JPH0754072A - Method and device for refining aliminum scrap - Google Patents

Method and device for refining aliminum scrap

Info

Publication number
JPH0754072A
JPH0754072A JP20408693A JP20408693A JPH0754072A JP H0754072 A JPH0754072 A JP H0754072A JP 20408693 A JP20408693 A JP 20408693A JP 20408693 A JP20408693 A JP 20408693A JP H0754072 A JPH0754072 A JP H0754072A
Authority
JP
Japan
Prior art keywords
intermetallic compound
raw material
molten metal
container
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20408693A
Other languages
Japanese (ja)
Inventor
Tomoo Dobashi
倫男 土橋
Terumi Kanamori
照己 金森
Takaaki Murakami
高明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP20408693A priority Critical patent/JPH0754072A/en
Publication of JPH0754072A publication Critical patent/JPH0754072A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To produce aluminum having high purity by refining raw material molten metal by segregation solidification. CONSTITUTION:A stirrer 3 immersed in the raw material molten metal 2 is rotated to entrain intermetallic compds. 6 crystallized near the solidification boundary and the impurities thickend liquid in stirring flow 7 so as to float on the mother liquor at the time of crystalling alpha-Al from the raw material molten metal 2 by the segregation solidification and obtaining the refined aluminum as the solid. The intermetallic compds. 6 are captured by a capturing member 8 disposed in mid-way of the flow route of the stirring flow 7. The solid grows on the base of a refining vessel 1 when the raw material molten metal is cooled by a cooling body 4 arranged in the bottom of, for example, the refining vessel 1. The molten metal is segregated and solidified while the intermetallic compds. 6 are captured and, therefore, the amt. of the intermetallic compds. to be trapped in products is decreased and the purity of the refined aluminum obtd. in such a manner is improved. The residual molten metal is usable as a material for aluminum alloys as well.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原料溶湯に含まれてい
る不純物を金属間化合物として晶出分離しながら、精製
アルミニウムを得る方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for obtaining purified aluminum while crystallizing and separating impurities contained in a raw material molten metal as an intermetallic compound.

【0002】[0002]

【従来の技術】アルミニウム原料に含まれているFe等
の不純物を分離除去する方法として、不純物との間で金
属間化合物を精製するMnを添加し、Al−Fe−Mn
等の金属間化合物として晶出分離する方法が採用されて
いる。たとえば、特開昭57−2134号公報ではAl
−Mn金属間化合物を添加し、特開昭59−12731
号公報ではMn又はAl−Mn及びMg又はAl−Mg
を併用添加している。何れの方法においても、不純物の
一部であるFeは、Al−Fe−Mn系の金属間化合物
として分離除去される。しかし、これらの方法は、Si
を含むアルミニウム原料に適用することができない。得
られた精製アルミニウムも、Mnを過剰に含むことか
ら、アルミニウム合金としての用途に制約を受ける。
2. Description of the Related Art As a method for separating and removing impurities such as Fe contained in an aluminum raw material, Mn for purifying an intermetallic compound between the impurities and Al-Fe-Mn is added.
The method of crystallization separation is adopted as an intermetallic compound such as. For example, in JP-A-57-2134, Al
-Mn intermetallic compound was added to the method described in JP-A-59-12731.
In the publication, Mn or Al-Mn and Mg or Al-Mg
Is added together. In either method, Fe, which is a part of the impurities, is separated and removed as an Al—Fe—Mn-based intermetallic compound. However, these methods
It cannot be applied to aluminum raw materials containing. The obtained purified aluminum also contains Mn in an excessive amount, so that its use as an aluminum alloy is restricted.

【0003】Mn添加法で除去可能な不純物は、実質的
にFeだけである。この点、偏析凝固を利用した精製法
では、他の不純物も除去される。たとえば、不純物が金
属間化合物の初晶として晶出する系では、原料溶湯を徐
々に降温させる過程で不純物が晶出分離され、純度が上
昇した精製アルミニウムが溶湯又は凝固体として得られ
る。また、α−Alが初晶として晶出する系では、精製
アルミニウムが凝固体として得られ、不純物が濃縮した
残液と分離される。この種の精製方法は、たとえば特開
昭61−3385号公報,特開平2−228432号公
報等で紹介されている。
Fe is the only impurity that can be removed by the Mn addition method. In this respect, other impurities are also removed by the refining method utilizing segregation and solidification. For example, in a system in which impurities are crystallized as primary crystals of intermetallic compounds, impurities are crystallized and separated in the process of gradually lowering the temperature of the raw material molten metal, and purified aluminum with increased purity is obtained as a molten metal or a solidified body. Further, in a system in which α-Al crystallizes as a primary crystal, purified aluminum is obtained as a solidified body and separated from the residual liquid in which impurities are concentrated. This type of purification method is introduced, for example, in Japanese Patent Laid-Open Nos. 61-3385 and 2-228432.

【0004】[0004]

【発明が解決しようとする課題】偏析凝固により精製ア
ルミニウムを得るとき、金属間化合物として晶出した不
純物が精製アルミニウムに再び取り込まれないようにす
ることが重要である。しかし、晶出した金属間化合物
は、凝固界面に残留し易く、そのまま精製アルミニウム
に取り込まれ、製品純度を低下させる原因となる。晶出
した金属間化合物は、比重が大きく、溶湯中を沈降す
る。そのため、精製容器の底面に精製アルミニウムを凝
固体として成長させる方式では、凝固体表面に沈降した
金属間化合物が精製アルミニウムに取り込まれ易い。溶
湯に撹拌子を浸漬し、撹拌流に乗せて金属間化合物を凝
固界面から取り除くこともできる。しかし、晶出した金
属間化合物の粒成長に応じて沈降速度が大きくなるた
め、依然として精製アルミニウムによる金属間化合物の
取込みが避けられない。α−Alが初晶として晶出する
系においても、凝固体の成長に伴って残液の不純物濃度
が上昇し、残液から盛んに晶出した金属間化合物が凝固
体に取り込まれる。
When obtaining purified aluminum by segregation and solidification, it is important to prevent impurities crystallized as intermetallic compounds from being incorporated again into purified aluminum. However, the crystallized intermetallic compound is likely to remain at the solidification interface and is taken into the purified aluminum as it is, which causes a decrease in product purity. The crystallized intermetallic compound has a large specific gravity and precipitates in the molten metal. Therefore, in the method of growing purified aluminum as a solidified body on the bottom surface of the purification container, the intermetallic compound precipitated on the surface of the solidified body is easily incorporated into the purified aluminum. It is also possible to immerse the stirrer in the molten metal and put it on a stirring flow to remove the intermetallic compound from the solidification interface. However, since the precipitation rate increases with the grain growth of the crystallized intermetallic compound, the incorporation of the intermetallic compound by purified aluminum is still unavoidable. Even in a system in which α-Al crystallizes as a primary crystal, the impurity concentration of the residual liquid increases with the growth of the solidified body, and the intermetallic compound actively crystallized from the residual liquid is taken into the solidified body.

【0005】従来の精製方法では、精製中に晶出する金
属間化合物が原料溶湯中に浮遊している。この浮遊して
いる金属間化合物の量を減らさない限り、精製アルミニ
ウムに取り込まれる金属間化合物を量的に抑制できな
い。しかし、浮遊している金属間化合物を溶湯から除去
する実用的な方法は、いまだ開発されていない。そのた
め、得られた精製アルミニウムの純度向上にも限度があ
る。本発明は、このような問題を解消すべく案出された
ものであり、撹拌流に乗って溶湯を浮遊している金属間
化合物を捕捉し、凝固界面に再び金属間化合物が到達す
ることを防止することにより、溶湯の実質不純物濃度の
上昇を抑え、高い精製効率で精製アルミニウムを得るこ
とを目的とする。
In the conventional refining method, the intermetallic compound that crystallizes during refining floats in the raw material melt. Unless the amount of the floating intermetallic compound is reduced, the amount of the intermetallic compound taken into the purified aluminum cannot be suppressed. However, a practical method for removing the floating intermetallic compound from the molten metal has not yet been developed. Therefore, there is a limit in improving the purity of the obtained purified aluminum. The present invention has been devised to solve such a problem, and captures an intermetallic compound that floats in a molten metal on an agitated flow and prevents the intermetallic compound from reaching the solidification interface again. By preventing it, it is intended to suppress an increase in the substantial impurity concentration of the molten metal and obtain purified aluminum with high purification efficiency.

【0006】[0006]

【課題を解決するための手段】本発明のアルミニウムス
クラップ精製方法は、その目的を達成するため、偏析凝
固によって原料溶湯からα−Alを晶出させて精製アル
ミニウムを得る際、前記原料溶湯に浸漬した撹拌子を回
転させ、凝固界面近傍に晶出した金属間化合物及び不純
物濃縮液を撹拌流に乗せて母液に浮上させ、撹拌流の流
動経路の途中に設けた捕捉部材で前記金属間化合物を捕
集することを特徴とする。たとえば、不純物の一部が金
属間化合物の初晶として晶出する組成をもつ原料溶湯を
精製容器に収容し、精製容器の底部に配置された冷却体
によって原料溶湯を冷却し、精製アルミニウムを凝固体
として精製容器の底面に成長させる。このとき、晶出し
た金属間化合物が撹拌流に乗って凝固界面から持ち去ら
れるため、金属間化合物の晶出反応も促進される。しか
も、晶出した金属間化合物が捕捉部材で捕集されるの
で、溶湯の実効不純物濃度が上昇することもない。
In order to achieve the object, the aluminum scrap refining method of the present invention is such that when a purified aluminum is obtained by crystallizing α-Al from a raw material molten metal by segregation solidification, it is immersed in the raw material molten metal. The stirrer was rotated, and the intermetallic compound and impurity concentrate crystallized near the solidification interface were placed on the stirring flow to float on the mother liquor, and the intermetallic compound was removed by the trapping member provided in the middle of the flow path of the stirring flow. It is characterized by collecting. For example, a raw material melt having a composition in which some of the impurities crystallize out as primary crystals of intermetallic compounds is placed in a refining vessel, and the raw material melt is cooled by a cooling body placed at the bottom of the refining vessel to solidify the refined aluminum. Grow as a body on the bottom of the purification container. At this time, since the crystallized intermetallic compound rides on the stirring flow and is carried away from the solidification interface, the crystallization reaction of the intermetallic compound is also accelerated. Moreover, since the crystallized intermetallic compound is collected by the trapping member, the effective impurity concentration of the molten metal does not increase.

【0007】α−Alが初晶として晶出する系において
も、不純物が濃縮した残液から晶出する金属間化合物が
捕捉部材によって除去される。そのため、残液の実効不
純物濃度の上昇が抑えられる結果として溶湯からα−A
lが優先的に晶出し、高生産性で純化された精製アルミ
ニウムが得られる。撹拌子は、凝固界面から金属間化合
物及び不純物濃縮液を撹拌流に乗せて持ち去るため、外
周速1m/秒以上で回転される。また、一定した撹拌流
をえるため、撹拌子を一方向に回転させることが好まし
い。更に、金属間化合物の晶出が活発に行われていると
きには撹拌子を比較的高速で、金属間化合物の晶出速度
が低下したときには回転速度を下げる制御を行うことが
望ましい。使用する精製装置は、原料溶湯を収容する精
製容器と、原料溶湯に浸漬される撹拌子と、精製容器の
底部に設けられた冷却体と、撹拌子の回転によって生じ
た撹拌流の途中に設けられた捕捉部材とを備えている。
Even in a system in which α-Al crystallizes as a primary crystal, the trapping member removes the intermetallic compound crystallized from the residual liquid in which impurities are concentrated. Therefore, as a result of suppressing the increase of the effective impurity concentration of the residual liquid, α-A
l preferentially crystallizes to obtain highly productive purified aluminum. The stirrer is rotated at an outer peripheral speed of 1 m / sec or more in order to carry the intermetallic compound and the impurity concentrated liquid on the stirring flow away from the solidification interface. Further, in order to obtain a constant stirring flow, it is preferable to rotate the stirring bar in one direction. Further, it is desirable to control the stirrer at a relatively high speed when the crystallization of the intermetallic compound is actively performed, and to control the rotation speed to be decreased when the crystallization rate of the intermetallic compound decreases. The refining equipment used is a refining vessel containing the raw material melt, a stirrer immersed in the raw material melt, a cooling body provided at the bottom of the refining vessel, and a stirrer flow generated by the rotation of the stirrer. And a captured member.

【0008】捕捉部材としては、下端に容器を設けた邪
魔板が使用され、邪魔板に衝突した金属間化合物が比重
差で沈降して容器に収容される。この場合、邪魔板を繊
維質にし、また容器に繊維状濾過材を充填しても良い。
治具で精製容器の内壁に取り付けた繊維状濾過材を、捕
捉部材として使用することもできる。不純物の一部が金
属間化合物の初晶として晶出する場合を例にとって、本
発明を具体的に説明する。金属間化合物の晶出量は、一
般的に溶湯温度に依存し、凝固温度より若干高い温度ま
で溶湯が降温する温度差に応じて定まる。しかし、実際
の操業では、晶出した金属間化合物や不純物濃縮液が凝
固界面に滞留し易いことから、状態図に基づき算出され
る理論晶出量と相違する。
As the trapping member, a baffle plate having a container at the lower end is used, and the intermetallic compound colliding with the baffle plate is deposited in the container due to the difference in specific gravity. In this case, the baffle plate may be made of fiber and the container may be filled with the fibrous filter material.
The fibrous filter material attached to the inner wall of the purification container with a jig can also be used as the capturing member. The present invention will be specifically described by taking as an example a case where a part of impurities is crystallized as a primary crystal of an intermetallic compound. The amount of crystallization of the intermetallic compound generally depends on the temperature of the molten metal, and is determined according to the temperature difference at which the temperature of the molten metal drops to a temperature slightly higher than the solidification temperature. However, in the actual operation, the crystallized intermetallic compound and the concentrated impurity solution are likely to stay at the solidification interface, which is different from the theoretical crystallized amount calculated based on the phase diagram.

【0009】凝固界面における晶出した金属間化合物や
不純物濃縮液の滞留は、溶湯の撹拌によって解消され
る。すなわち、図1に示すように精製容器1に収容した
原料溶湯2に撹拌子3を浸漬し、原料溶湯2を冷却しな
がら撹拌する。原料溶湯2が精製容器1の底部に設けた
冷却体4で冷却されるため、α−Alが凝固体5として
精製容器1の底面から成長する。α−Alが凝固する
際、原料溶湯2から不純物が金属間化合物6として晶出
する。凝固界面にある金属間化合物6及び不純物濃縮液
は、撹拌子3で生成された撹拌流7に乗って凝固界面か
ら持ち去られ、凝固界面に新たな溶湯が送り込まれる。
そのため、溶湯の不純物濃度が凝固界面近傍で局部的に
高くなることが抑制され、金属間化合物6及びα−Al
は状態図に近似した条件下で晶出する。
The stagnation of the crystallized intermetallic compound and the impurity concentrate at the solidification interface is eliminated by stirring the molten metal. That is, as shown in FIG. 1, the stir bar 3 is immersed in the raw material melt 2 contained in the refining vessel 1, and the raw material melt 2 is stirred while being cooled. Since the raw material melt 2 is cooled by the cooling body 4 provided at the bottom of the purification vessel 1, α-Al grows as a solidified body 5 from the bottom surface of the purification vessel 1. When α-Al solidifies, impurities crystallize out of the raw material melt 2 as intermetallic compounds 6. The intermetallic compound 6 and the impurity concentrate at the solidification interface are carried away from the solidification interface by the stirring flow 7 generated by the stirrer 3, and new molten metal is sent to the solidification interface.
Therefore, the impurity concentration of the molten metal is suppressed from locally increasing near the solidification interface, and the intermetallic compound 6 and α-Al are suppressed.
Crystallizes under conditions similar to the phase diagram.

【0010】このとき、撹拌子3の下方で下降流、精製
容器1の側壁側で上昇流となる撹拌流7が生じるよう
に、羽根に方向性を付けた撹拌子3を羽根先端の周速1
m/秒以上で回転させることが好ましい。周速1m/秒
未満では、凝固界面から金属間化合物6を持ち去る作用
が弱くなる。金属間化合物6は、原料溶湯2よりも比重
が大きい分だけ、撹拌流7によって大きな慣性力が与え
られる。そのため、捕捉部材8が設けられている精製容
器1の側壁内面近傍まで運ばれる。金属間化合物6が捕
捉部材8に捕集され、金属間化合物のない、換言すれば
実効不純物濃度が低い溶湯が撹拌流7として精錬容器1
内を循環する。そのため、金属間化合物6の新たな晶出
及び凝固体5の成長が促進される。
At this time, the stirrer 3 having a directional blade is provided so that a downward flow is generated below the stirrer 3 and an upward flow is generated on the side wall of the refining vessel 1. 1
It is preferable to rotate at m / sec or more. If the peripheral speed is less than 1 m / sec, the action of removing the intermetallic compound 6 from the solidification interface becomes weak. The intermetallic compound 6 is given a large inertial force by the agitated flow 7 as much as the specific gravity is larger than that of the raw material melt 2. Therefore, it is carried to the vicinity of the inner surface of the side wall of the purification container 1 in which the capturing member 8 is provided. The intermetallic compound 6 is collected by the trapping member 8, and the molten metal having no intermetallic compound, in other words, having a low effective impurity concentration is the stirring flow 7 as the refining vessel 1
Circulate inside. Therefore, new crystallization of the intermetallic compound 6 and growth of the solidified body 5 are promoted.

【0011】捕捉部材8としては、たとえば図2に示す
ように一部周面を軸方向に切り欠いた底付きの管体が使
用される。周面を切り欠いた部分が邪魔板8aとして働
き、管体部分が容器8bとなる。また、邪魔板8aの背
面に溶接等の手段によって、掛け止め棒8cを固着して
も良い。掛け止め棒8cは、撹拌子3の支持部や精製容
器1の側壁上端等に係止される。撹拌子3の支持部に掛
け止め棒8cを引っ掛けるとき、撹拌子3と同期して捕
捉部材8が昇降する。捕捉部材8を形成する管体として
は、溶融アルミニウムに対して抵抗力のあるステンレス
鋼等の耐熱材料が使用される。捕捉部材8は、邪魔板8
aの内面が撹拌流7に対向する位置関係で精製容器1に
装着される。晶出した金属間化合物6は、比重4以上で
あり、撹拌効果によって沈降速度が大きな粒径に成長し
ている。この金属間化合物6が浮遊している撹拌流7が
邪魔板8aに衝突すると、撹拌流7の流速が低下し、金
属間化合物6が比重差により沈降する。沈降した金属間
化合物6は、邪魔板8aの下方にある容器8bに収容さ
れる。
As the catching member 8, for example, as shown in FIG. 2, a tubular body with a bottom whose peripheral surface is partially cut out in the axial direction is used. The cutout portion of the peripheral surface serves as the baffle plate 8a, and the tubular body portion serves as the container 8b. Further, the latch bar 8c may be fixed to the back surface of the baffle plate 8a by means such as welding. The latch bar 8c is locked to the support portion of the stirring bar 3 and the upper end of the side wall of the purification container 1. When the latch bar 8c is hooked on the support portion of the stirring bar 3, the capturing member 8 moves up and down in synchronization with the stirring bar 3. A heat-resistant material such as stainless steel having resistance to molten aluminum is used for the tube forming the capturing member 8. The trapping member 8 is the baffle plate 8
The inner surface of a is installed in the refining container 1 in a positional relationship in which it faces the stirred flow 7. The crystallized intermetallic compound 6 has a specific gravity of 4 or more, and has grown to a particle size with a large sedimentation rate due to the stirring effect. When the agitated flow 7 in which the intermetallic compound 6 is suspended collides with the baffle plate 8a, the flow velocity of the agitated flow 7 decreases and the intermetallic compound 6 settles due to the difference in specific gravity. The precipitated intermetallic compound 6 is stored in the container 8b below the baffle plate 8a.

【0012】容器8bに繊維状の濾過材を充填しておく
と、沈降してきた金属間化合物6が濾過材で捕捉され、
容器8bから精錬容器1内に再び送り出されることがな
くなる。また、邪魔板8a或いは捕捉部材8全体を繊維
質で形成すると、金属間化合物6が邪魔板8aで捕捉さ
れ、金属間化合物6が除去された液相の撹拌流7が邪魔
板8aを透過し精製容器1内を循環する。捕捉部材8と
して、図3に示すように耐熱材料でできた網篭8dに、
ステンレス鋼の切削屑8eのプレス成形体等を充填した
ものを使用することもできる。この場合にも、撹拌流7
が捕捉部材8を透過するとき、浮遊している金属間化合
物6が切削屑8eで捕捉され、液相のみが精製容器1を
循環する。捕捉部材8は、金属間化合物6を効率よく捕
集する上で、可能な限り凝固体5の表面近傍に下端を接
近させて配置することが好ましい。しかし、あまり接近
させると、成長してくる凝固体5に取り込まれる場合が
ある。そのため、凝固体5の成長に伴って、捕捉部材8
を上昇させることが好ましい。また、定置式の捕捉部材
8では、凝固界面から下端が1〜2cm離れた上方に配
置する。
When the fibrous filter medium is filled in the container 8b, the precipitated intermetallic compound 6 is captured by the filter medium,
It will not be sent out again from the container 8b into the refining container 1. Further, when the baffle plate 8a or the entire trapping member 8 is made of fibrous material, the intermetallic compound 6 is trapped by the baffle plate 8a, and the liquid-phase agitated flow 7 from which the intermetallic compound 6 is removed passes through the baffle plate 8a. It circulates in the purification container 1. As the capturing member 8, as shown in FIG. 3, a net basket 8d made of a heat-resistant material,
It is also possible to use a press-molded body of stainless steel cutting scraps 8e. Also in this case, the stirring flow 7
When passing through the trapping member 8, the floating intermetallic compound 6 is trapped by the cutting chips 8e, and only the liquid phase circulates in the purification container 1. In order to efficiently collect the intermetallic compound 6, the capturing member 8 is preferably arranged with the lower end as close to the surface of the solidified body 5 as possible. However, if they are brought too close to each other, they may be taken into the growing solidified body 5. Therefore, as the solidified body 5 grows, the capturing member 8
Is preferably raised. Further, in the stationary trapping member 8, the lower end is arranged above the solidification interface by 1 to 2 cm.

【0013】[0013]

【作用】このようにして、晶出する金属間化合物6を捕
捉部材8で除去しながら凝固体5を成長させるため、凝
固体5と残湯の分離が効率よく行われる。すなわち、凝
固界面に晶出した金属間化合物6は、比重が4以上で、
撹拌効果によって100μm以上の粒径に成長すること
もある。そのため、撹拌強度を大きくして金属間化合物
6を撹拌流7に乗せて原料溶湯2に浮遊させようとして
も、沈降速度が大きく、凝固体5に取り込まれることが
ある。この点、本発明においては、金属間化合物6が大
きな粒径に成長しない前に、撹拌流7に乗せて凝固界面
から持ち去り、捕捉部材8で捕集している。そのため、
凝固体5に持ち込まれる金属間化合物6が少なくなり、
得られた精製アルミニウムの純度が向上する。また、金
属間化合物6は、比重及び粒径が大きいことから、撹拌
流7によって大きな慣性力が与えられ、精製容器1の側
壁内面まで移動する割合が高い。この側壁内面に捕捉部
材8が設けられているので、金属間化合物8の捕集効率
も良い。しかも、残湯の不純物濃度の上昇が抑制される
ので、残湯も用途に応じたアルミニウム合金用材料とし
て使用できる。
In this way, the solidified body 5 is grown while the crystallizing intermetallic compound 6 is removed by the trapping member 8, so that the solidified body 5 and the residual hot water are efficiently separated. That is, the intermetallic compound 6 crystallized at the solidification interface has a specific gravity of 4 or more,
The particle size may grow to 100 μm or more due to the stirring effect. Therefore, even if the stirring strength is increased and the intermetallic compound 6 is placed on the stirring flow 7 to be suspended in the raw material molten metal 2, the sedimentation speed is high and the solidified body 5 may be taken in. In this respect, in the present invention, before the intermetallic compound 6 does not grow to a large particle size, it is carried on the stirring flow 7 and carried away from the solidification interface, and is collected by the trapping member 8. for that reason,
Less intermetallic compound 6 is brought into the solidified body 5,
The purity of the obtained purified aluminum is improved. Further, since the intermetallic compound 6 has a large specific gravity and a large particle size, a large inertial force is applied by the agitated flow 7 and the intermetallic compound 6 moves to the inner surface of the side wall of the purification container 1 at a high rate. Since the trapping member 8 is provided on the inner surface of the side wall, the trapping efficiency of the intermetallic compound 8 is high. Moreover, since the increase in the impurity concentration of the residual hot water is suppressed, the residual hot water can be used as a material for aluminum alloy depending on the application.

【0014】[0014]

【実施例】【Example】

実施例1:精製容器1として、内径400mm及び高さ
800mmの黒鉛製ルツボを使用した。撹拌子3には、
羽根径200mmの黒鉛製撹拌子を使用した。網篭にス
テンレス鋼切削屑を詰めた捕捉部材8(図3)を撹拌子
3の支持体から吊り下げ、精製容器1の底面から撹拌子
3の下端までの高さを50mmに設定した。このとき、
捕捉部材8の下端は、精製容器1の底面から100mm
の高さに位置した。Si:8重量%,Fe:0.8重量
%,Cu:3重量%及びMn:0.4重量%を含むアル
ミニウムスクラップを溶解した温度640℃の原料溶湯
150kgを精製容器1にチャージした。撹拌子3を羽
根周縁の外周速0.5m/秒で回転させながら、冷却用
空気を3m3 /分の流量で冷却体4に送り込み、原料溶
湯2を精製容器1の底面から冷却した。この冷却によ
り、平均凝固速度50mm/時で凝固体5が精製容器1
の底面から成長した。凝固速度に対応させて撹拌子3及
び捕捉部材8を上昇させ、それぞれの下端から凝固界面
までの距離を一定に保った。
Example 1: As the purification container 1, a graphite crucible having an inner diameter of 400 mm and a height of 800 mm was used. In the stirrer 3,
A graphite stirrer with a blade diameter of 200 mm was used. A trapping member 8 (FIG. 3) in which a net basket was filled with stainless steel cutting chips was suspended from the support of the stirring bar 3, and the height from the bottom surface of the purification container 1 to the lower end of the stirring bar 3 was set to 50 mm. At this time,
The lower end of the capturing member 8 is 100 mm from the bottom surface of the purification container 1.
Located at the height of. 150 kg of a raw material melt at a temperature of 640 ° C. in which aluminum scrap containing 8% by weight of Si, 0.8% by weight of Fe, 3% by weight of Cu and 0.4% by weight of Mn was melted was charged into the refining vessel 1. While rotating the stirrer 3 at the peripheral speed of the peripheral edge of the blade of 0.5 m / sec, cooling air was fed into the cooling body 4 at a flow rate of 3 m 3 / min, and the raw material melt 2 was cooled from the bottom surface of the purification container 1. By this cooling, the solidified body 5 becomes the purification container 1 at an average solidification rate of 50 mm / hour.
Grew from the bottom of the. The stirrer 3 and the trapping member 8 were raised according to the solidification speed, and the distance from the lower end of each to the solidification interface was kept constant.

【0015】装入されたアルミニウム全量の35重量%
が凝固したとき、撹拌子3の回転を中止し、捕捉部材8
を撹拌子3と共に精製容器1から引き上げた。その後、
直ちに精製容器1を傾動し、不純物が濃縮した残湯を排
出した。凝固体5として得られた精製アルミニウムに
は、Si:4.8重量%,Fe:0.34重量%,C
u:1.8重量%及びMn:0.16重量%が含まれて
いるものの、取り込まれた金属間化合物は検出されなか
った。捕捉部材8で、Al−Si−Fe−Mn系を主体
とする2.2kgの金属間化合物6が回収された。精製
容器1を傾動したとき、捕捉部材8に捕集されずに残湯
と共に排出された金属間化合物は、1.5kgであっ
た。比較のため、捕捉部材8を使用しない他は同一の条
件で精製したところ、得られた凝固体5の中央部に、凝
固界面で金属間化合物6がトラップされた形跡が金属間
化合物の凝集体として検出された。また、残湯と共に排
出された金属間化合物は、3.2kgであった。
35% by weight of the total amount of aluminum charged
When the solidification occurs, the rotation of the stirring bar 3 is stopped and the capturing member 8
Was pulled up from the purification container 1 together with the stirrer 3. afterwards,
Immediately, the purification container 1 was tilted, and the residual hot water in which impurities were concentrated was discharged. The purified aluminum obtained as the solidified body 5 contains Si: 4.8 wt%, Fe: 0.34 wt%, C
Although the content of u: 1.8% by weight and Mn: 0.16% by weight was contained, no incorporated intermetallic compound was detected. The trapping member 8 recovered 2.2 kg of the intermetallic compound 6 mainly composed of Al-Si-Fe-Mn system. When the refining vessel 1 was tilted, the amount of the intermetallic compound discharged together with the residual hot water without being captured by the capturing member 8 was 1.5 kg. For comparison, when purified under the same conditions except that the trapping member 8 was not used, the obtained solidified body 5 had a trace of the intermetallic compound 6 being trapped at the solidification interface in the center of the solidified interface. Was detected as. The amount of intermetallic compound discharged together with the residual hot water was 3.2 kg.

【0016】実施例2:内径60mm,容器部高さ60
mm及び邪魔板部高さ400mmの捕捉部材8(図2)
を使用する他は、実施例1と同じ条件でアルミニウム原
料溶湯を精製した。得られた精製アルミニウムの不純物
濃度は、Si:4.9重量%,Fe:0.36重量%,
Cu:2.0重量%及びMn:0.18重量%であっ
た。捕捉部材8で回収された金属間化合物6は2.6k
g,捕捉部材8に捕集されずに残湯と共に排出された金
属間化合物は1.6kgであった。
Example 2: Inner diameter 60 mm, container height 60
mm and baffle plate height 400 mm (Fig. 2)
The molten aluminum raw material was purified under the same conditions as in Example 1 except that The impurity concentration of the obtained purified aluminum was Si: 4.9% by weight, Fe: 0.36% by weight,
Cu: 2.0% by weight and Mn: 0.18% by weight. The intermetallic compound 6 recovered by the capturing member 8 is 2.6 k
The amount of the intermetallic compound that was not collected by the capturing member 8 and was discharged together with the residual hot water was 1.6 kg.

【0017】[0017]

【発明の効果】以上に説明したように、本発明において
は、偏析凝固によりアルミニウム溶湯を精製するとき、
金属間化合物として晶出する不純物を撹拌流に乗せて凝
固界面から持ち去り、浮遊している金属間化合物を捕捉
部材で捕集している。そのため、精製容器を循環する原
料溶湯に不純物が過度に濃縮されることなく、純化され
たアルミニウムが高精製効率で得られる。また、残液も
不純物濃度が減少していることから、用途に応じたアル
ミニウム合金用材料として使用される。このようにし
て、アルミニウムスクラップから目標とする2種類の製
品が効率よく製造される。
As described above, in the present invention, when the molten aluminum is purified by segregation solidification,
Impurities that crystallize out as intermetallic compounds are carried on the stirring flow and carried away from the solidification interface, and the floating intermetallic compounds are collected by the trapping member. Therefore, purified aluminum can be obtained with high purification efficiency without impurities being excessively concentrated in the raw material molten metal circulating in the purification container. Further, since the residual liquid also has a reduced impurity concentration, it is used as a material for aluminum alloy according to the application. In this way, the two types of desired products are efficiently produced from aluminum scrap.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に従って捕捉部材を装着した精製容器
の垂直断面(a)及び水平断面(b)
1 is a vertical section (a) and a horizontal section (b) of a purification vessel fitted with a capture member according to the invention.

【図2】 捕捉部材の斜視図(a)及び断面図(b)FIG. 2 is a perspective view (a) and a sectional view (b) of a capturing member.

【図3】 ステンレス鋼切削屑を詰めた他の捕捉部材[Fig. 3] Another capturing member packed with stainless steel cutting chips

【符号の説明】[Explanation of symbols]

1:精製容器 2:原料溶湯 3:撹拌子 4:
冷却体 5:凝固体 6:金属間化合物 7:撹拌流 8:捕捉部材
8a:邪魔板 8b:容器 8c:掛け止め棒
8d:網篭 8e:ステンレス鋼の切削屑
1: Purification container 2: Raw material melt 3: Stirrer 4:
Cooling body 5: Solidified body 6: Intermetallic compound 7: Stirred flow 8: Capture member
8a: baffle plate 8b: container 8c: hanging bar
8d: mesh basket 8e: cutting scraps of stainless steel

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 偏析凝固によって原料溶湯からα−Al
を晶出させて精製アルミニウムを得る際、前記原料溶湯
に浸漬した撹拌子を回転させ、凝固界面近傍に晶出した
金属間化合物及び不純物濃縮液を撹拌流に乗せて母液に
浮上させ、撹拌流の流動経路の途中に設けた捕捉部材で
前記金属間化合物を捕集することを特徴とするアルミニ
ウムスクラップの精製方法。
1. A raw material melt containing α-Al by segregation solidification
When crystallizing to obtain purified aluminum, the stirrer immersed in the raw material molten metal is rotated, and the intermetallic compound and the concentrated impurity solution crystallized in the vicinity of the solidification interface are floated on the mother liquor by being placed on the stirring flow, and the stirring flow A method for purifying aluminum scrap, characterized in that the intermetallic compound is collected by a trapping member provided in the middle of the flow path.
【請求項2】 不純物の一部が初晶として晶出する組成
をもつ原料溶湯を精製容器に収容し、該精製容器の底部
に配置された冷却体によって前記原料溶湯が冷却され、
精製アルミニウムが凝固体として前記精製容器の底面に
成長する請求項1記載の精製方法。
2. A raw material melt having a composition in which a part of impurities are crystallized as primary crystals is contained in a refining vessel, and the raw material melt is cooled by a cooling body arranged at the bottom of the refining vessel.
The purification method according to claim 1, wherein purified aluminum grows as a solidified body on the bottom surface of the purification container.
【請求項3】 金属間化合物の析出状態に応じて撹拌子
の回転速度を制御する請求項1又は2記載の精製方法。
3. The purification method according to claim 1, wherein the rotation speed of the stirrer is controlled according to the precipitation state of the intermetallic compound.
【請求項4】 外周速1m/秒以上の回転速度で撹拌子
を一方向に回転する請求項1〜3の何れかに記載の精製
方法。
4. The purification method according to claim 1, wherein the stirring bar is rotated in one direction at a peripheral speed of 1 m / sec or more.
【請求項5】 原料溶湯を収容する精製容器と、前記原
料溶湯に浸漬される撹拌子と、前記精製容器の底部に設
けられた冷却体と、前記撹拌子の回転によって生じた撹
拌流の途中に設けられた捕捉部材とを備え、前記撹拌流
に乗って凝固界面から浮上した金属間化合物が前記捕捉
部材に補修されることを特徴とするアルミニウムスクラ
ップの精製装置。
5. A refining container for containing the raw material melt, a stirrer immersed in the raw material melt, a cooling body provided at the bottom of the refining container, and a stirring flow generated by rotation of the stirrer. And a trapping member provided on the trapping member, the intermetallic compound floating on the stirring flow and floating from the solidification interface is repaired by the trapping member.
【請求項6】 請求項5記載の捕捉部材は、邪魔板と該
邪魔板の下端に設けた容器とを備え、前記邪魔板に衝突
した撹拌流から金属間化合物が比重差で沈降して前記容
器に収容される精製装置。
6. The capturing member according to claim 5, further comprising a baffle plate and a container provided at a lower end of the baffle plate, wherein the intermetallic compound precipitates from a stirring flow colliding with the baffle plate due to a difference in specific gravity. Purification device housed in a container.
【請求項7】 請求項6記載の容器に繊維状濾過材が充
填されている精製装置。
7. A refining apparatus in which the container according to claim 6 is filled with a fibrous filter material.
【請求項8】 請求項5記載の捕捉部材は、治具で撹拌
子の昇降機構に取り付けられた繊維状濾過材である精製
装置。
8. A purifying device, wherein the capturing member according to claim 5 is a fibrous filter material attached to a lifting mechanism of a stirring bar by a jig.
JP20408693A 1993-08-18 1993-08-18 Method and device for refining aliminum scrap Pending JPH0754072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20408693A JPH0754072A (en) 1993-08-18 1993-08-18 Method and device for refining aliminum scrap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20408693A JPH0754072A (en) 1993-08-18 1993-08-18 Method and device for refining aliminum scrap

Publications (1)

Publication Number Publication Date
JPH0754072A true JPH0754072A (en) 1995-02-28

Family

ID=16484559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20408693A Pending JPH0754072A (en) 1993-08-18 1993-08-18 Method and device for refining aliminum scrap

Country Status (1)

Country Link
JP (1) JPH0754072A (en)

Similar Documents

Publication Publication Date Title
EP0027052B1 (en) Process for purifying aluminum
EP2198077B1 (en) Method for processing silicon powder to obtain silicon crystals
JP3329013B2 (en) Continuous refining method and apparatus for Al-Si aluminum scrap
KR850001739B1 (en) Process for purifying metals by segretation
EP0375308A1 (en) Process and apparatus for producing high purity aluminum
JP5175280B2 (en) Method and apparatus for separating and purifying purified metal from a metal mother liquor such as aluminum
US3374089A (en) Centrifugal separation
JP3237330B2 (en) Purification method of aluminum alloy scrap
WO2008000341A1 (en) Crystallisation method for the purification of a molten metal, in particular recycled aluminium
JPH0754072A (en) Method and device for refining aliminum scrap
JP5173296B2 (en) Continuous purification system for high-purity aluminum
JP3531450B2 (en) Aluminum purification method
JP5634704B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JPH05295462A (en) Method and apparatus for purifying aluminum
JP6751604B2 (en) Material purification method and equipment, continuous purification system for high-purity substances
JPH0873959A (en) Method for refining aluminum and device therefor
JPH05295461A (en) Method and apparatus for purifying aluminum
JP2009013448A (en) Continuous refining system for high-purity aluminum
US3477844A (en) Aluminum reduction of beryllium halide
JP3784331B2 (en) Method for purifying gold-containing gallium and method for collecting gold from gallium containing gold
JPH0754062A (en) Method for refining aluminum scrap
JPH0754065A (en) Refining method and recycling method for aluminum scrap
RU2118392C1 (en) Method of preparing silumin
JPH05295463A (en) Method and apparatus for purifying aluminum
JPH05295460A (en) Method and apparatus for purifying aluminum