deterioration, and electrical corrosion deterioration.

一方ロータ部を軸部とをネジ又はピン結合する場合に
は、セラミック成形体の焼成後にネジ切り等の加工を施
すのは高硬度となっているため困難であり、焼成前にネ
ジ部等を成形するのは焼成後に寸法が大幅に狂うことを
考慮すれば、事実上適用できないといえる。
On the other hand, when the rotor portion and the shaft portion are screwed or pin-joined, it is difficult to perform processing such as thread cutting after firing the ceramic molded body because the hardness is high and it is difficult to attach the screw portion and the like before firing. It can be said that the molding is practically not applicable in consideration of the fact that the dimensions are greatly changed after firing.

(問題点を解決するための手段) 上記問題点を解決すべく本発明は、回転体の軸部と少く
ともロータ部のボス部とをセラミック材料にて一体成形
した後、この成形体に気孔を形成し、次いでこの気孔内
にマトリックス金属の溶湯を圧入又は含浸せしめるよう
にした。
(Means for Solving the Problems) In order to solve the above problems, according to the present invention, after the shaft portion of the rotating body and at least the boss portion of the rotor portion are integrally formed of a ceramic material, pores are formed in the formed body. Was formed, and then the molten metal of the matrix metal was press-fitted or impregnated into the pores.

(作用) ロータ部と軸部との接合界面がないため、熱膨張差によ
る割れ等がなく、且つセラミック単位では熱伝導率が悪
く放冷の点で不利があるが、金属を気孔内に充填するこ
とで熱伝導率も向上する。
(Function) Since there is no joint interface between the rotor part and the shaft part, there is no crack due to the difference in thermal expansion, and the thermal conductivity is poor in the ceramic unit, which is disadvantageous in terms of cooling, but metal is filled in the pores. By doing so, the thermal conductivity is also improved.

(実施例) 以下に本発明の実施例を添付図面に基づいて説明する。(Example) Below, the Example of this invention is described based on an accompanying drawing.

第1図は本発明方法を工程順に示したブロック図であ
り、本発明にあっては先ずセラミック粉末、焼成助剤、
気孔形成粉末及び導電性物質を配合して混合し、この混
合粉末を加圧成形、スリップキャスティング法或いは射
出成形することでタービンホイールの軸部とロータ部と
を一体成形する。
FIG. 1 is a block diagram showing the method of the present invention in the order of steps. In the present invention, first, a ceramic powder, a firing aid,
The pore forming powder and the conductive substance are mixed and mixed, and the mixed powder is subjected to pressure molding, slip casting or injection molding to integrally form the shaft portion and the rotor portion of the turbine wheel.

ここで、セラミック粉末としては例えばSi3N4,Al2O3,Zr
O2或いはサイアロン等の絶縁物質を用い、後の放電加工
をやり易くするために加える導電性粉末としては当初よ
り導電性を有するもの及び焼成により導電性を発揮する
ものを用い、例えばTi,Zr,Hf,Ta,W,Mo,Cr,Nb等の炭化
物、チッ化物、硼化物、炭チッ化物及びこれらの混合物
を用い、その添加量としては焼成後の焼結体の固有抵抗
値が10Ωcm以下となるようにする。また焼結助剤粉末と
してはAl2O3,Y2O3,MgO,SiO2等を単独又は混合して用
い、更に気孔形成粉末としては直径1〜5μm程度の酸
に可溶なガラス質粉末を用い、その具体的な成分割合と
しては以下の如き割合とする。
Here, as the ceramic powder, for example, Si 3 N 4 , Al 2 O 3 , Zr
An insulating material such as O 2 or sialon is used, and as the conductive powder added to facilitate later electric discharge machining, one having conductivity from the beginning and one exhibiting conductivity by firing, for example, Ti, Zr , Hf, Ta, W, Mo, Cr, Nb, and other carbides, nitrides, borides, carbonitrides, and mixtures thereof are used, and the addition amount is such that the resistivity of the sintered body after firing is 10 Ωcm or less. So that As the sintering aid powder, Al 2 O 3 , Y 2 O 3 , MgO, SiO 2 or the like is used alone or as a mixture, and as the pore forming powder, a glassy material having a diameter of 1 to 5 μm and soluble in an acid Powder is used, and the specific component ratios are as follows.

SiO2 20〜35wt% B2O3 35〜50wt% Na2O 12〜25wt% K2O 3〜10wt% Al2O3 2〜12wt% MgO 3〜14wt% 次いで前記の成形体を乾燥・脱脂した後、仮焼成を行な
う。尚仮焼成を省略して直ちに本焼成してもよい。
SiO 2 20-35 wt% B 2 O 3 35-50 wt% Na 2 O 12-25 wt% K 2 O 3-10 wt% Al 2 O 3 2-12 wt% MgO 3-14 wt% Next, dry and degrease the molded body After that, calcination is performed. The preliminary firing may be omitted and the main firing may be performed immediately.

仮焼成を行う場合には、1000〜1400℃で30分〜2時間程
度行う。そして、この仮焼成によってガラス質の気孔形
成粉末が溶解し、セラミック粉末の粒界に存在している
不純物をガラス質内に取り込み、後に気孔形成粉末を酸
によって溶出する際に不純物をいっしょに除去する。
When calcination is performed, it is performed at 1000 to 1400 ° C. for about 30 minutes to 2 hours. Then, this calcination melts the vitreous pore-forming powder, takes in the impurities present at the grain boundaries of the ceramic powder into the glass, and removes the impurities together when the pore-forming powder is later eluted with an acid. To do.

以上の如くして仮焼成が終了したならば、酸による溶出
処理を行う。用いる酸はHNO3,Hcl或いはこれらの酸にH3
PO4,HF,有機酸等を少量添加したり、混合したものを用
いる。次いで気孔形成粉末を溶出して得られる三次元網
目構造の成形体に対し焼成を行う。焼成温度1600〜2200
℃で2時間程度行う。
When the calcination is completed as described above, the elution treatment with acid is performed. The acid used is HNO 3 , Hcl or H 3
Add a small amount of PO 4 , HF, organic acid, etc., or use a mixture. Next, the formed body having a three-dimensional network structure obtained by eluting the pore-forming powder is fired. Baking temperature 1600-2200
Do it for about 2 hours at ℃.

この後、三次元網目構造の焼結体に対し、放電加工、超
音波加工、ダイヤモンド砥石による研削等を施し、第2
図に示すようなセラミック成形体1を得る。この成形体
1は軸部2とロータ部3からなり、軸部2の端部には他
の金属製軸等に結合するための係合凹部4が形成され、
更にロータ部3寄りの軸部2外周には大径部5が形成さ
れ、この大径部5周囲にシールリングを嵌着するための
溝6を形成している。尚、成形体1には気孔率が10〜30
%で1〜10μm程度の径の気孔が均一に形成されるよう
にするのが好ましい。
After that, the sintered body having the three-dimensional mesh structure is subjected to electric discharge machining, ultrasonic machining, grinding with a diamond grindstone, etc.
A ceramic molded body 1 as shown in the figure is obtained. The molded body 1 is composed of a shaft portion 2 and a rotor portion 3, and an engaging recess 4 for coupling to another metal shaft or the like is formed at an end portion of the shaft portion 2,
Further, a large diameter portion 5 is formed on the outer circumference of the shaft portion 2 near the rotor portion 3, and a groove 6 for fitting a seal ring is formed around the large diameter portion 5. The molded body 1 has a porosity of 10 to 30.
It is preferable that pores having a diameter of about 1 to 10 μm are uniformly formed.

以上のようにして得られた成形体1を金型内にセット
し、金型内にマトリックス金属の溶湯を加圧注入して成
形体1の気孔に溶湯を圧入又は含浸せしめ、この溶湯を
凝固せしめることで第3図に示すようにセラミック金属
とが複合的に結合した回転体7が得られる。
The molded body 1 obtained as described above is set in a mold, and the molten metal of the matrix metal is injected under pressure into the mold to press or impregnate the molten metal into the pores of the molded body 1 and solidify the molten metal. By squeezing, as shown in FIG. 3, the rotating body 7 in which the ceramic metal and the composite are combined is obtained.

第4図乃至第6図は別実施例を示す図であり、第4図に
示す実施例にあってはロータ部3のボス部3aまでをセラ
ミック成形体1にて形成し、羽部3bについて金属のみと
している。また第5図に示す実施例にあってはロータ部
3のネック部にセラミックを露出させないようにしたも
のであり、これら第4図及び第5図に示した実施例にあ
っては、いずれも均一に気孔を分散するとともに気孔径
を1〜10μm、気孔率を10〜30%とするのが適当であ
る。
FIGS. 4 to 6 are views showing another embodiment. In the embodiment shown in FIG. 4, the ceramic molded body 1 is formed up to the boss portion 3a of the rotor portion 3, and the wing portion 3b is formed. Only metal is used. Further, in the embodiment shown in FIG. 5, the ceramic is not exposed at the neck portion of the rotor portion 3. In both of the embodiments shown in FIGS. 4 and 5, the ceramic is not exposed. It is suitable to uniformly disperse the pores and to set the pore diameter to 1 to 10 μm and the porosity to 10 to 30%.

一方第6図(A)に示す実施例は第6図(B)に示すよ
うに気孔径と気孔率を漸次変化させ、熱応力及び気孔応
力の集中を防止している。
On the other hand, in the embodiment shown in FIG. 6 (A), the pore diameter and the porosity are gradually changed as shown in FIG. 6 (B) to prevent the concentration of thermal stress and pore stress.

次に具体的な数値を挙げた実験例を示す。Next, an experimental example in which specific numerical values are given is shown.

[実験例1] 最大粒径5μmの窒化硅素粉末(平均粒径0.5μm)50
重量部、Y2O3(最大粒径1.0μm,平均0.4μm)、Al2O3
(最大粒径1.0μm,平均0.4μm)をぞれぞれ10重量部
と、以下に示す組成のガラス粉末30重量部(最大粒径44
μm,平均4μm)を加え、充分混合し、スリップキャス
ティング法及び射出成形し、タービン翼を得た。
[Experimental Example 1] Silicon nitride powder with a maximum particle size of 5 μm (average particle size 0.5 μm) 50
Parts by weight, Y 2 O 3 (maximum particle size 1.0 μm, average 0.4 μm), Al 2 O 3
(Maximum particle size 1.0 μm, average 0.4 μm) 10 parts by weight and 30 parts by weight of glass powder having the following composition (maximum particle size 44
μm, average 4 μm) was added, mixed well, slip casting and injection molded to obtain a turbine blade.

ガラスの組成 SiO2 25.4wt% Na2O 16.1wt% Al2O3 8.0wt% K2O 9.2wt% MgO 4.2wt% BaO 0.6wt% CoO 1.3wt% CuO 1.0wt% B2O3 34.2wt% 充分乾燥後10℃/minで650℃まで昇温、2時間保持し、
その後15℃/minで1200℃まで昇温、同温度で2時間仮焼
した。仮焼中及び脱脂中はN2下で行い、0.4Torrの減圧
状態で、30ml/minのN2キャリアを流している。
Composition of glass SiO 2 25.4wt% Na 2 O 16.1wt% Al 2 O 3 8.0wt% K 2 O 9.2wt% MgO 4.2wt% BaO 0.6wt% CoO 1.3wt% CuO 1.0wt% B 2 O 3 34.2wt% After sufficiently drying, raise the temperature to 650 ° C at 10 ° C / min and hold for 2 hours.
After that, the temperature was raised to 1200 ° C. at 15 ° C./min and calcined at the same temperature for 2 hours. The calcination and the degreasing are performed under N 2 , and a 30 ml / min N 2 carrier is flown at a reduced pressure of 0.4 Torr.

仮焼後、HF0.05%+25%HNO3にて超音波20MHzを照射
し、30分間洗浄した。洗浄後、充分水洗し、その後乾燥
した。乾燥後カプセルフリーにて500bar 1700℃2時間
焼成し、焼結体を得た。
After calcination, ultrasonic waves of 20 MHz were irradiated with HF 0.05% + 25% HNO 3 and washed for 30 minutes. After washing, it was thoroughly washed with water and then dried. After drying, it was calcined at 500 bar and 1700 ° C. for 2 hours to obtain a sintered body.

焼結体の密度は約2.0で、約40%が気孔である。厳密に
真密度を測定すると、約2.6〜2.7となり、気孔セル壁は
充分粒成長していることがわかった。
The density of the sintered body is about 2.0, and about 40% are pores. When the true density was measured strictly, it was about 2.6 to 2.7, indicating that the pore cell walls were sufficiently grain-grown.

破断面を光学顕微鏡SEM等で観察すると、概略最大気孔
は約40μmであり、平均的には2〜3μmの気孔が全体
に均一に分散していた。
When the fracture surface was observed with an optical microscope SEM or the like, the approximately maximum pores were about 40 μm, and pores of 2-3 μm on average were uniformly dispersed throughout.

これを金型内にセットし、1200℃まで予熱すると共に、
Incone l713Cの溶湯を圧入した。溶湯温度は1350℃、印
加圧200Kgf/mm2である。
Set this in the mold and preheat to 1200 ° C,
The melt of Incone l713C was press-fitted. The molten metal temperature is 1350 ° C, and the applied pressure is 200 Kgf / mm 2 .

鋳造後の3点曲げ強度は約50〜60Kgf/mm2であり、従来
の2〜6倍の強度であった。
The three-point bending strength after casting was about 50 to 60 Kgf / mm 2 , which was 2 to 6 times that of the conventional one.

また破断面を観察では充填不良もなく、良好であった。Observation of the fracture surface showed good filling without defective filling.

[実験例2] 実験例1では第3図乃至第5図に示したように連続気孔
を3次元的に均一に分布させたが、実験例2ては、気孔
の量も気孔の径もゆるやかに勾配をもつものとすること
とした。
[Experimental Example 2] In Experimental Example 1, continuous pores were three-dimensionally uniformly distributed as shown in FIGS. 3 to 5, but in Experimental Example 2, both the amount of pores and the diameter of pores were gentle. It was decided to have a gradient to.

原料Si3N4,Al2O3,Y2O3等は実験例1と同様のものを用い
た。ガラス粉体は次のものに変更し、同様な配合比を採
用した。
As the raw materials Si 3 N 4 , Al 2 O 3 , Y 2 O 3 and the like, the same ones as in Experimental Example 1 were used. The glass powder was changed to the following, and the same compounding ratio was adopted.

本ガラスの主な性質は 比重4.3 粘度(800〜1200℃)0.4〜2.0cp SiO2 12.0wt% ZrO2 15.3wt% B2O3 37.2wt% PbO 10.4wt% Al2O3 5.5wt% BaO 3.2wt% Na2O 16.4wt% 実験例1と同様に一方はスリップキャスティング法、他
方は射出成形し、充分乾燥した。乾燥は110℃で12時
間、210℃で10時間、350℃で10時間、450℃で10時間で
ある。仮焼までのパターンは実験例1と同様であり、同
様な酸液により洗浄し、充分水洗後乾燥した。乾燥後17
00℃で処理し、その後中央部より切断し、状態観察を行
った。
The main properties of the glass had a specific gravity 4.3 Viscosity (800~1200 ℃) 0.4~2.0cp SiO 2 12.0wt % ZrO 2 15.3wt% B 2 O 3 37.2wt% PbO 10.4wt% Al 2 O 3 5.5wt% BaO 3.2 wt% Na 2 O 16.4 wt% As in Experimental Example 1, one was slip-casting, the other was injection-molded and dried sufficiently. Drying is 110 ° C. for 12 hours, 210 ° C. for 10 hours, 350 ° C. for 10 hours, and 450 ° C. for 10 hours. The pattern up to the calcination was the same as in Experimental Example 1, and the pattern was washed with the same acid solution, thoroughly washed with water and dried. After drying 17
The sample was treated at 00 ° C., then cut from the center and observed.

これを第6図(A)に示した。第6図(B)における相
対密度は2次元的に得られらものを、3次元的に推算し
たものである。相対密度が80%を越えると、微細な気孔
は閉塞するという一般的な考えがあるが本試験における
SEM観察では0.1μm以下の微細気孔させ閉塞していな
い。これは、酸による洗浄の際、予め焼結にあずからな
い助剤の過剰量等が排出されたものと考えられる。ま
た、80%を越えた場合、その最大気孔径は0.3〜0.4μm
であり、〜0.1μm程度のものがほぼ均一に分布してい
る。さらに、端部では、ほぼ相対密度は97〜98%に達
し、気孔の大きさは、〜0.1μmが最大であった。
This is shown in FIG. 6 (A). The relative density in FIG. 6 (B) is a three-dimensional estimation of the two-dimensionally obtained one. There is a general idea that when the relative density exceeds 80%, fine pores are closed, but in this test
In SEM observation, micropores of 0.1 μm or less were formed and not blocked. It is considered that this is because the excess amount of the auxiliary agent which is not necessary for sintering was discharged in advance during the cleaning with acid. When it exceeds 80%, the maximum pore size is 0.3 to 0.4 μm.
And about 0.1 μm is distributed almost uniformly. Furthermore, at the edge, the relative density reached 97-98%, and the maximum pore size was 0.1 μm.

内部欠陥については、原料粒度に比べ、ガラス粉体粒度
は大きく、そのため流動性、充填性が改善されているよ
うで、ボス部にみられるひけ巣はみられなかった。ま
た、これはある程度ガラス粉末の弾性や、添加剤、配合
比等の影響によるスラリーや、成形時の混練体の性状に
由来とすると思われる。
Regarding the internal defects, the particle size of the glass powder was larger than the particle size of the raw material, so it seems that the fluidity and filling properties were improved, and the shrinkage cavities seen in the boss were not seen. Further, it is considered that this is due to some extent to the elasticity of the glass powder, the slurry due to the influence of the additives, the compounding ratio, etc., and the properties of the kneaded body at the time of molding.

この後成形体の気孔の閉塞を一応懸念し、再度酸洗いし
た後乾燥し、1200℃まで予熱し、SCM420を1520℃の溶湯
温度で50kgf/mm2て加圧鋳造した。
After that, there was a concern that the pores of the molded body were clogged, and after pickling again, it was dried, preheated to 1200 ° C, and SCM420 was pressure-cast at 50 kgf / mm 2 at a molten metal temperature of 1520 ° C.

鋳造後の破断面観察では、第6図における距離51mm程度
まで鋼は侵入しており、クラックはみられなかった。
Observation of the fracture surface after casting revealed that the steel had penetrated to a distance of about 51 mm in Fig. 6 and no cracks were seen.

(発明の効果) 以上に説明した如く本発明によれば、接合界面がないセ
ラミックと金属との複合材料にてタービンホイール等の
回転体を形成できるので、低温時と高温時との温度差が
激しい条件が繰り返さえる場所で使用されてもセラミッ
クによる長所(耐熱性)及び金属による長所(熱伝導
率)が発揮され損傷を受けにくい長寿命の回転体とする
ことができる。
(Effects of the Invention) As described above, according to the present invention, since a rotating body such as a turbine wheel can be formed of a composite material of ceramic and metal having no bonding interface, a temperature difference between a low temperature and a high temperature can be reduced. Even if it is used in a place where severe conditions are repeated, the advantages of ceramics (heat resistance) and the advantages of metal (thermal conductivity) are exhibited, and a long-life rotating body that is not easily damaged can be provided.

特にタービンホイールにあっては、ロータ部のボス部に
従来にあってはヒケ巣等が発生しやすかったが、本発明
方法によれば当該ボス部をセラミック成形体の一部とし
ているので、上記の不利がなく歩留りが向上する。
In particular, in the turbine wheel, the boss portion of the rotor portion was likely to have a sink mark or the like in the past, but according to the method of the present invention, the boss portion is a part of the ceramic molded body. There is no disadvantage and the yield is improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法を工程順に示したブロック図、第2
図はセラミック成形体の断面図、第3図は回転体の断面
図、第4図乃至第6図(A)は別実施例の断面図、第6
図(B)は軸端からの距離と気孔径及び相対密度との関
係をグラフである。 尚、図面中1はセラミック成形体、2は軸部、3はロー
タ部、3aはボス部、3bは羽部、7は回転体である。
FIG. 1 is a block diagram showing the method of the present invention in the order of steps, and FIG.
FIG. 4 is a sectional view of a ceramic molded body, FIG. 3 is a sectional view of a rotating body, and FIGS. 4 to 6A are sectional views of another embodiment.
FIG. 6B is a graph showing the relationship between the distance from the shaft end and the pore diameter and relative density. In the drawings, 1 is a ceramic molded body, 2 is a shaft portion, 3 is a rotor portion, 3a is a boss portion, 3b is a blade portion, and 7 is a rotating body.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】軸部とロータ部とからなる回転体の製造方
法において、前記軸部と少くともロータ部のボス部とを
セラミック材料にて一体成形し、次いでセラミック成形
体に対し気孔を形成し、この気孔内に金属材料の溶湯を
充填して凝固せしめるようにしたことを特徴とするセラ
ミック製回転体の製造方法。
1. A method of manufacturing a rotating body comprising a shaft portion and a rotor portion, wherein the shaft portion and at least a boss portion of the rotor portion are integrally molded with a ceramic material, and then pores are formed in the ceramic molded body. Then, a method of manufacturing a ceramic rotating body, characterized in that the pores are filled with a molten metal material so as to be solidified.
【請求項2】前記気孔はセラミック材料にて混合したガ
ラス質気孔形成粉末を酸によって溶出することで形成す
るようにしたことを特徴とする特許請求の範囲第1項記
載のセラミック製回転体の製造方法。
2. The ceramic rotating body according to claim 1, wherein the pores are formed by eluting a glassy pore-forming powder mixed with a ceramic material with an acid. Production method.
【請求項3】前記セラミック成形体内の気孔は略同一径
で均一に分布していることを特徴とする特許請求の範囲
第1項記載のセラミック製回転体の製造方法。
3. The method for producing a ceramic rotary body according to claim 1, wherein the pores in the ceramic molded body are uniformly distributed with substantially the same diameter.
【請求項4】前記セラミック成形体内の気孔は軸部から
ボス部へ向って漸次気孔径及び気孔率が変化しているこ
とを特徴とする特許請求の範囲第1項記載のセラミック
製回転体の製造方法。
4. The ceramic rotating body according to claim 1, wherein the pores in the ceramic molded body gradually change in pore diameter and porosity from the shaft portion toward the boss portion. Production method.
JP28231987A 1987-11-09 1987-11-09 Method for manufacturing ceramic rotating body Expired - Fee Related JPH075415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28231987A JPH075415B2 (en) 1987-11-09 1987-11-09 Method for manufacturing ceramic rotating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28231987A JPH075415B2 (en) 1987-11-09 1987-11-09 Method for manufacturing ceramic rotating body

Publications (2)

Publication Number Publication Date
JPH01122985A JPH01122985A (en) 1989-05-16
JPH075415B2 true JPH075415B2 (en) 1995-01-25

Family

ID=17650861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28231987A Expired - Fee Related JPH075415B2 (en) 1987-11-09 1987-11-09 Method for manufacturing ceramic rotating body

Country Status (1)

Country Link
JP (1) JPH075415B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2620364B2 (en) * 1988-03-18 1997-06-11 本田技研工業株式会社 Manufacturing method of ceramic sintered body

Also Published As

Publication number Publication date
JPH01122985A (en) 1989-05-16

Similar Documents

Publication Publication Date Title
EP0052913B1 (en) Ceramic rotor
EP1561737B1 (en) Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
US4810442A (en) Method of forming fiber- and filament-containing ceramic preform and composite
US20040197738A1 (en) Dental ceramic frame, preparation of the same and dental prosthesis comprising the frame
JPH075415B2 (en) Method for manufacturing ceramic rotating body
JP2748961B2 (en) Method for producing surface-modified alumina ceramics
CN105543939B (en) A kind of particle strengthens the preparation method of fine and close composite coating
JPH06155112A (en) Diamond tool and its manufacture
JP3888766B2 (en) Electrostatic chuck and manufacturing method thereof
JPS63312931A (en) Production of ceramic-metallic composite body
JPH01108178A (en) Production of ceramic three-dimensional network structure
JPH09300060A (en) Sprue member for casting and manufacture thereof
JPH0813708B2 (en) Ceramic member for joining with metal member
JPH0776141B2 (en) Ceramic member for joining with metal member
KR101064207B1 (en) High purity silicon carbide wafer carrier and manufacturing method of the same
CN113735589A (en) SiC-HfB2Preparation method of double-layer composite material
JP4279370B2 (en) Method for producing metal-ceramic composite material
JP3358472B2 (en) Method for producing silicon nitride ceramic-based composite material
JP3405598B2 (en) Injection mold
JP4167318B2 (en) Method for producing metal-ceramic composite material
JPH04349167A (en) High strength and low thermal expansion ceramic material and its manufacture
JPH1180860A (en) Production of metal-ceramics composite material
JP2644806B2 (en) Manufacturing method of composite sliding material composed of ceramic and metal
JPH089509B2 (en) Method for manufacturing ceramic three-dimensional mesh structure
CN113651642A (en) Preparation method of compact component

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees