JPH075370A - Multi-surface simultaneous measurement microscope device - Google Patents

Multi-surface simultaneous measurement microscope device

Info

Publication number
JPH075370A
JPH075370A JP5167558A JP16755893A JPH075370A JP H075370 A JPH075370 A JP H075370A JP 5167558 A JP5167558 A JP 5167558A JP 16755893 A JP16755893 A JP 16755893A JP H075370 A JPH075370 A JP H075370A
Authority
JP
Japan
Prior art keywords
image pickup
objective lens
optical path
sample
sample images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5167558A
Other languages
Japanese (ja)
Inventor
Osamu Yamashita
修 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP5167558A priority Critical patent/JPH075370A/en
Publication of JPH075370A publication Critical patent/JPH075370A/en
Pending legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To widen the observation and measurement range in the thickness direction of a sample by equally dividing the optical path of an objective lens into three by an optical path dividing means, and dividing it into a proper number more than two according to the sample. CONSTITUTION:This device is equipped with an objective lens 1, optical path dividing means 2 arranged at the back part of the objective lens 1, which divides an optical path L of an objective lens 1, plural image pickup means 3, 4 and 5 arranged on each divided optical path L1, L2, and L3 divided by the optical path dividing means 2, which convert sample images enlarged by the objective lens 1 into electric signals, control unit 6 which processes the signals from those image pickup means 3, 4 and 5 so that the plural sample images can be overlapped, and television monitor 7 which displays the overlapped sample images based on a video signal from the control unit 6. Image pickup surfaces 3S1, 4S2 and 5S3 of the image pickup means 3, 4, and 5 are arranged in a conjugating position according to positions S1, S2, and S3 at which the optical axial direction of the objective lens 1 is different.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、試料面の厚さ方向の
異なる面を同時に観察・測定する多数面同時測定顕微鏡
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multiple surface simultaneous measurement microscope apparatus for simultaneously observing and measuring surfaces of a sample surface in different thickness directions.

【0002】[0002]

【従来の技術】ウエハパターンの微細化に伴い、高い解
像力の顕微鏡装置が必要になるが、解像力Rと焦点深度
Dとの関係は一般に R=(1.22λ)/(2NA) D=(2NA2 )+1/(7M×NA) で表される。但し、λ:波長、NA:開口数、M:倍率
である。
2. Description of the Related Art As a wafer pattern becomes finer, a microscope apparatus having a high resolution is required. The relationship between the resolution R and the depth of focus D is generally R = (1.22λ) / (2NA) D = (2NA 2 ) + 1 / (7M × NA). However, λ: wavelength, NA: numerical aperture, M: magnification.

【0003】上記のように解像力Rと焦点深度Dとは反
比例し、高解像(高倍)になればなるほど焦点深度Dは
浅くなる。例えば100x、NA=0.9の対物レンズ
の焦点深度Dは約0.3(μm)である。これは例えば
ウエハの重ね合わせ測定を行う装置の場合、そのウエハ
表面の段差1〜3(μm)に対して非常に小さい。した
がって、ウエハ表面の上段パターン及び下段パターンを
観察・測定するとき、ウエハの載っているステージを上
下動させるなどして、焦点の合う位置を変える必要があ
った。
As described above, the resolving power R and the depth of focus D are inversely proportional, and the higher the resolution (higher magnification), the shallower the depth of focus D becomes. For example, the depth of focus D of an objective lens with 100 × and NA = 0.9 is about 0.3 (μm). For example, in the case of an apparatus that performs overlay measurement of wafers, it is very small with respect to steps 1 to 3 (μm) on the wafer surface. Therefore, when observing and measuring the upper and lower patterns of the wafer surface, it is necessary to move the stage on which the wafer is moved up and down to change the focus position.

【0004】[0004]

【発明が解決しようとする課題】ところが、ステージを
上下動させると、対物レンズとステージとの直角精度や
ステージの上下動精度等を得るために高精度な制御が必
要になり、直角精度や上下動精度が得られないと正確な
測定値が得られないという問題があった。
However, when the stage is moved up and down, high-precision control is required in order to obtain the right angle accuracy between the objective lens and the stage and the up and down movement accuracy of the stage. There has been a problem that accurate measurement values cannot be obtained unless dynamic accuracy is obtained.

【0005】一方、開口数NAを小さくして焦点深度D
を多くとると、解像力Rが減少するという問題があっ
た。
On the other hand, the numerical aperture NA is reduced and the depth of focus D
However, there is a problem in that the resolution R decreases when a large number is taken.

【0006】この発明はこのような事情に鑑みてなされ
たもので、その課題は高解像でありながら試料の厚さ方
向の異なる面を同時且つ正確に観察・測定することがで
きる多数面同時測定顕微鏡装置を提供することである。
The present invention has been made in view of the above circumstances, and its object is to simultaneously observe and measure a plurality of surfaces in different thickness directions of a sample simultaneously and accurately while having a high resolution. It is to provide a measuring microscope device.

【0007】[0007]

【課題を解決するための手段】前述の課題を解決するた
め請求項1記載の発明の多数面同時測定顕微鏡装置は、
対物レンズと、この対物レンズの後方に配置され、前記
対物レンズの光路を分割して複数の試料像を形成する光
路分割手段と、この光路分割手段により分割された各分
割光路上に配置され、前記複数の試料像を各々電気信号
に変換する複数の撮像手段と、これらの撮像手段からの
信号を前記複数の試料像が重なり合うように処理する信
号処理手段と、この信号処理手段からの信号に基づいて
重ね合わされた試料像を表示する表示手段とを備え、前
記複数の撮像手段の撮像面を、前記対物レンズの光軸方
向の異なる複数の所定位置に対してそれぞれ共役な位置
に配置した。
In order to solve the above-mentioned problems, the multi-surface simultaneous measurement microscope apparatus according to the invention of claim 1 is
An objective lens, an optical path splitting unit disposed behind the objective lens, which splits the optical path of the objective lens to form a plurality of sample images, and each split optical path split by the optical path splitting unit, A plurality of image pickup means for converting each of the plurality of sample images into an electric signal, a signal processing means for processing signals from the image pickup means so that the plurality of sample images overlap each other, and a signal from the signal processing means. Display means for displaying the sample images superposed based on each other, and the image pickup surfaces of the plurality of image pickup means are arranged at conjugate positions with respect to a plurality of predetermined positions in the optical axis direction of the objective lens.

【0008】また、請求項2記載の発明の多数面同時測
定顕微鏡装置は、前記光路分割手段と前記各撮像手段と
の間に光軸に沿って移動可能な光学部材をそれぞれ配置
した。
In the multi-surface simultaneous measurement microscope apparatus according to the second aspect of the present invention, optical members movable along the optical axis are arranged between the optical path splitting means and the image pickup means.

【0009】[0009]

【作用】試料の厚さ方向に異なる複数の所定位置に対応
する複数の試料像を表示手段上に重ね合わせて表示する
ようにしたので、試料の厚さ方向の広い範囲で同時観察
・測定が可能になる。
[Function] Since a plurality of sample images corresponding to a plurality of predetermined positions different in the thickness direction of the sample are superimposed and displayed on the display means, simultaneous observation / measurement in a wide range in the thickness direction of the sample is possible. It will be possible.

【0010】また、光路分割手段と前記各撮像手段との
間に光軸に沿って移動可能な光学部材をそれぞれ配置す
るようにすれば、試料の厚さ方向に異なる複数の所定位
置間の距離を変えることができ、各種の試料の測定が可
能になる。
Further, by disposing optical members movable along the optical axis between the optical path splitting means and the respective image pickup means, the distance between a plurality of predetermined positions different in the thickness direction of the sample. Can be changed and various samples can be measured.

【0011】[0011]

【実施例】以下この発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1はこの発明の一実施例に係る多数面同
時測定顕微鏡装置の全体構成図である。
FIG. 1 is an overall configuration diagram of a multi-plane simultaneous measurement microscope apparatus according to an embodiment of the present invention.

【0013】拡大用の対物レンズ1の後方には、対物レ
ンズ1の光路Lを3つに等分割する光路分割手段2が配
置されている。この光路分割手段2としては電気的に調
整するようなものでもよいし、また必ずしも等分割であ
る必要はない。各分割光路L1 ,L2 ,L3 上にはそれ
ぞれ撮像管3,4,5が配置されている。撮像管3の撮
像面3s1 は対物レンズ1の前方の位置S1、撮像管4
の撮像面4s2 は対物レンズ1の前方の位置S2、撮像
管5の撮像面5s3 は対物レンズ1の前方の位置S3と
共役な位置にそれぞれ配置され、各撮像面3s1 ,4s
2 ,5s3 に形成される像は映像信号に変換される。前
記は図示しない試料(ウエハ)の表面に形成された3層
のパターンの上面に対応し、各撮像管3,4,5は試料
の厚さ方向の異なるパターン面(焦点深度の幅を意味す
る)を撮像する。
Behind the magnifying objective lens 1, an optical path splitting means 2 for equally splitting the optical path L of the objective lens 1 into three parts is arranged. The optical path splitting means 2 may be one that is electrically adjusted, and does not necessarily have to be equally split. Image pickup tubes 3, 4, and 5 are arranged on the respective divided optical paths L 1 , L 2 , and L 3 . The image pickup surface 3s 1 of the image pickup tube 3 is located at a position S1 in front of the objective lens 1 and the image pickup tube 4
Imaging surface 4s 2 of the front of the position S2 of the objective lens 1, the imaging surface 5s 3 of an image pickup tube 5 is arranged in front of the position S3 and the conjugate position of the objective lens 1, the imaging surface 3s 1, 4s
The image formed in 2 , 5s 3 is converted into a video signal. The above corresponds to the upper surface of a three-layer pattern formed on the surface of a sample (wafer) not shown, and each of the image pickup tubes 3, 4, and 5 has a different pattern surface in the thickness direction of the sample (means the width of the depth of focus). ) Is imaged.

【0014】撮像管3,4,5はコントロールユニット
6に接続され、コントロールユニット6で試料像が重ね
合わされる。コントロールユニット6はテレビモニタ7
に接続され、テレビモニタ7上に重ね合わされた試料像
が表示される。テレビモニタ7は制御ユニット8に接続
され、制御ユニット8ではテレビモニタ7で合成された
試料像を用いて各種の処理・演算が行われる。
The image pickup tubes 3, 4, 5 are connected to the control unit 6, and the control unit 6 superimposes the sample images. The control unit 6 is a TV monitor 7
, And the superimposed sample image is displayed on the television monitor 7. The television monitor 7 is connected to the control unit 8, and the control unit 8 uses the sample image synthesized by the television monitor 7 to perform various processes and calculations.

【0015】次に、この多数面同時測定顕微鏡装置の動
作を述べる。
Next, the operation of the multi-surface simultaneous measurement microscope device will be described.

【0016】位置S1,位置S2及び位置S3からの光
束は光路分割手段2により3つに等分割され、各撮像管
3の撮像面3s1 ,4s2 ,5s3 に位置S1,S2,
S3に対応する試料像がそれぞれ形成される。各試料像
は撮像管3,4,5で映像信号に変換され、映像信号は
撮像管3,4,5からコントロールユニット6に送出さ
れる。コントロールユニット6は撮像管3,4,5から
の映像信号を入力し、試料像を重ね合わせる。その後テ
レビモニタ7上に重ね合わされた試料像が表示され、制
御ユニット8でテレビモニタ7で合成された像を用いて
各種の処理・演算が行われる。
The light fluxes from the positions S1, S2 and S3 are equally divided into three by the optical path dividing means 2, and the positions S1, S2 and S2 are formed on the image pickup surfaces 3s 1 , 4s 2 and 5s 3 of the respective image pickup tubes 3.
Sample images corresponding to S3 are formed. Each sample image is converted into a video signal by the image pickup tubes 3, 4, 5 and the image signal is sent from the image pickup tubes 3, 4, 5 to the control unit 6. The control unit 6 inputs the video signals from the image pickup tubes 3, 4, 5 and superimposes the sample images. After that, the superimposed sample images are displayed on the television monitor 7, and the control unit 8 uses the images synthesized on the television monitor 7 to perform various processes and calculations.

【0017】この実施例の多数面同時測定顕微鏡装置に
よれば、対物レンズ1として高解像(高倍)のものを用
いても、同じ対物レンズを用いた従来例に較べ、試料の
厚さ方向の観察・測定範囲が3倍になる。
According to the multi-sided simultaneous measurement microscope apparatus of this embodiment, even when a high resolution (high magnification) objective lens 1 is used, compared with the conventional example using the same objective lens, the thickness direction of the sample is increased. The observation and measurement range of is tripled.

【0018】なお、前記位置S1,S2,S3は試料の
位置を光軸方向にずらすことにより変化させることがで
きる。したがって例えばウエハの厚さが変わったとして
も同時測定が可能である。
The positions S1, S2 and S3 can be changed by shifting the position of the sample in the optical axis direction. Therefore, for example, even if the thickness of the wafer changes, simultaneous measurement is possible.

【0019】また、撮像管3,4,5の撮像面3s1
4s2 ,5s3 を独立にずらすことにより、位置S1,
S2,S3間の距離を変えることもできる。したがっ
て、パターン面間の距離が異なる他の種類の試料にも対
応できる。
Further, the image pickup surfaces 3s 1 of the image pickup tubes 3, 4, 5
By independently shifting 4s 2 and 5s 3 , the positions S1,
The distance between S2 and S3 can also be changed. Therefore, it can be applied to other types of samples having different distances between pattern surfaces.

【0020】図2はこの発明の他の実施例に係る多数面
同時測定顕微鏡装置の全体構成図である。前述の実施例
と共通する部分には同一符号を付して説明を省略する。
このの実施例では、図2に示すように、各分割光路
1 ,L2 ,L3 中に光路長を変える例えばリレーレン
ズ9a,9b,9cなどの光学部材を挿入したり外した
りすることにより、撮像面3s1 ,4s2 ,5s3 に対
して共役な位置S1,S2,S3を変えることがでる
し、リレーレンズ9a,9b,9cを分割光路L1 ,L
2 ,L3 の方向に動かして位置S1,S2,S3を変え
ることもできる。すなわち、位置S1,S2,S3は観
察対象の試料に応じて予め定めておいてもよいし、テレ
ビモニタ7を観察しつつ変化させるようにしてもよい。
FIG. 2 is an overall configuration diagram of a multi-face simultaneous measurement microscope apparatus according to another embodiment of the present invention. The same parts as those in the above-described embodiment are designated by the same reference numerals and the description thereof will be omitted.
In this embodiment, as shown in FIG. 2, it is possible to insert or remove optical members such as relay lenses 9a, 9b, 9c for changing the optical path length in each of the divided optical paths L 1 , L 2 , L 3. The positions S1, S2, S3 conjugate with respect to the imaging surfaces 3s 1 , 4s 2 , 5s 3 can be changed, and the relay lenses 9a, 9b, 9c can be divided into the split optical paths L 1 , L 3.
2, L 3 position by moving in the direction of S1, S2, S3 may also be varied. That is, the positions S1, S2, S3 may be predetermined according to the sample to be observed, or may be changed while observing the television monitor 7.

【0021】前述の各実施例では、光路分割手段2によ
り対物レンズ1の光路Lを3つに等分割したが、試料に
よっては2つ以上の適当な数に分割することにより試料
の厚さ方向の観察・測定範囲を広げることができる。
In each of the above-mentioned embodiments, the optical path L of the objective lens 1 is equally divided into three by the optical path dividing means 2. However, depending on the sample, the optical path L may be divided into two or more appropriate numbers so that the thickness direction of the sample is increased. The observation and measurement range of can be expanded.

【0022】また、各撮像管3,4,5からの映像信号
を選択的にコントロールユニット6に接続するために、
各撮像管3,4,5とコントロールユニット6との間に
図示しないスイッチを配設するようにすると、位置S
1,S2,S3のうちの所望の位置の試料像の観察・測
定ができるばかりでなく、所望の複数の位置の試料像を
重ね合わせて観察・測定をすることができる。
In order to selectively connect the video signals from the respective image pickup tubes 3, 4, 5 to the control unit 6,
If a switch (not shown) is arranged between each of the image pickup tubes 3, 4, 5 and the control unit 6, the position S
Not only the sample image at a desired position among S1, S2 and S3 can be observed and measured, but also the sample images at a plurality of desired positions can be superposed and observed.

【0023】更に、テレビモニタ7の水平走査線には限
りがあるので、対物レンズ1による試料像をそのまま映
像信号に変換すると、テレビモニタ7上での解像が試料
像を観察した場合に低くなることがあるが、撮像面3s
1 ,4s2 ,5s3 の置かれている像面を更に2〜10
倍程度に拡大するリレーレンズを配設し、このリレーレ
ンズにより拡大された像面に撮像管3,4,5の撮像面
3s1 ,4s2 ,5s3 を置くようにすれば、十分高解
像の試料像をテレビモニタ7上に表示することができ
る。この場合、各リレーレンズの倍率を変えて、対物レ
ンズから位置S1,S2,S3までのそれぞれの距離が
異なることによる倍率変動を併せて補正することもでき
る。
Furthermore, since the horizontal scanning line of the television monitor 7 is limited, if the sample image by the objective lens 1 is converted into a video signal as it is, the resolution on the television monitor 7 is low when the sample image is observed. However, the imaging surface 3s
The image plane on which 1 , 4s 2 and 5s 3 are placed is further 2 to 10
If a relay lens that doubles the magnification is provided and the image pickup surfaces 3s 1 , 4s 2 , and 5s 3 of the image pickup tubes 3, 4, 5 are placed on the image surface enlarged by the relay lens, a sufficiently high resolution is obtained. A sample image of the image can be displayed on the television monitor 7. In this case, the magnification of each relay lens can be changed to also correct the variation in magnification due to the different distances from the objective lens to the positions S1, S2 and S3.

【0024】[0024]

【発明の効果】以上説明したようにこの発明の多数面同
時測定顕微鏡装置によれば、高解像でありながらも試料
の厚さ方向の広い範囲で同時観察・測定することがで
き、安定した測定値を得ることができる。
As described above, according to the multi-face simultaneous measurement microscope apparatus of the present invention, it is possible to perform simultaneous observation and measurement in a wide range in the thickness direction of the sample, even though it has a high resolution, and is stable. The measured value can be obtained.

【0025】また、光路分割手段と前記各撮像手段との
間に光軸に沿って移動可能な光学部材をそれぞれ配置す
るようにすれば、試料の厚さ方向に異なる複数の所定位
置間の距離を変えることができ、各種の試料の測定が可
能になる。
Further, by disposing optical members movable along the optical axis between the optical path splitting means and each of the image pickup means, the distance between a plurality of predetermined positions different in the thickness direction of the sample. Can be changed and various samples can be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1はこの発明の一実施例に係る多数面同時測
定顕微鏡装置の全体構成図である。
FIG. 1 is an overall configuration diagram of a multiple surface simultaneous measurement microscope apparatus according to an embodiment of the present invention.

【図2】図2はこの発明の他の実施例に係る多数面同時
測定顕微鏡装置の全体構成図である。
FIG. 2 is an overall configuration diagram of a multiple surface simultaneous measurement microscope apparatus according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 対物レンズ 2 光軸分割手段 3,4,5 撮像手段 6 コントロールユニット 7 テレビモニタ 8 制御ユニット 1 Objective Lens 2 Optical Axis Splitting Means 3, 4, 5 Imaging Means 6 Control Unit 7 Television Monitor 8 Control Unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 対物レンズと、 この対物レンズの後方に配置され、前記対物レンズの光
路を分割して複数の試料像を形成する光路分割手段と、 この光路分割手段により分割された各分割光路上に配置
され、前記複数の試料像を各々電気信号に変換する複数
の撮像手段と、 これらの撮像手段からの信号を前記複数の試料像が重な
り合うように処理する信号処理手段と、 この信号処理手段からの信号に基づいて重ね合わされた
試料像を表示する表示手段とを備え、 前記複数の撮像手段の撮像面を、前記対物レンズの光軸
方向の異なる複数の所定位置に対してそれぞれ共役な位
置に配置したことを特徴とする多数面同時測定顕微鏡装
置。
1. An objective lens, an optical path splitting unit disposed behind the objective lens and splitting an optical path of the objective lens to form a plurality of sample images, and each split light split by the optical path splitting unit. A plurality of image pickup means arranged on the road for converting the plurality of sample images into electric signals, and a signal processing means for processing signals from the image pickup means so that the plurality of sample images overlap each other; Display means for displaying the sample images superimposed on the basis of the signal from the means, and the image pickup surfaces of the plurality of image pickup means are respectively conjugated to a plurality of predetermined positions in the optical axis direction of the objective lens which are different from each other. A multi-face simultaneous measurement microscope device characterized by being placed in a position.
【請求項2】 前記光路分割手段と前記各撮像手段との
間に光軸に沿って移動可能な光学部材をそれぞれ配置し
たことを特徴とする請求項1記載の多数面同時測定顕微
鏡装置。
2. The multi-surface simultaneous measurement microscope apparatus according to claim 1, wherein optical members movable along the optical axis are arranged between the optical path dividing unit and the respective image pickup units.
JP5167558A 1993-06-14 1993-06-14 Multi-surface simultaneous measurement microscope device Pending JPH075370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5167558A JPH075370A (en) 1993-06-14 1993-06-14 Multi-surface simultaneous measurement microscope device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5167558A JPH075370A (en) 1993-06-14 1993-06-14 Multi-surface simultaneous measurement microscope device

Publications (1)

Publication Number Publication Date
JPH075370A true JPH075370A (en) 1995-01-10

Family

ID=15851957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5167558A Pending JPH075370A (en) 1993-06-14 1993-06-14 Multi-surface simultaneous measurement microscope device

Country Status (1)

Country Link
JP (1) JPH075370A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005077857A (en) * 2003-09-01 2005-03-24 Cyber Laser Kk Microscope with two or more focal points, laser machining device provided with microscope, and laser machining method using device
WO2008069220A1 (en) * 2006-11-30 2008-06-12 Nikon Corporation Imaging device and microscope
JP2013090198A (en) * 2011-10-19 2013-05-13 Toshiba Tec Corp Imaging optical device and image forming device
WO2018190132A1 (en) * 2017-04-13 2018-10-18 横河電機株式会社 Microscope system, microscope, processing device, and camera for microscopes

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005077857A (en) * 2003-09-01 2005-03-24 Cyber Laser Kk Microscope with two or more focal points, laser machining device provided with microscope, and laser machining method using device
WO2008069220A1 (en) * 2006-11-30 2008-06-12 Nikon Corporation Imaging device and microscope
JPWO2008069220A1 (en) * 2006-11-30 2010-03-18 株式会社ニコン Imaging device and microscope
US8098279B2 (en) 2006-11-30 2012-01-17 Nikon Corporation Imaging apparatus and microscope
JP2013090198A (en) * 2011-10-19 2013-05-13 Toshiba Tec Corp Imaging optical device and image forming device
WO2018190132A1 (en) * 2017-04-13 2018-10-18 横河電機株式会社 Microscope system, microscope, processing device, and camera for microscopes
JP2018180296A (en) * 2017-04-13 2018-11-15 横河電機株式会社 Microscope system, microscope, processing device and camera for microscope

Similar Documents

Publication Publication Date Title
WO1992017805A1 (en) Apparatus for sensing automatic focusing
Tang Stitching: high-spatial-resolution microsurface measurements over large areas
JP2524574B2 (en) Scanning optical microscope
JPH075370A (en) Multi-surface simultaneous measurement microscope device
JPS62299928A (en) Scanning type optical microscope
US11940609B2 (en) Image conversion module with a microelectromechanical optical system and method for applying the same
US6738189B1 (en) Microscope for measuring an object from a plurality of angular positions
JP3899623B2 (en) Image inspection / measurement equipment
JP2002228421A (en) Scanning laser microscope
JP2501098B2 (en) microscope
KR20220042096A (en) Macro half view working optic lens system
JPH08201025A (en) Noncontact coordinate dimension measuring machine
JPS6257008B2 (en)
JPS62130305A (en) Image processing type measuring instrument
US20020054429A1 (en) Arrangement for visual and quantitative three-dimensional examination of specimens and stereomicroscope therefor
JP2014029394A (en) Image acquisition device, image acquisition system, and microscope device
JPH10333056A (en) Microscopic device and image forming method
JP3750259B2 (en) Image inspection / measurement equipment
JPH04106853A (en) Scanning electron microscope
JPH0222505A (en) Laser interference measuring instrument
JPS6132022A (en) Microscope for simultaneous observation of many faces
JP4214555B2 (en) Pattern position measuring device
JPH0635162Y2 (en) Lens inspection device
JP2003131142A (en) Microscope
JPH05118843A (en) Scanning type probe microscope

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030107