JPH0753867B2 - Liquid crystal composition - Google Patents

Liquid crystal composition

Info

Publication number
JPH0753867B2
JPH0753867B2 JP19671986A JP19671986A JPH0753867B2 JP H0753867 B2 JPH0753867 B2 JP H0753867B2 JP 19671986 A JP19671986 A JP 19671986A JP 19671986 A JP19671986 A JP 19671986A JP H0753867 B2 JPH0753867 B2 JP H0753867B2
Authority
JP
Japan
Prior art keywords
liquid crystal
general formula
optically active
carbon atoms
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19671986A
Other languages
Japanese (ja)
Other versions
JPS6354492A (en
Inventor
宏之 北山
一春 片桐
明 坪山
健司 新庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP19671986A priority Critical patent/JPH0753867B2/en
Publication of JPS6354492A publication Critical patent/JPS6354492A/en
Publication of JPH0753867B2 publication Critical patent/JPH0753867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal Substances (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は液晶表示素子や液晶−光シャッター等に利用さ
れる液晶素子に用いる液晶組成物に関し、更に詳しく
は、電界に対する応答特性が改善された新規な液晶組成
物に関するものである。
TECHNICAL FIELD The present invention relates to a liquid crystal composition used for a liquid crystal display device, a liquid crystal device used for a liquid crystal-optical shutter, or the like, and more specifically, a novel liquid crystal composition having improved response characteristics to an electric field. It is about things.

背景技術 従来より、液晶は電気光学素子として種々の分野で応用
されている。現在実用化されている液晶素子はほとんど
が、例えばM.SchadtとW.Helfrich著“Applied Physics
Letters"Vo.18、No.4(1971.2.15)、P.127〜128の“Vo
ltage−Dpendent Optical Activity of a Twiste
d Nematic Liquid Crystal“に示されたTN(twisted
nematic)型の液晶を用いたものである。
BACKGROUND ART Liquid crystals have been conventionally applied as electro-optical elements in various fields. Most of the liquid crystal devices currently in practical use are, for example, “Applied Physics” by M. Schadt and W. Helfrich.
Letters "Vo.18, No.4 (1971.2.15), P.127-128" Vo "
ltage-Dpendent Optical Activity of a Twiste
d Nematic Liquid Crystal “TN (twisted
nematic) type liquid crystal is used.

これらは、液晶の誘電的配列効果に基づいており、液晶
分子の誘電異方性のために平均分子軸方向が、加えられ
た電場により特定の方向を向く効果を利用している。こ
れらの素子の光学的な応答速度の限界はミリ秒であると
いわれ、多くの応用のためには遅すぎる。一方、大型平
面ディスプレイへの応用では、価格、生産性などを考え
合せると単純マトリクス方式による駆動が最も有力であ
る。単純マトリクス方式においては、走査電極群と信号
電極群をマトリクス状に構成した電極構成が採用され、
その駆動のあめには、走査電極群に順次周期的にアドレ
ス信号を選択印加し、信号電極群には所定の情報信号を
アドレス信号と同期されて並列的に選択印加する時分割
駆動方式が採用される。
These are based on the dielectric alignment effect of liquid crystals, and utilize the effect that the average molecular axis direction is directed in a specific direction by an applied electric field due to the dielectric anisotropy of liquid crystal molecules. The optical response speed limit of these devices is said to be milliseconds, which is too slow for many applications. On the other hand, in the application to a large flat panel display, the drive by the simple matrix method is the most effective in consideration of price and productivity. In the simple matrix system, an electrode configuration in which the scanning electrode group and the signal electrode group are configured in a matrix is adopted,
As a driving scheme, a time-division drive method is adopted in which an address signal is sequentially and selectively applied to the scanning electrode group and a predetermined information signal is selectively applied to the signal electrode group in parallel in synchronization with the address signal. To be done.

しかしこのような駆動方式の素子に前述したTN型の液晶
を採用すると走査電極が選択され、信号電極が選択され
ない領域、或いは走査電極が選択されず、信号電極が選
択される領域(所謂“半選択点”)にも有限に電界がか
かってしまう。選択点にかかる電圧と、半選択点にかか
る電圧の差が充分に大きく、液晶分子を電界に垂直に配
列させるのに要する電圧閾値がこの中間の電圧値に設定
されるならば、表示素子は正常に動作するわけである
が、走査線数(N)を増やして行なった場合、画面全体
(1フレーム)を走査する間に一つの選択点に有効な電
界がかかっている時間(duty比)が1/Nの割合で減少し
てしまう。このために、くり返し走査を行った場合の選
択点と非選択点にかかる実効値としての電圧差は、走査
線数が増えれば増える程小さくなり、結果的には画像コ
ントラストの低下やクロストークが避け難い欠点となっ
ている。このような現象は、双安定性を有さない液晶
(電極面に対し、液晶分子が水平に配向しているのが安
定状態であり、電界が有効に印加されている間のみ垂直
に配向する)を時間的蓄積効果を利用して駆動する(即
ち、繰り返し走査する)ときに生ずる本質的には避け難
い問題点である。この点を改良するために、電圧平均化
法、2周波駆動法や、多重マトリクス法等が既に提案さ
れているが、いずれの方法でも不充分であり、表示素子
の大画面化や高密度化は、走査線数が充分に増やせない
ことによって頭打ちになっているのが現状である。
However, when the above-mentioned TN type liquid crystal is adopted for the element of such a driving system, the scan electrode is selected and the signal electrode is not selected, or the scan electrode is not selected and the signal electrode is selected (so-called “half-area”). A finite electric field is also applied to the selection point "). If the difference between the voltage applied to the selection point and the voltage applied to the semi-selection point is sufficiently large and the voltage threshold value required to align the liquid crystal molecules perpendicularly to the electric field is set to the intermediate voltage value, the display element is Although it operates normally, when the number of scanning lines (N) is increased, the time (duty ratio) that an effective electric field is applied to one selection point while scanning the entire screen (1 frame) Will decrease at a rate of 1 / N. For this reason, the voltage difference as the effective value applied to the selected point and the non-selected point in the case of performing repeated scanning becomes smaller as the number of scanning lines increases, and as a result, lowering of image contrast and crosstalk occur. It is an unavoidable drawback. Such a phenomenon is caused by a liquid crystal having no bistability (a stable state in which liquid crystal molecules are horizontally aligned with respect to an electrode surface, and vertically aligned only when an electric field is effectively applied. Is an inherently unavoidable problem that occurs when (1) is driven by utilizing the temporal accumulation effect (that is, repeated scanning). In order to improve this point, a voltage averaging method, a two-frequency driving method, a multiple matrix method, etc. have already been proposed, but none of them is sufficient, and the display element has a large screen and high density. The current situation is that the number of scanning lines has reached a ceiling because the number of scanning lines cannot be increased sufficiently.

このような従来型の液晶素子の欠点を改善するものとし
て、双安定性を有する液晶素子の使用がClarkおよびLag
erwallにより提案されている(特開昭56−107216号公
報、米国特許第4367924号明細書等)。双安定性液晶と
しては、一般に、カイラルスメクティックC相(Sm
C)又はH相(SmH)を有する強誘電性液晶が用いら
れる。この強誘電性液晶は電界に対して第1の光学的安
定状態と第2の光学的安定状態からなる双安定状態を有
し、従って前述のTN型の液晶で用いられた光学変調素子
とは異なり、例えば一方の電界ベクトルに対して第1の
光学的安定状態に液晶が配向し、他方の電界ベクトルに
対しては第2の光学的安定状態に液晶が配向される。ま
たこの型の液晶は、加えられる電界に応答して、上記2
つの安定状態のいずれかを取り、且つ電界の印加のない
ときはその状態を維持する性質(双安定性)を有する。
As a solution to these drawbacks of conventional liquid crystal devices, the use of bistable liquid crystal devices is explained by Clark and Lag.
proposed by Erwall (Japanese Patent Laid-Open No. 56-107216, US Pat. No. 4,367,924, etc.). As a bistable liquid crystal, a chiral smectic C phase (Sm
Ferroelectric liquid crystal having C * ) or H phase (SmH * ) is used. This ferroelectric liquid crystal has a bistable state consisting of a first optical stable state and a second optical stable state with respect to an electric field. Therefore, it is different from the optical modulation element used in the above-mentioned TN type liquid crystal. Differently, for example, the liquid crystal is aligned in the first optically stable state with respect to one electric field vector, and is aligned with the second optically stable state in the other electric field vector. This type of liquid crystal also responds to the applied electric field by
It has the property (bistability) of taking one of the two stable states and maintaining that state when no electric field is applied.

以上のような双安定性を有する特徴に加えて、強誘電液
晶は高速応答性であるという優れた特徴を持つ。それは
強誘電液晶の持つ自発分極と印加電場が直接作用して配
向状態の転移を誘起するためであり、誘電率異方性と電
場の作用による応答速度より3〜4オーダー速い。
In addition to the above-mentioned characteristic of having bistability, the ferroelectric liquid crystal has an excellent characteristic of high-speed response. This is because the spontaneous polarization of the ferroelectric liquid crystal and the applied electric field directly act to induce the transition of the alignment state, which is 3 to 4 orders faster than the response speed due to the action of the dielectric anisotropy and the electric field.

このように強誘電液晶はきわめて優れた特性を潜在的に
有しており、このような性質を利用することにより、上
述した従来のTN型素子の問題点の多くに対して、かなり
本質的な改善が得られる。特に、高速光学光シャッター
や、高密度、大画面ディスプレイへの応用が期待され
る。このため強誘電性を持つ液晶材料に関しては広く研
究がなされているが、現在までに開発された強誘電性液
晶材料は、低温作動特性、高速応答性等を含めて液晶素
子に用いるに十分な特性を備えているとは云い難い。
As described above, the ferroelectric liquid crystal potentially has extremely excellent characteristics, and by utilizing such characteristics, it is considerably essential to many of the problems of the conventional TN type element described above. You get an improvement. In particular, it is expected to be applied to high-speed optical optical shutters and high-density, large-screen displays. For this reason, although extensive research has been conducted on liquid crystal materials having ferroelectricity, the ferroelectric liquid crystal materials developed to date are sufficient for use in liquid crystal elements, including low-temperature operating characteristics and high-speed response. It is hard to say that it has characteristics.

発明の目的 本発明の目的は、特定の液晶化合物を混合することによ
って、低い温度領域でスメクチックC相を呈する液晶
組成物を提供し、同時に単独の液晶化合物では得られな
い種々の表示特性を有する液晶組成物ならびに該組成物
を使用する液晶素子を提供することである。
Object of the Invention An object of the present invention is to provide a liquid crystal composition exhibiting a smectic C * phase in a low temperature region by mixing a specific liquid crystal compound, and at the same time, to obtain various display characteristics which cannot be obtained by a single liquid crystal compound. A liquid crystal composition having the same and a liquid crystal device using the composition.

発明の概要 すなわち本発明は、下記一般式(I) (上記一般式中、Rは炭素数1〜16のアルキル基を示
す。m=1または2で、*は不斉炭素原子を示す。また (但しR1は炭素数4〜16のアルキル基を示す。n=1ま
たは2、a=0または1である)である) で表わされる光学活性な液晶性の乳酸誘導体の少なくと
も1種と、 下記一般式(II) (上記一般式中、pは4〜16であり、qは1または2で
あり、rは1または2であり、zは0またはSを示す。
またRは炭素数5〜12の光学活性アルキル基を示
す。) で表わされる光学活性な液晶化合物の少なくとも1種
と、を含有することを特徴とする液晶組成物、ならびに
該液晶組成物を一対の電極基板間に配置してなる液晶素
子を提供するものである。
SUMMARY OF THE INVENTION That is, the present invention provides the following general formula (I) (In the above general formula, R represents an alkyl group having 1 to 16 carbon atoms. M = 1 or 2, and * represents an asymmetric carbon atom. (Wherein R 1 represents an alkyl group having 4 to 16 carbon atoms, n = 1 or 2, and a = 0 or 1)), and at least one kind of optically active liquid crystalline lactic acid derivative The following general formula (II) (In the above general formula, p is 4 to 16, q is 1 or 2, r is 1 or 2, and z is 0 or S.
R * represents an optically active alkyl group having 5 to 12 carbon atoms. And at least one kind of an optically active liquid crystal compound represented by the formula (1), and a liquid crystal element comprising the liquid crystal composition arranged between a pair of electrode substrates. is there.

本発明者等の研究によれば、上記(I)式と(II)式の
液晶化合物を混合することにより、それぞれの液晶化合
物を単独で用いる場合に比べ、スメクチックC相を与
える温度領域が、特に低温側において、広がり、且つ応
答速度が向上し、表示特性が改善されることが見出され
たのである。
According to the research conducted by the present inventors, by mixing the liquid crystal compounds of the above formulas (I) and (II), the temperature range giving a smectic C * phase can be improved as compared with the case where each liquid crystal compound is used alone. It has been found that, particularly on the low temperature side, the spread and the response speed are improved, and the display characteristics are improved.

以下、本発明を更に詳細に説明する。以下の記載におい
て量比を表わす「%」および「部」は、いずれも重量基
準とする。
Hereinafter, the present invention will be described in more detail. In the following description, “%” and “part” representing the quantitative ratio are based on weight.

発明の具体的説明 前記(I)式に示される液晶化合物は、下記一般式
(A) (上記一般式中、Rは炭素数1〜16の直鎖状、分岐状も
しくは環状の飽和または不飽和の炭化水素基を示す。C
は不斉炭素原子を示す。XはOH基、ハロゲン、ベンジ
ルオキシ基、フェノキシ基、トルエンスルホン酸基、ア
セチルオキシ基、トリフルオロアセチルオキシ基から選
択される着脱可能な置換基を示す) で表わされる光学活性物質を経由して形成されることが
好ましい。例えば上記式(A)でXがOH基である光学活
性物質を経由して、以下の反応により合成することがで
きる。
DETAILED DESCRIPTION OF THE INVENTION The liquid crystal compound represented by the formula (I) has the following general formula (A). (In the above general formula, R represents a linear, branched or cyclic saturated or unsaturated hydrocarbon group having 1 to 16 carbon atoms. C
* Indicates an asymmetric carbon atom. X represents a removable substituent selected from an OH group, a halogen, a benzyloxy group, a phenoxy group, a toluenesulfonic acid group, an acetyloxy group, and a trifluoroacetyloxy group) via an optically active substance represented by It is preferably formed. For example, it can be synthesized by the following reaction via an optically active substance in which X is an OH group in the above formula (A).

(ここでR1、R、m、nは、前記で定義した通りであ
る。) また、一般式(II)で表わされる液晶化合物は、下記一
般式(B) (上記一般式中、Rは炭素数5〜12の光学活性アルキ
ル基を示す。Yは、OH基、ハロゲン(Br、Cl、I)、ベ
ンジルオキシ基、フェノキシ基、トルエンスルホン酸
基、アセチルオキシ基、トリフルオロアセチルオキシ基
から選択される着脱可能な置換基を示す) で表わされる光学活性物質を経由して形成されることが
好ましい。例えば上記式(B)で、YがOH基である光学
活性物質を経由して、以下の反応により合成することが
できる。
(Here, R 1 , R, m, and n are as defined above.) The liquid crystal compound represented by the general formula (II) has the following general formula (B). (In the above general formula, R * represents an optically active alkyl group having 5 to 12 carbon atoms. Y represents an OH group, halogen (Br, Cl, I), benzyloxy group, phenoxy group, toluenesulfonic acid group, acetyl group. It represents a detachable substituent selected from an oxy group and a trifluoroacetyloxy group) and is preferably formed via an optically active substance represented by For example, in the above formula (B), it can be synthesized by the following reaction via an optically active substance in which Y is an OH group.

(ここで、p、q、rは前記と同義である。) 一般式(I)および(II)で表わされた具体的な液晶化
合物例の構造式と液晶の相転移温度を下表1および表2
に示す。
(Here, p, q, and r have the same meanings as above.) The structural formulas of the specific liquid crystal compound examples represented by the general formulas (I) and (II) and the phase transition temperatures of the liquid crystals are shown in Table 1 below. And Table 2
Shown in.

液晶化合物は一般式(I)および(II)で表わされるも
のであり、ここにあげたもののみに本発明が限られるわ
けではない。
The liquid crystal compound is represented by the general formulas (I) and (II), and the present invention is not limited to the compounds listed here.

表中、相転移温度の欄における記号は、それぞれ以下の
相を示す。
In the table, the symbols in the column of phase transition temperature indicate the following phases, respectively.

Cryst.:結晶相、SmA:スメクチックA相、 SmC:カイラルスメクチックC相、 N:ネマチック相、Ch:コレステリック相、 Iso:等方相、Sm1、Sm2:SmA、SmC以外のスメクチック
相(末同定)。
Cryst .: crystalline phase, SmA: smectic A phase, SmC * : chiral smectic C phase, N: nematic phase, Ch: cholesteric phase, Iso: isotropic phase, Sm1, Sm2: SmA, smectic phase other than SmC * (end) Identification).

本発明の液晶組成物は、上記式(I)の液晶化合物の少
なくとも1種1〜99%と、上記式(II)の液晶化合物の
少なくとも99〜1%を混合することにより形成すること
が好ましい。
The liquid crystal composition of the present invention is preferably formed by mixing at least one 1 to 99% of the liquid crystal compound of the above formula (I) and at least 99 to 1% of the above liquid crystal compound of the formula (II). .

また本発明の液晶素子は、上記式(I)および上記式
(II)の液晶化合物のほか、下式(1)〜(13)で示さ
れるような強誘電性液晶と組合わせると、SmCを低温
度化し、温度範囲を拡大することが可能となる。
In addition to the liquid crystal compounds of the above formulas (I) and (II), the liquid crystal device of the present invention is combined with a ferroelectric liquid crystal represented by the following formulas (1) to (13) to obtain SmC *. It is possible to lower the temperature and expand the temperature range.

このような場合においては、上記式(I)の液晶化合物
と上記式(II)の液晶化合物の合計量を、得られる液晶
組成物の1〜99%、特に5〜99%となる割合で使用する
ことが好ましい。
In such a case, the total amount of the liquid crystal compound of the above formula (I) and the liquid crystal compound of the above formula (II) is used in a proportion of 1 to 99%, particularly 5 to 99% of the obtained liquid crystal composition. Preferably.

また下式1)〜5)で示されるようなそれ自体はカイラ
ルでないスメクチック液晶に配合することにより強誘電
性液晶として使用可能な組成物が得られる。
Further, a composition that can be used as a ferroelectric liquid crystal can be obtained by blending with a smectic liquid crystal which is not itself chiral as represented by the following formulas 1) to 5).

この場合、一般式(I)および(II)で示される本発明
の液晶性化合物を得られる液晶組成物の1〜99重量%、
特に5〜95重量%で使用することが好ましい。
In this case, 1 to 99% by weight of the liquid crystal composition that can obtain the liquid crystal compound of the present invention represented by the general formulas (I) and (II),
It is particularly preferable to use 5 to 95% by weight.

ここで、記号は、それぞれ以下の相を示す。 Here, the symbols indicate the following phases, respectively.

Cryst.:結晶相、SmA:スメクチックA相、 SmB:スメクチックB相、SmC:スメクチックC相、 N:ネマチック相、Iso.:等方相。Cryst .: crystalline phase, SmA: smectic A phase, SmB: smectic B phase, SmC: smectic C phase, N: nematic phase, Iso .: isotropic phase.

また本発明の液晶素子は、上記のようにして得られた本
発明の液晶組成物を一対の電極基板間に配置することに
より得られる。例えば、単純マトリクス駆動の液晶素子
を構成するためには、一方の基板上に走査電極群を、他
方の基板上に信号電極群を形成すればよい。
Further, the liquid crystal element of the present invention is obtained by disposing the liquid crystal composition of the present invention obtained as described above between a pair of electrode substrates. For example, in order to form a liquid crystal element of simple matrix drive, a scan electrode group may be formed on one substrate and a signal electrode group may be formed on the other substrate.

以下、実施例により、本発明を更に具体的に説明する。Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1 液晶化合物の代表例として、前記表1に示した化合物の
うち液晶化合物5と液晶化合物9とを混合した。得られ
た液晶組成物の相転移温度(昇温過程)の変化を相図を
第1図に示す。
Example 1 As a representative example of the liquid crystal compounds, the liquid crystal compounds 5 and 9 among the compounds shown in Table 1 were mixed. A phase diagram showing changes in the phase transition temperature (temperature rising process) of the obtained liquid crystal composition is shown in FIG.

第1図より明らかな通り、液晶化合物5と9を1:1の比
率で混合すると、SmCの温度範囲が大きく広がり、SmC
を安定に保っていることがわかる。また、この混合比
での自発分極は、3.2nC/cm2125℃であった。
As is clear from FIG. 1, when the liquid crystal compounds 5 and 9 are mixed at a ratio of 1: 1, the temperature range of SmC * is greatly expanded and SmC * is increased.
You can see that * is kept stable. The spontaneous polarization at this mixing ratio was 3.2 nC / cm 2 125 ° C.

なお、自発分極は、K.ミヤサト外「三角波による強誘電
性液晶の自発分極の直接測定法」(日本応用物理学会誌
22、10号、L(661)1983、(“Direct Method with Tr
iangular Waves for Measuring Spontaneous Polarizat
ion in Ferroelectric Liquid Crystal",as describ
ed by K.Miyasato et al.(Jap.J.Appl.Phys.22,No.10,
L661(1983)))により測定した。
The spontaneous polarization is described by K. Miyasato et al. “Direct measurement method of spontaneous polarization of ferroelectric liquid crystal by triangular wave” (Journal of Japan Society of Applied Physics).
22 , No. 10, L (661) 1983, (“Direct Method with Tr
iangular Waves for Measuring Spontaneous Polarizat
ion in Ferroelectric Liquid Crystal ", as describ
ed by K. Miyasato et al. (Jap.J.Appl.Phys.22, No.10,
L661 (1983))).

上記液晶組成物(1:1混合物)について応答速度を測定
した。すなわち電極を覆うポリイミド被膜にラビング処
理を施した一対の電極基板間に上記液晶組成を挾持し、
液晶層厚を2μmとして、ピーク・トウ・ピーク電圧と
して10Vの電圧印加により直交ニコル下での光学的な応
答を検知して応答速度を測定した。
The response speed of the above liquid crystal composition (1: 1 mixture) was measured. That is, the liquid crystal composition is sandwiched between a pair of electrode substrates that have been subjected to a rubbing treatment on a polyimide coating covering the electrodes,
With a liquid crystal layer thickness of 2 μm, a voltage of 10 V was applied as a peak-to-peak voltage, and an optical response under a crossed Nicols was detected to measure the response speed.

その結果を下表3に示す。The results are shown in Table 3 below.

以上からわかるように単体の液晶化合物より本発明に従
う混合液晶組成物(5+9(1:1))の方が低温におい
ても応答が早く応答速度が改善されている。
As can be seen from the above, the mixed liquid crystal composition (5 + 9 (1: 1)) according to the present invention has a faster response and a better response speed than a single liquid crystal compound even at a low temperature.

実施例2 液晶化合物3と液晶化合物9を、75:25の割合で混合し
て液晶組成物を得た。この液晶組成物は、降温過程で5
〜45℃でSmC相を示していた。この組成物を用い実施
例1と同様に素子を作成し、全く同じ条件で応答速度を
30℃の温度において測定したところ、350μsecと単体の
液晶化合物を用いる場合に比べて、特性が改善されてい
た。(なお液晶化合物3の単体の70℃での応答速度は40
0μsecである。) 実施例3 前記表1に記載の液晶化合物5と前記液晶化合物10を、
70:30の割合で混合して、液晶組成物を得た。該液晶組
成物は降温過程において、−2℃〜78℃でSmC相を有
していた。
Example 2 Liquid crystal compound 3 and liquid crystal compound 9 were mixed at a ratio of 75:25 to obtain a liquid crystal composition. This liquid crystal composition has a temperature drop of 5
It showed a SmC * phase at ~ 45 ° C. Using this composition, an element was prepared in the same manner as in Example 1, and the response speed was changed under exactly the same conditions.
When measured at a temperature of 30 ° C., the characteristic was improved to 350 μsec as compared with the case where a single liquid crystal compound was used. (Note that the response speed of liquid crystal compound 3 alone at 70 ° C is 40
It is 0 μsec. Example 3 The liquid crystal compound 5 and the liquid crystal compound 10 shown in Table 1 were
A liquid crystal composition was obtained by mixing at a ratio of 70:30. The liquid crystal composition had a SmC * phase at −2 ° C. to 78 ° C. in the temperature decreasing process.

この液晶組成物を用いて実施例1と同様に素子を作成
し、全く同じ条件で応答速度30℃において測定したとこ
ろ、300μsecであり応答速度が改善された。(なお、液
晶化合物10の単独の45℃での応答速度は1800μsecであ
った。) 発明の効果 以上の実施例からも分るとうり、本発明に従い一般式
(I)と一般式(II)で表わされる液晶化合物を混合す
ることにより、それぞれの単独の液晶化合物に比べて、
低温側に広がったスメクティックC相と、改善された応
答速度などの単独の液晶化合物にはない優れた特性を持
つ液晶組成物が得られる。
A device was prepared using this liquid crystal composition in the same manner as in Example 1, and the measurement was carried out under the same conditions at a response speed of 30 ° C., and it was 300 μsec, and the response speed was improved. (Note that the response speed of the liquid crystal compound 10 alone at 45 ° C. was 1800 μsec.) Effects of the Invention As can be seen from the above examples, according to the present invention, the general formula (I) and the general formula (II) were obtained. By mixing the liquid crystal compounds represented by, as compared with each single liquid crystal compound,
It is possible to obtain a liquid crystal composition having excellent properties such as a smectic C phase spreading to the low temperature side and an improved response speed which are not found in a single liquid crystal compound.

【図面の簡単な説明】[Brief description of drawings]

図面は、実施例1による液晶化合物5と液晶化合物9の
混合による相転移温度の組成による変化を示す相図であ
る。
The drawing is a phase diagram showing changes in composition of the phase transition temperature due to mixing of the liquid crystal compound 5 and the liquid crystal compound 9 according to Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新庄 健司 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (56)参考文献 特開 昭62−123141(JP,A) 特開 昭62−281854(JP,A) 特開 昭62−205056(JP,A) ─────────────────────────────────────────────────── ─── Continued Front Page (72) Kenji Shinjo Kenji Shinjo 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (56) References JP-A-62-123141 (JP, A) JP-A-62 -281854 (JP, A) JP 62-205056 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一般式(I) (上記一般式中、Rは炭素数1〜16のアルキル基を示
す。m=1または2で、*は不斉炭素原子を示す。また (但しR1は炭素数4〜16のアルキル基を示す。n=1ま
たは2、a=0または1である)である) で表わされる光学活性な液晶性の乳酸誘導体の少なくと
も1種と、 下記一般式(II) (上記一般式中、pは4〜16であり、qは1または2で
あり、rは1または2であり、zは0またはSを示す。
またRは炭素数5〜12の光学活性アルキル基を示
す。) で表わされる光学活性な液晶化合物の少なくとも1種と
を含有することを特徴とする液晶組成物。
1. A general formula (I) (In the above general formula, R represents an alkyl group having 1 to 16 carbon atoms. M = 1 or 2, and * represents an asymmetric carbon atom. (Wherein R 1 represents an alkyl group having 4 to 16 carbon atoms, n = 1 or 2, and a = 0 or 1)), and at least one kind of optically active liquid crystalline lactic acid derivative The following general formula (II) (In the above general formula, p is 4 to 16, q is 1 or 2, r is 1 or 2, and z is 0 or S.
R * represents an optically active alkyl group having 5 to 12 carbon atoms. ) A liquid crystal composition containing at least one kind of an optically active liquid crystal compound represented by
【請求項2】一般式(I) (上記一般式中、Rは炭素数1〜16のアルキル基を示
す。m=1または2で、*は不斉炭素原子を示す。また (但しR1は炭素数4〜16のアルキル基を示す。n=1ま
たは2、a=0または1である)である) で表わされる光学活性な液晶性の乳酸誘導体と下記一般
式(II) (上記一般式中、pは4〜16であり、qは1または2で
あり、rは1または2であり、zは0またはSを示す。
またRは炭素数5〜12の光学活性アルキル基を示
す。) で表わされる光学活性な液晶化合物の少なくとも1種と
を含有する液晶組成物を、一対の電極基板間に配置して
なることを特徴とする液晶素子。
2. General formula (I) (In the above general formula, R represents an alkyl group having 1 to 16 carbon atoms. M = 1 or 2, and * represents an asymmetric carbon atom. (Wherein R 1 represents an alkyl group having 4 to 16 carbon atoms, n = 1 or 2, a = 0 or 1) and an optically active liquid crystalline lactic acid derivative represented by the following general formula (II ) (In the above general formula, p is 4 to 16, q is 1 or 2, r is 1 or 2, and z is 0 or S.
R * represents an optically active alkyl group having 5 to 12 carbon atoms. ) A liquid crystal device comprising a liquid crystal composition containing at least one kind of an optically active liquid crystal compound represented by the formula (1), disposed between a pair of electrode substrates.
JP19671986A 1986-08-22 1986-08-22 Liquid crystal composition Expired - Fee Related JPH0753867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19671986A JPH0753867B2 (en) 1986-08-22 1986-08-22 Liquid crystal composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19671986A JPH0753867B2 (en) 1986-08-22 1986-08-22 Liquid crystal composition

Publications (2)

Publication Number Publication Date
JPS6354492A JPS6354492A (en) 1988-03-08
JPH0753867B2 true JPH0753867B2 (en) 1995-06-07

Family

ID=16362457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19671986A Expired - Fee Related JPH0753867B2 (en) 1986-08-22 1986-08-22 Liquid crystal composition

Country Status (1)

Country Link
JP (1) JPH0753867B2 (en)

Also Published As

Publication number Publication date
JPS6354492A (en) 1988-03-08

Similar Documents

Publication Publication Date Title
US5417883A (en) Process for controlling layer spacing in mixtures of smectic liquid crystal compounds
US5316694A (en) Antiferroelectric liquid crystal composition
JPH0699392B2 (en) Ferroelectric pyridine compound and liquid crystal composition
JPH02227A (en) Optically active liquid crystal compound and liquid crystal composition containing the same compound
JPH0759566B2 (en) Fluoroalkane derivative and liquid crystal composition containing the same
US4959173A (en) Optically active ester compound
JPH0753867B2 (en) Liquid crystal composition
JP4731014B2 (en) Monostable ferroelectric active matrix display
US4831143A (en) Pyrimidine compound
JPH0533944B2 (en)
JPH01242543A (en) Liquid crystal compound and liquid crystal composition and element containing said compound
KR980010491A (en) Optically active compound, Liquid crystal composition containing this optically active compound, And liquid crystal display element
JP3185967B2 (en) Antiferroelectric liquid crystal composition
US4981967A (en) Pyrimidine compounds and their use as liquid crystals
EP0216530A1 (en) Liquid crystal carbonatobenzoic acid derivative and composition
JPH07100791B2 (en) Liquid crystal composition
JPH0778042B2 (en) Pyrimidine compound
JP2812398B2 (en) Novel ether compound and liquid crystal composition containing the same
JP2537470B2 (en) Liquid crystal device using liquid crystal composition containing fluoroalkane derivative
JP2698459B2 (en) Novel ether compound and liquid crystal composition containing the same
JPH01207280A (en) Liquid crystal-formable compound, liquid crystal composition containing said compound and liquid crystal element using said compound
JP2764596B2 (en) Chlorine-containing optically active biphenyl compounds
JP2601291B2 (en) Phenylpyrazine derivative and liquid crystal composition containing the same
JPH06107584A (en) Optically active compound, its production and liquid crystal composition containing the same and liquid crystal element
JPH0466276B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees