JPH0776141B2 - Ceramic member for joining with metal member - Google Patents

Ceramic member for joining with metal member

Info

Publication number
JPH0776141B2
JPH0776141B2 JP31569387A JP31569387A JPH0776141B2 JP H0776141 B2 JPH0776141 B2 JP H0776141B2 JP 31569387 A JP31569387 A JP 31569387A JP 31569387 A JP31569387 A JP 31569387A JP H0776141 B2 JPH0776141 B2 JP H0776141B2
Authority
JP
Japan
Prior art keywords
ceramic
ceramic member
powder
sintering
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31569387A
Other languages
Japanese (ja)
Other versions
JPH01157472A (en
Inventor
光雄 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP31569387A priority Critical patent/JPH0776141B2/en
Publication of JPH01157472A publication Critical patent/JPH01157472A/en
Publication of JPH0776141B2 publication Critical patent/JPH0776141B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 A.発明の目的 (1) 産業上の利用分野 本発明は金属部材と接合されるセラミック部材に関す
る。
DETAILED DESCRIPTION OF THE INVENTION A. Object of the Invention (1) Field of Industrial Application The present invention relates to a ceramic member joined to a metal member.

(2) 従来の技術 従来、この種セラミック部材として、金属部材との接合
面を構成する表層部に、前記接合面に開口する多数の凹
部を形成し、それら凹部に、金属部材の鍛造時その金属
部材の一を充填するようにしたものが知られている(特
開昭61−259865号公報参照)。
(2) Conventional Technology Conventionally, as this type of ceramic member, a large number of recesses that open to the joint surface are formed in a surface layer portion that constitutes a joint surface with a metal member, and these recesses are used when the metal member is forged. It is known that one of the metal members is filled (see Japanese Patent Laid-Open No. 61-259865).

(3) 発明が解決しようとする問題点 しかしながら前記セラミック部材を用いた金属部材との
接合体においては、両部材の接合部で熱伝導率、熱膨脹
率、電気伝導度等の物理的性質および引張強さ、衝撃
値、疲れ強さ等の機械的性質が急激に変化するため、前
記接合体が長期に亘って繰返し荷重を受けたり、厳しい
熱サイクル下で使用されると、接合部が破壊起点となっ
て接合体の耐久性が著しく損なわれるという問題があ
る。
(3) Problems to be Solved by the Invention However, in the joined body with the metal member using the ceramic member, physical properties such as thermal conductivity, thermal expansion coefficient, and electrical conductivity, and tensile strength are obtained at the joint portion of both members. Mechanical properties such as strength, impact value, and fatigue strength change rapidly, so if the joint is subjected to repeated loading for a long period of time or used under severe thermal cycles, the joint may start to break. Therefore, there is a problem that the durability of the bonded body is significantly impaired.

また、加工効率向上のためには、放電加工の採用が望ま
しいが、前記セラミック部材は電気伝導度が極めて低い
ので、放電加工の適用は無理である。そこで、セラミッ
ク部材に導電性物質を含有させて所定の電気伝導度を持
たせることが考えられるが、この場合には前記接合部に
て電気伝導度が急激に変化するため、それに起因して放
電加工中に接合部が高熱を発生するという問題がある。
Further, in order to improve machining efficiency, it is desirable to adopt electric discharge machining, but since the ceramic member has extremely low electric conductivity, it is impossible to apply electric discharge machining. Therefore, it is conceivable that the ceramic member is made to contain a conductive substance so as to have a predetermined electric conductivity. In this case, however, the electric conductivity is drastically changed at the joint portion, which causes a discharge. There is a problem that the joint generates high heat during processing.

本発明は前記に鑑み、優れた耐久性を有し、また放電加
工が可能な前記接合体を得ることのできる前記セラミッ
ク部材を提供することを目的とする。
In view of the above, it is an object of the present invention to provide the ceramic member that has excellent durability and can obtain the joined body that can be electric discharge machined.

B.発明の構成 (1) 問題点を解決するための手段 本発明は、金属部材と接合されるセラミック部材におい
て、導電性セラミック成分を含有すると共に前記金属部
材の一部を充填される無数の微細な気孔を備えた三次元
網目構造を有し、前記気孔の直径を前記金属部材との接
合面から離れるに従って漸次小さくするようにしたこと
を特徴とする。
B. Structure of the Invention (1) Means for Solving Problems The present invention provides a ceramic member joined to a metal member, which contains a conductive ceramic component and is filled with a part of the metal member. It has a three-dimensional network structure with fine pores, and is characterized in that the diameter of the pores is gradually reduced as the distance from the joint surface with the metal member increases.

(2) 作用 セラミック部材において前記のように気孔の直径に勾配
をもたせると、それら気孔に金属部材の一部を充填して
その金属部材とセラミック部材とを接合したとき、両部
材の接合部では、セラミックスと金属との複合化に伴い
セラミック部材の接合面から接合部全体に亘って物理的
性質および機械的性質が或勾配をもって変化することに
なるので、それら性質の急激な変化に伴う耐久性の劣化
を防止することができる。
(2) Action When the diameter of the pores is made to have a gradient in the ceramic member as described above, when these pores are filled with a part of the metal member and the metal member and the ceramic member are joined, As the composite of ceramics and metal changes, the physical and mechanical properties of the ceramic member from the joint surface to the entire joint will change with a certain gradient. Can be prevented from deteriorating.

セラミック部材は、導電性セラミック成分を含有するこ
とにより所定の電気伝導度を有し、また微細な気孔には
金属部材の一部が充填されるので、セラミック部材、し
たがって接合体全体が良好な導電性を呈し、これにより
接合体への放電加工が可能となる。
The ceramic member has a predetermined electric conductivity by containing a conductive ceramic component, and since the fine pores are partially filled with the metal member, the ceramic member, and hence the entire bonded body, has a good electrical conductivity. Exhibits electrical properties, which enables electrical discharge machining of the joined body.

この場合、接合体の接合部では電気伝導度も或勾配をも
って変化することになるので、放電加工中において接合
部が高熱を発生することがない。
In this case, since the electric conductivity of the joint of the joined body also changes with a certain gradient, the joint does not generate high heat during electric discharge machining.

なお、セラミック部材単体への放電加工も可能である。It is also possible to perform electric discharge machining on a single ceramic member.

(3) 実 施 例 本発明に係る、導電性セラミック成分を含有すると共に
無数の微細な気孔を備えた三次元網目構造を有するセラ
ミック部材は次の工程を経て製造される。即ち、主成分
であるセラミック粉末に、導電性セラミック粉末、酸に
より溶出し得る粉末状気孔形成物質、必要に応じて気孔
形成物質の溶出処理を促進する添加剤および焼結助剤粉
末を分散させた混合粉末を用いて成形体を得る工程、成
形体に焼結処理を施して焼結体を得る工程および焼結体
に溶出処理を施して溶融固化後の前記気孔形成物質を溶
出する工程である。
(3) Example A ceramic member according to the present invention, which contains a conductive ceramic component and has a three-dimensional network structure with innumerable fine pores, is manufactured through the following steps. That is, a conductive ceramic powder, a powdery pore-forming substance that can be eluted by an acid, and an additive that accelerates the elution treatment of the pore-forming substance and a sintering aid powder are dispersed in the ceramic powder that is the main component. In the step of obtaining a molded body using the mixed powder, the step of subjecting the molded body to a sintering treatment to obtain a sintered body, and the step of subjecting the sintered body to an elution treatment to dissolve the pore-forming substance after melting and solidification. is there.

セラミック粉末としては、直径10μm以下のSi3N4、Si
C、ZrO2、Al2O3、サイアロン等の単独粉末およびこれら
の混合粉末が該当する。
As the ceramic powder, Si 3 N 4 , Si having a diameter of 10 μm or less can be used.
Single powders of C, ZrO 2 , Al 2 O 3 , sialon, etc., and mixed powders thereof are applicable.

焼結助剤粉末は、セラミック粉末の焼結性を向上させる
ために必要に応じて用いられるが、この種粉末として
は、直径0.1〜5μmのAl2O3、Y2O3、MgO、SiO2、CeO2
等の単独粉末およびこれらの混合粉末が該当する。
The sintering aid powder is used as necessary to improve the sinterability of the ceramic powder. As the seed powder, Al 2 O 3 , Y 2 O 3 , MgO, SiO having a diameter of 0.1 to 5 μm are used. 2 , CeO 2
Single powders such as and mixed powders thereof are applicable.

導電性セラミック粉末としては、Ti、Ta、Hf、Mo、W、
Cr、Zr等の炭化物、窒化物、ホウ化物等が該当する。
Conductive ceramic powders include Ti, Ta, Hf, Mo, W,
Carbides such as Cr and Zr, nitrides, borides, etc. are applicable.

酸により溶出し得る粉末状気孔形成物質は、焼結体に積
極的に微細な気孔を形成して所定の気孔率を持つ三次元
網目構造のセラミック部材を得るために用いられ、この
種物質としては以下のものが該当する。
A powdery pore-forming substance that can be eluted by an acid is used to positively form fine pores in a sintered body to obtain a ceramic member having a three-dimensional network structure with a predetermined porosity. The following applies.

SiO2 20〜40重量% B2O3 30〜50重量% Al2O3 3〜15重量% MgO 2〜12重量% K2O 2〜15重量% Na2O 10〜25重量% の各粉末を混合し、その混合粉末に、必要に応じTiO2
MoO、Cr2O3、ZrO2、Li2O、BaO、La2O、Cs2O、Ce2O3、Y2
O3、CaO等から選択される少なくとも一種の粉末を添加
して、溶融、粉砕の各工程を経て得られた最大直径44μ
m以下、平均直径10μmのガラス質粉末である。
SiO 2 20 to 40 wt% B 2 O 3 30 to 50 wt% Al 2 O 3 3 to 15 wt% MgO 2 to 12 wt% K 2 O 2 to 15 wt% Na 2 O 10 to 25 wt% each powder And TiO 2 , if necessary, to the mixed powder.
MoO, Cr 2 O 3 , ZrO 2 , Li 2 O, BaO, La 2 O, Cs 2 O, Ce 2 O 3 , Y 2
Maximum diameter 44μ obtained by adding at least one powder selected from O 3 , CaO, etc., and melting and crushing.
It is a vitreous powder having an average diameter of 10 μm or less.

前記のように各粉末の配合量を限定する理由は、前記配
合量を逸脱すると、気孔形成物質に結晶が析出して不均
一組織となり、酸による溶出が不可能になるからであ
る。また本発明では、後述するように焼結処理における
気孔形成物質の溶融、流動による気孔の直径変化を狙っ
ているので、焼結処理温度、例えば800〜1400℃におい
て、気孔形成物質より生じた流動体が所定の粘度、例え
ば0.1〜20cPをもつ必要があり、そのためにも各粉末の
配合量は前記のように限定される。
The reason for limiting the blending amount of each powder as described above is that if the blending amount is deviated from the above, the crystals are deposited on the pore-forming substance to form a non-uniform structure, and elution with acid becomes impossible. Further, in the present invention, as will be described later, melting of the pore-forming material in the sintering process, since it is aimed at the change in the diameter of the pores due to the flow, at the sintering treatment temperature, for example, 800 ~ 1400 ℃, the flow generated from the pore-forming material It is necessary for the body to have a predetermined viscosity, for example 0.1 to 20 cP, and for this reason the compounding amount of each powder is limited as described above.

前記気孔形成物質、したがってその物質の溶融固化によ
り生じた気孔形成成分の溶出処理を促進する添加剤とし
ては、ホウ素系化合物およびリン酸系化合物から選択さ
れる少なくとも一種が用いられる。この場合、ホウ素系
化合物にはホウ酸ナトリウム、ホウ酸アンモニウム等の
ホウ酸塩、無水ホウ酸(B2O3)等が包含され、またリン
酸系化合物にはヘキサメタリン酸ナトリウム、酸性メタ
リン酸ナトリウム等のメタリン酸塩、オルトリン酸、無
水リン酸(P2O5)等が包含される。
At least one selected from a boron compound and a phosphoric acid compound is used as an additive that accelerates the elution treatment of the pore-forming substance, and thus the pore-forming component produced by melting and solidifying the substance. In this case, the boron-based compound includes sodium borate, borate such as ammonium borate, boric anhydride (B 2 O 3 ), and the like, and the phosphoric acid-based compound includes sodium hexametaphosphate and sodium acid metaphosphate. And other metaphosphates, orthophosphoric acid, phosphoric anhydride (P 2 O 5 ) and the like are included.

この添加剤は、セラミック粉末の焼結プロセスにはほと
んど関与することはなく、したがって焼結体中に存在し
て気孔形成成分の酸による溶出処理を促進する機能を果
し、その後焼結体中より気孔形成成分と共に溶出され
る。
This additive has almost no involvement in the sintering process of the ceramic powder, and therefore, it exists in the sintered body and functions to accelerate the elution treatment of the pore-forming component with acid, and thereafter, to the sintered body. It is more eluted with the pore-forming component.

なお、セラミック部材の強度向上を狙ってアルミナ繊
維、炭化ケイ素繊維(ウイスカを含む)、窒化ケイ素繊
維、炭素繊維等を配合することもある。
Alumina fibers, silicon carbide fibers (including whiskers), silicon nitride fibers, carbon fibers, etc. may be blended in order to improve the strength of the ceramic member.

前記セラミック粉末、導電性セラミック粉末、焼結助剤
粉末、気孔形成物質および添加剤の配合量は、 セラミック粉末 40〜80重量% 導電性セラミック粉末 5〜40重量% 焼結助剤粉末 15重量%以下 気孔形成物質 5〜50重量% 添 加 剤 20重量%以下 である。
The ceramic powder, the conductive ceramic powder, the sintering aid powder, the pore-forming substance and the additive are blended in the following amounts: ceramic powder 40 to 80% by weight conductive ceramic powder 5 to 40% by weight sintering aid powder 15% by weight Below, 5 to 50% by weight of pore-forming substances and 20% by weight or less of additives.

導電性セラミック部材の配合量を前記のように限定する
理由は、40重量%を上回ると主成分であるセラミック粉
末の焼結が妨げられ、また5重量%を下回ると導電性が
低下して放電加工が不可能になるからである。
The reason for limiting the compounding amount of the conductive ceramic member as described above is that if it exceeds 40% by weight, the sintering of the ceramic powder as the main component is hindered, and if it is less than 5% by weight, the conductivity is lowered and the discharge is caused. This is because processing becomes impossible.

焼結助剤粉末の配合量を前記のように限定する理由は、
それを15重量%を上回って配合しても、セラミック粉末
の焼結性にはそれ程変化が現れないからである。
The reason for limiting the blending amount of the sintering aid powder as described above is
This is because the sinterability of the ceramic powder does not change so much even if it is mixed in an amount exceeding 15% by weight.

気孔形成物質の配合量は、セラミック部材の、目標とす
る気孔率によって異なるもので、前記配合量にて気孔率
を5〜80%に調節することが可能である。
The amount of the pore-forming substance mixed varies depending on the target porosity of the ceramic member, and the porosity can be adjusted to 5 to 80% by the above-mentioned amount.

添加剤は、セラミック部材とアルミニウム合金、鋼等よ
りなる金属部材と接合する際に、相互の拡散性を良好に
すると共にセラミック部材に対する金属の接触角を小さ
くしてその濡れ性を大幅に改善し接合強度を高める効果
を有するので、この硬化を狙う場合には添加剤をやゝ過
剰に配合して前記溶出処理後もセラミック部材の気孔内
面に薄膜状に残留させる。このときの添加剤の配合量は
10〜20重量%が適当である。
Additives improve the mutual diffusivity when joining a ceramic member and a metal member made of aluminum alloy, steel, etc., and reduce the contact angle of the metal to the ceramic member to significantly improve its wettability. Since it has the effect of increasing the bonding strength, if this curing is aimed at, an additive is added in a slight excess so that it remains in a thin film on the inner surface of the pores of the ceramic member even after the elution treatment. At this time, the additive amount is
10 to 20% by weight is suitable.

前記セラミック粉末、導電性セラミック粉末、焼結助剤
粉末、気孔形成物質および添加剤よりなる混合粉末を用
いて成形体を得る場合は、スリップキャスティング法、
加圧成形法、射出成形法等の各種成形法が用いられる。
この場合、成形圧力は25〜150MPaが適当である。
When a molded body is obtained using a mixed powder composed of the ceramic powder, the conductive ceramic powder, the sintering aid powder, the pore-forming substance and the additive, a slip casting method,
Various molding methods such as a pressure molding method and an injection molding method are used.
In this case, a molding pressure of 25 to 150 MPa is suitable.

前記成形体の焼結に当っては、その成形体を1500〜2200
℃に0.5〜2時間保持して1回の焼結処理でセラミック
成分の焼結を完了する1段焼結法か、または成形体を80
0〜1400℃に0.5〜2時間確保する1次焼結処理および15
00〜2200℃に0.5〜2時間保持する2次焼結処理を経て
セラミック成分の焼結を完了する2段焼結法が採用され
る。1段焼結法を採用した場合は、その焼結処理後前記
溶出処理が行われるのは当然であるが、2段焼結法を採
用した場合には1次焼結処理後または2次焼結処理後前
記溶出処理が行われる。
In the sintering of the molded body, 1500 ~ 2200
The one-step sintering method that completes the sintering of the ceramic components by holding the temperature at 0.5 ℃ for 0.5 to 2 hours once
Primary sintering process to secure 0 to 1400 ℃ for 0.5 to 2 hours and 15
A two-stage sintering method is adopted in which the sintering of the ceramic components is completed through a secondary sintering process of holding at 00 to 2200 ° C for 0.5 to 2 hours. When the one-stage sintering method is adopted, it is natural that the elution treatment is performed after the sintering treatment. However, when the two-stage sintering method is adopted, the primary sintering treatment or the secondary firing is performed. After the binding treatment, the elution treatment is performed.

前記1次焼結処理後の焼結体は適当な硬度を有するの
で、その焼結体にレース加工等の機械加工を施すことが
可能である。この場合、機械加工により生じた欠陥を、
次工程の溶出処理が持つ化学研摩的作用により除去する
ことができる。
Since the sintered body after the primary sintering process has an appropriate hardness, it is possible to subject the sintered body to mechanical processing such as lace processing. In this case, the defects caused by machining are
It can be removed by the chemical polishing action of the elution treatment in the next step.

前記溶出処理に用いられる酸は、HCl、HNO3、HF等の単
一酸またはこれらの混酸が主として用いられ、場合によ
っては前記酸にCH3COOH、HCOOH等のカルボン酸といった
有機酸が少量添加される。溶出処理は焼結体を酸溶液中
に所定時間浸漬することにより行われる。その際、酸溶
液を流通させながらそれに8〜24MHzの超音波振動を付
与すると、酸溶液がセラミック成分、気孔形成成分およ
び焼結助剤成分に行渡り、また前記添加剤の溶出処理促
進作用もあって短時間のうちに気孔形成成分ならびにセ
ラミック成分および焼結助剤成分に含まれた不純物の溶
出処理を完了することができる。
The acid used in the elution treatment is mainly a single acid such as HCl, HNO 3 , HF or a mixed acid thereof, and in some cases, a small amount of an organic acid such as carboxylic acid such as CH 3 COOH or HCOOH is added to the acid. To be done. The elution treatment is performed by immersing the sintered body in an acid solution for a predetermined time. At that time, when ultrasonic vibration of 8 to 24 MHz is applied to the acid solution while flowing, the acid solution spreads to the ceramic component, the pore-forming component and the sintering aid component, and also has the action of promoting the elution treatment of the additive. The elution treatment of impurities contained in the pore-forming component and the ceramic component and the sintering aid component can be completed within a short time.

前記焼結体に対する溶出処理によって、無数の微細な気
孔を備えた三次元網目構造を有するセラミック部材が得
られる。
By the elution treatment on the sintered body, a ceramic member having a three-dimensional network structure having innumerable fine pores can be obtained.

このセラミック部材の気孔の直径は、焼結処理時焼結炉
内で下向きとなる端面側で最も大きく、その端面から離
れるに従って漸次小さくなるようになっている。
The diameter of the pores of this ceramic member is the largest on the end face side facing downward in the sintering furnace during the sintering process, and gradually decreases as the distance from the end face increases.

これは次の理由によるものと思われる。This is probably due to the following reasons.

即ち、焼結処理において、成形体、したがってガラス質
の気孔形成物質の温度が略1000〜1200℃に達すると、そ
の物質が溶融して所定の粘度を持つ流動体となる。そし
て流動体の重力による下降、それに伴うセラミック成分
の上昇による組織の再配列、流動体の下降によりセラミ
ック成分間に生じた微細間隙の毛管作用による流動体の
再上昇等が生じ、これにより焼結体内において気孔形成
成分の濃度が前記端面側で高く、その端面から離れるに
従って漸次低くなる。
That is, in the sintering process, when the temperature of the molded body, that is, the vitreous pore-forming substance reaches about 1000 to 1200 ° C., the substance melts and becomes a fluid having a predetermined viscosity. Then, the fluid descends due to gravity, the rearrangement of the tissue due to the rise of the ceramic component accompanying it, and the re-elevation of the fluid due to the capillary action of the fine gaps generated between the ceramic components due to the descending of the fluid, which causes sintering. The concentration of the pore-forming component in the body is high on the end face side, and gradually decreases as the distance from the end face increases.

このような状態の焼結体に前記溶出処理を施せば、前記
のように直径に勾配を付された気孔を形成することがで
きる。
By subjecting the sintered body in such a state to the elution treatment, it is possible to form pores having a gradient in diameter as described above.

前記手法により得られたセラミック部材は、金属部材と
の接合に当り、その気孔の直径が大きい側に存する端面
が接合面となる。
When the ceramic member obtained by the above method is joined to a metal member, the end face on the side where the diameter of the pore is large serves as the joint surface.

前記流動体は、セラミック部材の強度低下の原因となる
不純物を巻込んで下降するので、不純物を除去する機能
も有する。
The fluid also has a function of removing impurities because it entrains impurities that cause a decrease in strength of the ceramic member and descends.

セラミック部材と金属部材との接合に当っては、金属部
材のセラミック部材接合部を溶融状態にし、またセラミ
ック部材を高温加熱して、両部材の一方を他方に押圧す
る、セラミック部材を金型内に設置して、真空鋳造法、
低圧鋳造法、高圧鋳造法、重力鋳造法等の鋳造法を適用
して金属部材の鋳造と同時にそれとセラミック部材とを
接合する等の手段が用いられる。
In joining the ceramic member and the metal member, the ceramic member joining portion of the metal member is melted, and the ceramic member is heated at a high temperature to press one of the two members to the other. Installed in the vacuum casting method,
A means such as applying a casting method such as a low pressure casting method, a high pressure casting method, a gravity casting method, and the like, at the same time as casting the metal member and joining the ceramic member to the metal member is used.

なお、セラミック部材に対する金属部材の濡れ性の向上
を狙って、セラミック部材の気孔内面に、Ti、Cu、Ag、
B等の薄膜を化学蒸着(CVD)等により形成することは
有効である。
Incidentally, in order to improve the wettability of the metal member to the ceramic member, Ti, Cu, Ag, on the inner surface of the pores of the ceramic member,
It is effective to form a thin film such as B by chemical vapor deposition (CVD) or the like.

〔実施例1〕 最大直径1.0μm、最小直径0.1μm、平均値径0.4μm
のSi3N4粉末を基材とし、これにAlN、Al2O3、Y2O3を加
え、Si6-XAlXOXN8-X(但し、0<≦4.3)で表わされ
るサイアロンを得る。
Example 1 Maximum diameter 1.0 μm, minimum diameter 0.1 μm, average value diameter 0.4 μm
Si 3 N 4 powder as a base material, AlN, Al 2 O 3 , and Y 2 O 3 are added to this, and Si 6-X Al X O X N 8-X (where 0 < X ≤ 4.3) Get the Sialon.

気孔形成物質として、 SiO2 27.3重量% B2O3 39.8重量% Al2O3 8.6重量% MgO 4.5重量% Na2O 13.2重量% K2O 4.6重量% BaO 2.0重量% を用いて平均直径10μmのガラス質粉末を得る。SiO 2 27.3% by weight B 2 O 3 39.8% by weight Al 2 O 3 8.6% by weight MgO 4.5% by weight Na 2 O 13.2% by weight K 2 O 4.6% by weight BaO 2.0% by weight and an average diameter of 10 μm To obtain a glassy powder of.

サイアロン 60重量% 導電性セラミック粉末 最大直径5μm、平均直径0.7μmのTiN 20重量% 気孔形成物質 20重量% に、有機系ワックス、分散剤等を加え十分に混合して混
合粉末を得、この混合粉末を用いて金型による加圧成形
法を適用し、成形圧力75MPaにて第1図に示す長さl=9
0mm、幅w=20mm、厚さt=5mmの板状成形体1を得る。
Sialon 60% by weight Conductive ceramic powder TiN with a maximum diameter of 5 μm and average diameter of 0.7 μm 20% by weight Pore forming substance 20% by weight, organic wax, dispersant, etc. are thoroughly mixed to obtain a mixed powder. The pressure molding method using a die was applied using powder, and the molding pressure was 75 MPa, and the length l = 9 shown in FIG.
A plate-shaped compact 1 having a width of 0 mm, a width of w = 20 mm, and a thickness of t = 5 mm is obtained.

成形体1を乾燥した後、その一方の端面1aを下方に向け
て成形体1を焼結炉内に立設し、N2流通量30ml/min、0.
5Torr、650℃、1時間の条件の下で成形体1に有機成分
除去処理を施す。
After drying the molded body 1, the molded body 1 was erected in the sintering furnace with one end surface 1a thereof facing downward, and the N 2 flow rate was 30 ml / min.
The molded body 1 is subjected to an organic component removal treatment under the conditions of 5 Torr, 650 ° C. and 1 hour.

引続き、N2流通量30ml/min、0.4Torr、1200℃、2時間
の条件の下で成形体1に一次焼結処理を施す。
Subsequently, the compact 1 is subjected to primary sintering treatment under the conditions of N 2 flow rate of 30 ml / min, 0.4 Torr, 1200 ° C. and 2 hours.

次いで、1次焼結処理後の焼結体に、N2雰囲気下、気圧
500kg/cm2、1750℃、1時間の条件の下でHIP処理(二次
焼結処理)を施して焼結を高度に進行させる。
Next, apply pressure to the sintered body after the primary sintering treatment under N 2 atmosphere.
HIP treatment (secondary sintering treatment) is performed under the conditions of 500 kg / cm 2 , 1750 ° C., and 1 hour to highly advance the sintering.

焼結体を、30〜60℃に加温された25%HNO3および0.2%H
Fより酸溶液中に浸漬し、その酸溶液に16MHzの超音波振
動を付与しながら15分間保持して気孔形成成分および不
純物を溶出し、第2図(a)に示す三次元網目構造を有
する板状セラミック部材2を得る。このセラミック部材
2の寸法は成形体1と略同じである。
25% HNO 3 and 0.2% H 2 heated to 30-60 ℃
It is immersed in an acid solution from F, and the acid solution is kept for 15 minutes while applying ultrasonic vibration of 16 MHz to elute the pore-forming components and impurities, and has a three-dimensional network structure shown in FIG. 2 (a). The plate-shaped ceramic member 2 is obtained. The dimensions of this ceramic member 2 are substantially the same as those of the molded body 1.

第2図(b)はセラミック部材2の一端面2bからの長さ
方向から距離と気孔の最大直径および気孔率との関係を
示す。線x1が気孔の最大直径に、また線x2が気孔率にそ
れぞれ該当する。
FIG. 2B shows the relationship between the distance from the one end surface 2b of the ceramic member 2 in the length direction, the maximum diameter of the pores, and the porosity. The line x 1 corresponds to the maximum pore diameter, and the line x 2 corresponds to the porosity.

第2図(a),(b)より、セラミック部材2の他端面
2a側で気孔の直径が最も大きく、また気孔率が最も高
く、その他端面2aから離れるに従って気孔の直径が漸次
小さくなり、また気孔率が漸次低くなることが判る。
From FIGS. 2 (a) and 2 (b), the other end surface of the ceramic member 2 is shown.
It can be seen that the diameter of the pores is the largest on the 2a side and the porosity is the highest, and the diameter of the pores gradually decreases as the distance from the other end surface 2a decreases, and the porosity gradually decreases.

第3図は前記セラミック部材2における気孔率と曲げ強
さとの関係を示す。
FIG. 3 shows the relationship between the porosity and the bending strength of the ceramic member 2.

セラミック部材2の電気伝導度は、導電性セラミック粉
末としてのTiN配合量20重量%にて10-2Ω-1・cm-1であ
る。
The electrical conductivity of the ceramic member 2 is 10 -2 Ω -1 · cm -1 when the content of TiN as the conductive ceramic powder is 20% by weight.

前記セラミック部材2を1400℃に予熱した後、気孔の直
径が大きい一端面2a側をゲート側に向けて鋳型に設置
し、クロム鋼(JIS SCM415)を用いて、溶湯温度1400
℃、溶湯充填圧50kg/cm2の条件の下で鋳造を行い、第4
図に示すクロム鋼製部材3とセラミック部材2との接合
体4を得る。
After preheating the ceramic member 2 to 1400 ° C., one end surface 2a side having a large pore diameter is installed in the mold with the gate side facing, and the molten metal temperature 1400 is used by using chrome steel (JIS SCM415).
Casting was performed under the conditions of ℃ and molten metal filling pressure of 50 kg / cm 2 .
A joined body 4 of the chromium steel member 3 and the ceramic member 2 shown in the figure is obtained.

前記接合体4において、セラミック部材2をその長さl
方向に切断して断面を調べたところ、セラミック部材2
の気孔にクロム鋼が十分に充填されていることが確認さ
れている。
In the joined body 4, the length of the ceramic member 2 is 1
The ceramic member 2
It has been confirmed that the pores of s are fully filled with chrome steel.

前記のようにセラミック部材2における気孔の直径に勾
配をもたせることにより、クロム鋼製部材3とセラミッ
ク部材2との接合部、この実施例ではセラミック部材2
の略全体において、セラミックスとクロム鋼との複合化
に伴い物理的性質および機械的性質が端面2aから端面2b
に向けて或勾配をもって変化するので、それらの性質の
急激な変化に伴う耐久性の劣化を防止することができ
る。
As described above, by making the diameter of the pores in the ceramic member 2 have a gradient, the joint between the chrome steel member 3 and the ceramic member 2, that is, the ceramic member 2 in this embodiment.
In almost all of the above, the physical properties and the mechanical properties are changed from the end face 2a to the end face 2b with the combination of ceramics and chrome steel.
Since it changes with a certain gradient toward, it is possible to prevent the deterioration of durability due to the rapid change of those properties.

またセラミック部材2は、前記のような電気伝導度を有
し、その微細な気孔にはクロム鋼が充填されているの
で、接合体4全体が良好な導電性を呈し、これにより接
合体4への放電加工が可能となる。
Further, the ceramic member 2 has the electric conductivity as described above, and since the fine pores thereof are filled with chrome steel, the entire bonded body 4 exhibits good conductivity, whereby the bonded body 4 It enables electric discharge machining.

この場合、接合部であるセラミック部材2ではクロム鋼
との複合化に伴い電気伝導度も或勾配を以て変化するこ
とになるので、放電加工中においてセラミック部材2が
高熱を発生することがない。
In this case, the electrical conductivity of the ceramic member 2 that is the joint portion changes with a certain gradient as it is compounded with the chromium steel, so that the ceramic member 2 does not generate high heat during electric discharge machining.

なお、セラミック部材2単体への放電加工も可能であ
る。
It is also possible to perform electric discharge machining on the ceramic member 2 alone.

前記のようにセラミック部材2へ導電性付与を、導電性
セラミック粉末を用いて行うと、接合体4を高温下にて
使用する場合にその熱的劣化を回避する上に有効であ
る。
If the ceramic member 2 is provided with conductivity by using the conductive ceramic powder as described above, it is effective in avoiding the thermal deterioration when the joined body 4 is used at a high temperature.

第5図は前記セラミック部材2におけるTiN配合量と電
気伝導度との関係を示し、TiN配合量の増加に伴い電気
伝導度が高くなることが明らかである。
FIG. 5 shows the relationship between the TiN blending amount and the electrical conductivity in the ceramic member 2, and it is clear that the electrical conductivity increases as the TiN blending amount increases.

〔実施例II〕Example II

内燃機関用シリンダヘッドにおいて、そのシリンダヘッ
ド本体に接合されるセラミック部材としての吸気用バル
ブシートの製法について説明する。
In a cylinder head for an internal combustion engine, a method of manufacturing an intake valve seat as a ceramic member joined to the cylinder head body will be described.

気孔形成物質として、 SiO2 27.3重量% B2O3 39.8重量% Al2O3 6.1重量% MgO 4.5重量% K2O 4.6重量% Na2O 1.32重量% BaO 2.0重量% MoO2 0.2重量% CeO3 2.3重量% を用いてガラス質粉末を得る。As a pore-forming substance, SiO 2 27.3 wt% B 2 O 3 39.8 wt% Al 2 O 3 6.1 wt% MgO 4.5 wt% K 2 O 4.6 wt% Na 2 O 1.32 wt% BaO 2.0 wt% MoO 2 0.2 wt% CeO 3 2.3% by weight is used to obtain a glassy powder.

窒化ケイ素粉末 最大直径4μm、平均直径0.5μm 49.5重量% 導電性セラミック粉末 最大直径10μm、平均直径0.8μmのTiB2 20重量% 気孔形成物質 平均直径10μm 20重量% 焼結助剤粉末 直径0.1〜1.0μm、平均直径0.4μmのAl2O3および直径
0.1〜2.0μm、平均直径0.5μmのY2O3を各0.25重量%
0.5重量% ホウ酸アンモニウム 10重量% に、有機系ワックス、分散剤等を加え十分に混合して混
合粉末を得、この混合粉末を用いて金型による加圧成形
法を適用し、成形圧力100MPaにて第6図に示す環状成形
体5を得る。成形体5の寸法は次の通りである。即ち、
一方の環状端面5aの外径d1=34.1mm、その内径d2=22.7
mm、他方の環状端面5bの内径d3=21.1mm、その外形d4
31.6mmである。
Silicon nitride powder Maximum diameter 4 μm, average diameter 0.5 μm 49.5% by weight Conductive ceramic powder Maximum diameter 10 μm, average diameter 0.8 μm TiB 2 20% by weight Pore forming substance Average diameter 10 μm 20% by weight Sintering aid powder diameter 0.1-1.0 μm, Al 2 O 3 with an average diameter of 0.4 μm and diameter
0.25% by weight of Y 2 O 3 with 0.1 to 2.0 μm and average diameter of 0.5 μm
0.5% by weight Ammonium borate 10% by weight, organic wax, dispersant, etc. are added and mixed well to obtain a mixed powder. Using this mixed powder, a pressure molding method with a die is applied to obtain a molding pressure of 100 MPa. The annular molded body 5 shown in FIG. 6 is obtained. The dimensions of the molded body 5 are as follows. That is,
Outer diameter of one annular end surface 5a d 1 = 34.1 mm, its inner diameter d 2 = 22.7
mm, the inner diameter d 3 of the other annular end surface 5 b = 21.1 mm, its outer diameter d 4 =
It is 31.6 mm.

成形体5を乾燥した後、その一方の環状端面5aを上向き
にして焼結炉の基台上に載置し、N2流通量40ml/min、1
時間の条件の下で成形体5に有機成分除去処理を施す。
After the molded body 5 is dried, it is placed on the base of the sintering furnace with one of the annular end surfaces 5a facing upward, and the N 2 flow rate of 40 ml / min, 1
Under the condition of time, the molded body 5 is subjected to an organic component removal treatment.

引続き、N2流通量50ml/min、0.6Torr、1200℃、2時間
の条件の下で成形体5に1次焼結処理を施して焼結体を
得る。
Subsequently, the molded body 5 is subjected to primary sintering treatment under the conditions of N 2 flow rate of 50 ml / min, 0.6 Torr, 1200 ° C. and 2 hours to obtain a sintered body.

焼結体を、40℃に加温された4規定HNO3および0.1%HF
よりなる酸溶液中に浸漬し、その酸溶液に16MHzの超音
波振動を付与しながら15分間保持して気孔形成成分、不
純物および過剰の焼結助剤成分を溶出し、三次元網目構
造を有するバルブシートを得る。
4N HNO 3 and 0.1% HF heated to 40 ℃
It has a three-dimensional network structure by immersing it in an acid solution consisting of and leaching the acid solution for 16 minutes while applying ultrasonic vibration of 16 MHz to elute the pore-forming component, impurities and excess sintering additive component. Get the valve seat.

前記バルブシートに十分洗浄処理を施した後乾燥し、次
いで、N2雰囲気下、500気圧、1750℃、1時間の条件下
でHIP処理による2次焼結処理を施して高度に焼結が進
行したバルブシートを得る。これを第1のバルブシート
6(第7図)とする。
The valve seat is thoroughly washed and dried, and then subjected to secondary sintering by HIP treatment under N 2 atmosphere at 500 atm and 1750 ° C. for 1 hour to highly advance sintering. Get the valve seat. This is designated as the first valve seat 6 (FIG. 7).

前記同様の1次焼結処理後の焼結体に前記同様の2次焼
結処理を施し、次いで2次焼結処理後の焼結体に前記同
様の酸溶出処理を施して第2のバルブシートを得る。
The same secondary sintering treatment as described above is performed on the sintered body after the primary sintering treatment similar to the above, and the acid elution treatment similar to the above is performed on the sintered body after the secondary sintering treatment to generate the second valve. Get the sheet.

前記第1および第2のバルブシートにおける外形および
内径の寸法変化および全線収縮率は下表の通りである。
The dimensional changes in the outer shape and inner diameter and the total linear shrinkage in the first and second valve seats are as shown in the table below.

第1のバルブシート6において、一方の環状端面6b側で
は気孔の最大直径は300μm程度と大きく、また他方の
環状端面6a側では気孔の最大直径は1μm以下と微細で
あり、気孔の直径は一方の環状端面6bから離れるに従っ
て漸次小さくなっている。
In the first valve seat 6, the maximum diameter of pores on one annular end surface 6b side is as large as about 300 μm, and the maximum diameter of pores on the other annular end surface 6a side is fine at 1 μm or less, and the diameter of one pore is one. It becomes gradually smaller as it goes away from the annular end face 6b.

第2のバルブシートにおいて、一方の環状端面(6bに相
当)側では気孔の最大直径は500μm、または他方の環
状端面(6aに相当)側では気孔の最大直径は3μm以下
であり、気孔の直径変化は第1のバルブシート6と同様
の傾向にある。
In the second valve seat, the maximum diameter of the pores is 500 μm on one annular end surface (corresponding to 6b) side, or the maximum diameter of the pores is 3 μm or less on the other annular end surface (corresponding to 6a) side. The change has the same tendency as that of the first valve seat 6.

第8図はバルブシートにおける各部位の気孔率と電気伝
導度との関係を示す。
FIG. 8 shows the relationship between the porosity and electrical conductivity of each part of the valve seat.

線y1が、TiB2を20重量%含有する第1のバルブシート6
の場合に該当し、気孔率が約5〜約60%の範囲にある部
位では電気伝導度が略一定しているが、気孔率が約60〜
約80%の範囲に存する部位では電気伝導度が急激に下が
る傾向にある。
Line y 1 is the first valve seat 6 containing 20% by weight of TiB 2.
The electric conductivity is almost constant at the site where the porosity is in the range of about 5 to about 60%, but the porosity is about 60 to 60%.
The electric conductivity tends to drop sharply in the area of about 80%.

第8図中、線y2はTiB2の配合量を40重量%に、また線y3
はTiB2の配合量を5重量%にそれぞれ設定した場合に該
当する。TiB2の増量または減量に応じて窒化ケイ素粉末
の配合量が減量または増量されている。
In FIG. 8, the line y 2 shows the TiB 2 content of 40% by weight, and the line y 3 shows
Indicates that the content of TiB 2 is set to 5% by weight. The blending amount of the silicon nitride powder is reduced or increased according to the increase or decrease of TiB 2 .

この場合、TiB2の配合量は20〜40重量%が適当である。
その理由は、TiB2の配合量が40重量%を上回ると、TiB2
より主成分であるセラミック粉末の焼結が妨げられてセ
ラミック部材の強度が低下し、一方、前記配合量が20重
量%を下回ると、気孔量の変化による導電性変化に伴い
放電加工中に極部発熱を生じて極部的な欠陥の導入を招
くおそれがあり、効率よく放電加工を行うことができな
い。
In this case, the content of TiB 2 is appropriately 20 to 40% by weight.
This is because, if the amount of TiB 2 exceeds 40 wt%, TiB 2
Sintering of the ceramic powder, which is the main component, is hindered, and the strength of the ceramic member is reduced.On the other hand, if the content is less than 20% by weight, the electrical conductivity changes due to the change in the porosity, and the electrode becomes Partial heat generation may occur, which may lead to the introduction of extreme defects, so that electrical discharge machining cannot be performed efficiently.

第9図はシリンダヘッド7を示し、そのシリンダヘッド
7の鋳造法は以下の通りである。
FIG. 9 shows the cylinder head 7, and the method of casting the cylinder head 7 is as follows.

先ず、前記第1のバルブシート6と同様の手法を用いて
排気用バルブシート8を製造する。
First, the exhaust valve seat 8 is manufactured using the same method as the first valve seat 6.

次いで、両バルブシート6,8に所定の加工を施した後そ
れらを800℃に予熱し、また吸、排気側においてそれら
の環状端面6b,8bを吸、排気ポート9,10側にそれぞれ向
けてそれらバルブシート6,8を鋳型に設置し、アルミニ
ウム合金(JIS AC4C)の溶湯温度700℃、溶湯の充填圧
200kg/cm2の条件の下でシリンダヘッド本体11を構造し
たところ、各バルブシート6,8の気孔にアルミニウム合
金が十分に充填されていることが確認されている。
Next, after subjecting both valve seats 6 and 8 to predetermined processing, they are preheated to 800 ° C., and the annular end surfaces 6b and 8b of the intake and exhaust sides are sucked and directed toward the exhaust ports 9 and 10, respectively. The valve seats 6 and 8 are installed in the mold, the temperature of the molten aluminum alloy (JIS AC4C) is 700 ℃, and the filling pressure of the molten metal is
When the cylinder head body 11 was constructed under the condition of 200 kg / cm 2 , it was confirmed that the pores of each valve seat 6, 8 were sufficiently filled with aluminum alloy.

両バルブシート6,8の加工には放電加工を適用すること
が可能であり、この放電加工はシリンダヘッド7を鋳造
した後でもよい。
It is possible to apply electric discharge machining to machining both valve seats 6 and 8, and this electric discharge machining may be performed after the cylinder head 7 is cast.

なお、本発明はバルブシートに限らず、各種部材、例え
ば金属製回転軸と接合されるタービン羽根車、金属製ロ
ッカアーム本体と接合されるスリッパ面構成体等に適用
される。
The present invention is not limited to the valve seat, and is applied to various members such as a turbine impeller joined to a metallic rotating shaft and a slipper surface structure joined to a metallic rocker arm body.

C.発明の効果 本発明によれば、セラミック部材における気孔の直径に
前記のように勾配をもたせたので、それら気孔に金属部
材の一部を充填してその金属部材とセラミック部材とを
接合したとき、両部材の接合部では、セラミックスと金
属との複合化に伴いセラミック部材の接合面から接合部
全体を亘って物理的性質および機械的性質が或勾配をも
って変化することになり、これにより接合部における前
記両性質の変化を緩和して接合部の耐久性を大幅に向上
させることができる。
C. Effect of the Invention According to the present invention, since the diameter of the pores in the ceramic member has the gradient as described above, the pores are partially filled with the metal member and the metal member and the ceramic member are joined. At this time, in the joint portion of both members, the physical property and the mechanical property change from the joint surface of the ceramic member to the entire joint portion with a certain gradient due to the compounding of the ceramic and the metal. It is possible to relieve the changes in both properties of the joint portion and significantly improve the durability of the joint portion.

またセラミック部材が所定の電気伝導度を有するので、
それ単体または金属部材との接合体に対して放電加工を
行うことが可能となり、これにより加工効率の向上を図
ることができる。
Moreover, since the ceramic member has a predetermined electric conductivity,
It becomes possible to perform electric discharge machining on the single body or a joined body with a metal member, and thereby it is possible to improve machining efficiency.

さらにセラミック部材への導電性付与を、導電性セラミ
ック成分により行うので、接合体を高温下にて使用する
場合にその熱的劣化を回避することができる。
Further, since conductivity is imparted to the ceramic member by the conductive ceramic component, it is possible to avoid the thermal deterioration when the joined body is used at high temperature.

【図面の簡単な説明】[Brief description of drawings]

第1図は成形体の斜視図、第2図(a)はセラミック部
材の断面図、第2図(b)はセラミック部材の一端面か
らの距離と気孔率および気孔の最大直径との関係を示す
グラフ、第3図はセラミック部材における気孔率と曲げ
強さとの関係を示すグラフ、第4図は接合体の斜視図、
第5図はセラミック部材におけるTiN配合量と電気伝導
度との関係を示すグラフ、第6図は成形体の断面図、第
7図はバルブシートの断面図、第8図はバルブシートの
気孔率と電気伝導度との関係を示すグラフ、第9図はシ
リンダヘッドの断面図である。 2……セラミック部材、2a……接合面としての端面、3
……クロム鋼製部材、6……バルブシート、6b……接合
面としての環状端面、11……アルミニウム合金製シリン
ダヘッド本体
FIG. 1 is a perspective view of the molded body, FIG. 2 (a) is a cross-sectional view of the ceramic member, and FIG. 2 (b) shows the relationship between the distance from one end face of the ceramic member and the porosity and the maximum diameter of the pores. The graph which shows, FIG. 3 is the graph which shows the relationship between the porosity and bending strength in a ceramic member, FIG. 4 is the perspective view of a joined body,
Fig. 5 is a graph showing the relationship between the amount of TiN compounded in the ceramic member and the electrical conductivity, Fig. 6 is a sectional view of the molded body, Fig. 7 is a sectional view of the valve seat, and Fig. 8 is a porosity of the valve seat. And FIG. 9 is a cross-sectional view of the cylinder head. 2 ... Ceramic member, 2a ... End face as joint surface, 3
...... Chromium steel member, 6 …… Valve seat, 6b …… Annular end face as joint surface, 11 …… Aluminum alloy cylinder head body

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】金属部材と接合されるセラミック部材にお
いて、導電性セラミック成分を含有すると共に前記金属
部材の一部を充填される無数の微細な気孔を備えた三次
元網目構造を有し、前記気孔の直径を前記金属部材との
接合面から離れるに従って漸次小さくなるようにしたこ
とを特徴とする、金属部材との接合用セラミック部材。
1. A ceramic member to be joined to a metal member, which has a three-dimensional network structure containing a conductive ceramic component and having innumerable fine pores filling a part of the metal member, A ceramic member for joining with a metal member, characterized in that the diameter of the pores is gradually reduced with increasing distance from the joining surface with the metal member.
JP31569387A 1987-12-14 1987-12-14 Ceramic member for joining with metal member Expired - Fee Related JPH0776141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31569387A JPH0776141B2 (en) 1987-12-14 1987-12-14 Ceramic member for joining with metal member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31569387A JPH0776141B2 (en) 1987-12-14 1987-12-14 Ceramic member for joining with metal member

Publications (2)

Publication Number Publication Date
JPH01157472A JPH01157472A (en) 1989-06-20
JPH0776141B2 true JPH0776141B2 (en) 1995-08-16

Family

ID=18068418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31569387A Expired - Fee Related JPH0776141B2 (en) 1987-12-14 1987-12-14 Ceramic member for joining with metal member

Country Status (1)

Country Link
JP (1) JPH0776141B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004074210A1 (en) * 1992-07-03 2004-09-02 Masanori Hirano Ceramics-metal composite body and method of producing the same

Also Published As

Publication number Publication date
JPH01157472A (en) 1989-06-20

Similar Documents

Publication Publication Date Title
US5735332A (en) Method for making a ceramic metal composite
US5626914A (en) Ceramic-metal composites
JPH0891951A (en) Aluminum-silicon nitride conjugate and its production
EP0530854B1 (en) Metal-ceramic composite bodies
WO2004007401A1 (en) Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
US5503122A (en) Engine components including ceramic-metal composites
CA2145161A1 (en) Method for making a ceramic metal composite
JPH0776141B2 (en) Ceramic member for joining with metal member
JP2004076044A (en) Ceramics-metal composite material and method for producing the same
JPS63312931A (en) Production of ceramic-metallic composite body
JPH0813708B2 (en) Ceramic member for joining with metal member
KR960012868B1 (en) Method of manufacturing an object of a powdered material by isostatic pressing
JP4416946B2 (en) Ceramic composite
EP0753101B1 (en) Engine components including ceramic-metal composites
JPH0424142B2 (en)
JPH0560011A (en) Silicon nitride inserted piston
JPH09300060A (en) Sprue member for casting and manufacture thereof
JPH037629B2 (en)
JPH085731B2 (en) Method for manufacturing ceramic three-dimensional mesh structure
JPH0683890B2 (en) Method for manufacturing wear resistant member for molding machine
JP4276304B2 (en) Method for producing metal-ceramic composite material
JP2644806B2 (en) Manufacturing method of composite sliding material composed of ceramic and metal
JPH0323273A (en) Method for degreasing powder compact
JPH1180860A (en) Production of metal-ceramics composite material
JPH0533079A (en) Production of partial composite member

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees