JPH0753294A - Method for growing silicon single crystal - Google Patents

Method for growing silicon single crystal

Info

Publication number
JPH0753294A
JPH0753294A JP21806193A JP21806193A JPH0753294A JP H0753294 A JPH0753294 A JP H0753294A JP 21806193 A JP21806193 A JP 21806193A JP 21806193 A JP21806193 A JP 21806193A JP H0753294 A JPH0753294 A JP H0753294A
Authority
JP
Japan
Prior art keywords
silicon
raw material
single crystal
material rod
silicon raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21806193A
Other languages
Japanese (ja)
Other versions
JP2833432B2 (en
Inventor
Masaki Kimura
雅規 木村
Nariyuki Yokoo
成幸 横尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP21806193A priority Critical patent/JP2833432B2/en
Publication of JPH0753294A publication Critical patent/JPH0753294A/en
Application granted granted Critical
Publication of JP2833432B2 publication Critical patent/JP2833432B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a silicon single crystal with one time of FZ stage from a silicon raw material rod. CONSTITUTION:One end of the silicon raw material rod 1 is immersed into molten silicon 3 and is partially melted; thereafter, the silicon raw material rod is pulled up to form a cone part 2 of long crystal grains which are recrystallized. The silicon raw material rod 1 is partially heated to melt with this cone part 2 as a starting point to form a molten zone 5. This molten zone 5 is moved from one end to the other end of the silicon raw material rod 1 while a static magnetic field is impressed thereto, to grow the silicon single crystal 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリコン単結晶をFZ
法(フロートゾーン法、または浮遊帯域溶融法)により
成長させる方法に関する。さらに詳しくは、シリコン原
料棒から1回のFZ工程でシリコン単結晶を成長させる
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a method of growing by a method (float zone method or floating zone melting method). More specifically, it relates to a method for growing a silicon single crystal from a silicon raw material rod in one FZ step.

【0002】[0002]

【発明の背景技術】シリコン単結晶を成長させる方法と
しては、主としてFZ法とCZ法(チョクラルスキー
法)が挙げられるが、FZ法はCZ法に比べて不純物に
よる汚染の少ない高純度のシリコン単結晶を成長できる
という特徴があり、大電力用半導体素子の製造を用途と
する高抵抗シリコン単結晶を製造する場合に有利であ
る。
BACKGROUND OF THE INVENTION FZ method and CZ method (Czochralski method) are mainly used as a method for growing a silicon single crystal. The FZ method is a high-purity silicon which is less contaminated by impurities than the CZ method. It has a feature that a single crystal can be grown, and is advantageous when manufacturing a high-resistance silicon single crystal for the purpose of manufacturing a high power semiconductor device.

【0003】FZ法によりシリコン単結晶を成長させる
場合、まずトリクロロシランを原料としてシリコン芯棒
上に平均粒径が10μm〜1000μmの多結晶を気相
成長させてシリコン原料棒を製造し、その一端を円錐状
に加工する(以後、この部分を「コーン部」と言
う。)。そして、このコーン部の先端を溶融して種結晶
と融着し、種絞りにより無転位化しながらシリコン原料
棒と種結晶とを一体化する。
In the case of growing a silicon single crystal by the FZ method, first a polycrystal of silicon having a mean particle size of 10 μm to 1000 μm is vapor-phase grown on a silicon core rod using trichlorosilane as a raw material to manufacture a silicon raw material rod, and one end of the rod is manufactured. Is processed into a conical shape (hereinafter, this portion is referred to as "cone portion"). Then, the tip of the cone portion is melted and fused with the seed crystal, and the silicon raw material rod and the seed crystal are integrated while dislocation-free by a seed drawing.

【0004】次に、輪環状の誘導加熱コイルを用いて種
結晶の融着部から出発してシリコン原料棒を部分的に加
熱融解し、シリコン原料棒(多結晶)及び単結晶を同軸
または偏芯軸のまわりに回転させながら誘導加熱コイル
に対して相対的に移動させ、部分的に生じた溶融帯をコ
ーン部からシリコン原料棒の他端まで徐々に移動させな
がらシリコン原料棒を再結晶化することによってシリコ
ン単結晶を得る。
Next, using a ring-shaped induction heating coil, the silicon raw material rod is partially heated and melted starting from the fused portion of the seed crystal, and the silicon raw material rod (polycrystal) and the single crystal are coaxially or polarized. Re-crystallize the silicon raw material rod while rotating it around the core axis and moving it relative to the induction heating coil, gradually moving the partially generated melting zone from the cone part to the other end of the silicon raw material rod. By doing so, a silicon single crystal is obtained.

【0005】[0005]

【発明が解決しようとする課題】従来、FZ法でシリコ
ン単結晶を成長させる場合、誘導加熱コイルによりシリ
コン原料棒を加熱溶融して溶融帯をコーン部から他端ま
で移動させる工程(FZ工程)を通常2回行ってシリコ
ン単結晶を得ていた。これは、1回のFZ工程ではシリ
コン原料棒が完全に単結晶化し難いためであり、1回目
のFZ工程(プレゾーニング)で中間シリコン多結晶棒
を育成し、2回目のFZ工程(無転位化ゾーニング)で
中間シリコン多結晶棒を原料棒としてシリコン単結晶棒
を成長させていた。
Conventionally, when a silicon single crystal is grown by the FZ method, a step of heating and melting a silicon raw material rod by an induction heating coil to move the melting zone from the cone portion to the other end (FZ step) Was usually performed twice to obtain a silicon single crystal. This is because it is difficult for the silicon raw material rod to be completely single-crystallized in the first FZ step, and the intermediate silicon polycrystalline rod is grown in the first FZ step (prezoning) and the second FZ step (dislocation free). Zoning), a silicon single crystal ingot was grown by using an intermediate silicon polycrystal ingot as a raw material rod.

【0006】しかし、FZ工程は1回行うのに相当の時
間を要するので、FZ工程を2回行うことはシリコン単
結晶を製造する上で生産効率の点で不利である。そこ
で、上記FZ工程時に静磁場を印加することによって1
回の工程で無転位化したシリコン単結晶を得ようとする
方法がある。この方法では、溶融帯における溶融シリコ
ンの対流を静磁場により抑制することによって、溶融帯
中に剥離した多結晶粒が単結晶側の固液界面に到達する
までの時間を長くして多結晶粒を完全に溶かし、単結晶
成長部位の結晶の乱れを抑えるものである。
However, since the FZ process requires a considerable amount of time to perform once, performing the FZ process twice is disadvantageous in terms of production efficiency in manufacturing a silicon single crystal. Therefore, by applying a static magnetic field during the FZ process,
There is a method of obtaining dislocation-free silicon single crystal in a single process. In this method, the convection of molten silicon in the melting zone is suppressed by a static magnetic field, so that the time until the polycrystalline grains separated in the melting zone reach the solid-liquid interface on the single crystal side is increased. Is completely melted to suppress crystal disorder in the single crystal growth site.

【0007】しかし、このような静磁場を印加する方法
でも、1回のFZ工程では70%程度しか単結晶化せ
ず、より高い単結晶化率を得るにはやはり2回のFZ工
程を行う必要があった。
However, even in such a method of applying a static magnetic field, only 70% of single crystals are formed in one FZ step, and two FZ steps are also performed in order to obtain a higher single crystallization rate. There was a need.

【0008】そこで本発明は、1回のFZ工程で無転位
化したシリコン単結晶を高い単結晶化率で成長すること
ができるシリコン単結晶の成長方法を提供することを目
的とする。
Therefore, an object of the present invention is to provide a silicon single crystal growth method capable of growing a dislocation-free silicon single crystal at a high single crystallization rate in one FZ step.

【0009】[0009]

【課題を解決するための手段】本発明は、シリコン原料
棒を部分的に加熱溶融して溶融帯を形成し、該溶融帯を
前記シリコン原料棒の一端部から他端部へ移動させてシ
リコン単結晶を成長させるFZ法によるシリコン単結晶
の成長方法において、前記シリコン原料棒の一端部を溶
融シリコンに浸漬して部分的に溶融させた後に引き上げ
て円錐形状の再結晶部(コーン部)を形成し、この再結
晶部を出発点として前記溶融帯に静磁場を印加しながら
FZ法によりシリコン単結晶を成長させることを特徴と
するシリコン単結晶の成長方法を提供する。
According to the present invention, a silicon raw material rod is partially heated and melted to form a molten zone, and the molten zone is moved from one end portion to the other end portion of the silicon raw material rod. In the method for growing a silicon single crystal by the FZ method for growing a single crystal, one end of the silicon raw material rod is immersed in molten silicon to partially melt and then pulled up to form a conical recrystallized portion (cone portion). There is provided a method for growing a silicon single crystal, which is characterized in that the silicon single crystal is grown by the FZ method while applying a static magnetic field to the melting zone with the recrystallization portion as a starting point.

【0010】前記再結晶部は、1mm以上の長さの結晶
粒を含むシリコン多結晶からなるように形成する。ま
た、前記シリコン原料棒の一端部に予め円錐形状部を形
成し、該円錐形状部の断面直径が少なくとも60mm以
上である断面部よりも先端側の部分を前記溶融シリコン
に浸漬して溶融させた後に引き上げて再結晶部を形成す
るようにしてもよい。
The recrystallized portion is formed of silicon polycrystal containing crystal grains having a length of 1 mm or more. Further, a conical portion is formed in advance at one end of the silicon raw material rod, and a portion of the conical portion having a cross-sectional diameter of at least 60 mm or more at the tip end side is immersed in the molten silicon to be melted. It may be pulled up later to form a recrystallized portion.

【0011】[0011]

【作用】本発明者らは、シリコン原料棒のコーン部と直
胴部とでは溶融帯の状態が異なり、成長の出発点となる
シリコン原料棒のコーン部での成長がFZ法において転
位の無いシリコン単結晶を得る上で極めて重要であるこ
とを見出した。
According to the present inventors, the state of the melting zone is different between the cone portion of the silicon raw material rod and the straight body portion, and there is no dislocation in the growth of the cone portion of the silicon raw material rod, which is the starting point of growth, in the FZ method. It was found to be extremely important in obtaining a silicon single crystal.

【0012】図3及び図4はそれぞれシリコン原料棒1
の直胴部及びコーン部における溶融帯5の様子を示す部
分断面図である。
3 and 4 show a silicon raw material rod 1 respectively.
FIG. 4 is a partial cross-sectional view showing a state of a melting zone 5 in the straight body portion and the cone portion of FIG.

【0013】シリコン原料棒1は平均粒径が10μm〜
1000μmの結晶粒からなる多結晶構造なので、原料
棒側の固液界面9ではその場で溶融する結晶粒7の他
に、シリコン原料棒1の粒界から遊離して溶融帯5中に
入り、その後も融けずにいる結晶粒7が存在する。これ
らの結晶粒7は、静磁場を印加しない場合は、溶融帯5
中で対流に巻き込まれて加速されながら下方に沈降し、
このまま融けきらずに単結晶側の固液界面に達してしま
うと成長中の単結晶が多結晶化してしまう。
The silicon raw material rod 1 has an average particle diameter of 10 μm
Since it has a polycrystalline structure consisting of crystal grains of 1000 μm, at the solid-liquid interface 9 on the raw material rod side, in addition to the crystal grains 7 that melt in situ, it also separates from the grain boundaries of the silicon raw material rod 1 and enters the melting zone 5. After that, there are crystal grains 7 that are not melted. These crystal grains 7 are melt zones 5 when the static magnetic field is not applied.
It is entrained in the convection inside and settles downward while being accelerated,
If it reaches the solid-liquid interface on the single crystal side without being completely melted as it is, the growing single crystal becomes polycrystal.

【0014】静磁場を印加して溶融帯5中での対流を抑
制すると、結晶粒7は溶融帯5中で浮遊する時間が長く
なるので、単結晶側の固液界面6に到達するまでに融け
易くなる。特に、図3に示すようなシリコン原料棒1の
直胴部においては、誘導加熱コイル4によりシリコン原
料棒1を加熱溶融して形成された溶融帯5は直径が大き
く、原料棒側の固液界面9と単結晶側の固液界面6とは
比較的大きな距離を保っているので、結晶粒7は単結晶
側の固液界面6に達するまでに完全に融け、成長中の単
結晶が多結晶化するのを防ぐことができる。
When a static magnetic field is applied to suppress convection in the melting zone 5, the crystal grains 7 float in the melting zone 5 for a long time, so that the crystal grains 7 reach the solid-liquid interface 6 on the single crystal side. It becomes easy to melt. Particularly, in the straight body portion of the silicon raw material rod 1 as shown in FIG. 3, the melting zone 5 formed by heating and melting the silicon raw material rod 1 by the induction heating coil 4 has a large diameter, and the solid liquid on the raw material rod side is large. Since the interface 9 and the solid-liquid interface 6 on the single crystal side maintain a relatively large distance, the crystal grains 7 are completely melted by the time they reach the solid-liquid interface 6 on the single crystal side, and many single crystals are growing. It is possible to prevent crystallization.

【0015】しかし、図4に示すようなシリコン原料棒
1のコーン部においては、溶融帯5の直径は直胴部にお
ける溶融帯5の直径に比べて小さく、原料棒側の固液界
面9と単結晶側の固液界面6との距離が短い。その結
果、静磁場を印加して対流を抑制した場合でも、シリコ
ン原料棒1の粒界から遊離した結晶粒7が融けきらない
うちに単結晶側の固液界面6に達してしまい、成長中の
単結晶には転位を生じ、さらには多結晶化する原因とな
っていた。
However, in the cone portion of the silicon raw material rod 1 as shown in FIG. 4, the diameter of the melting zone 5 is smaller than the diameter of the melting zone 5 in the straight body portion, and the solid-liquid interface 9 on the raw material rod side does not exist. The distance from the solid-liquid interface 6 on the single crystal side is short. As a result, even when a static magnetic field is applied to suppress convection, the crystal grains 7 freed from the grain boundaries of the silicon raw material rod 1 reach the solid-liquid interface 6 on the single crystal side before they are completely melted, and during the growth. Dislocations were generated in the single crystal and further became a cause of polycrystallization.

【0016】そこで本発明においては、前記シリコン原
料棒の一端部を溶融シリコンに浸漬して部分的に溶融さ
せた後に引き上げて再結晶させ、長さが1mm以上の比
較的大きな結晶粒からなるコーン部を形成するようにし
た。長さが1mm以上の大きな結晶粒は粒界から遊離す
ることなく原料棒側の固液界面で全て融解する。従っ
て、コーン部においても転位のないシリコン単結晶が得
られる。
Therefore, in the present invention, one end of the silicon raw material rod is immersed in molten silicon to partially melt it and then pulled up to be recrystallized, and a cone made of relatively large crystal grains having a length of 1 mm or more. To form a part. Large crystal grains having a length of 1 mm or more are all melted at the solid-liquid interface on the raw material rod side without being separated from the grain boundaries. Therefore, a silicon single crystal having no dislocation even in the cone portion can be obtained.

【0017】なお、溶融帯がシリコン原料棒のコーン部
から直胴部に移動すると粒界は粒径の小さな結晶粒とな
るが、直胴部においては溶融帯の直径が大きく、原料棒
側と単結晶側の固液界面の距離が十分大きくなり、粒界
から結晶粒が遊離しても単結晶側の固液界面に達するま
でに完全に融けてしまうので、転位が生じることがな
い。
When the melting zone moves from the cone portion of the silicon raw material rod to the straight body portion, the grain boundaries become crystal grains having a small grain size. The distance of the solid-liquid interface on the single crystal side becomes sufficiently large, and even if the crystal grains are separated from the grain boundary, they are completely melted by the time they reach the solid-liquid interface on the single crystal side, so that dislocation does not occur.

【0018】このように本発明においては、コーン部の
みを溶融して引き上げて再結晶させるだけで、1回のF
Z工程で転位のないシリコン単結晶が得られる。しか
も、シリコン原料棒の直胴部(本体部)は通常の方法で
得られた粒径の小さい多結晶シリコンのままでよいの
で、工程の簡略化が図れる。
As described above, in the present invention, only the cone portion is melted, pulled up, and recrystallized to perform one F
A dislocation-free silicon single crystal is obtained in the Z step. Moreover, since the straight body portion (main body portion) of the silicon raw material rod may be polycrystalline silicon with a small grain size obtained by a usual method, the process can be simplified.

【0019】なお、本発明においては、シリコン原料棒
のコーン部は溶融シリコンに浸漬して引き上げる際に形
成するので、予めコーン部を形成しておく必要がなく、
当初のシリコン原料棒の端部はいかなる形状であっても
よい。従って、従来のようにシリコン原料棒を加工して
コーン部を形成する工程が不要であり、加工代も節約で
きる。
In the present invention, since the cone portion of the silicon raw material rod is formed when it is immersed in molten silicon and pulled up, it is not necessary to form the cone portion in advance.
The end of the original silicon raw material rod may have any shape. Therefore, it is not necessary to process the silicon raw material rod to form the cone portion as in the conventional case, and the machining cost can be saved.

【0020】このように、シリコン原料棒の端部に予め
コーン部を形成しておく必要はないが、予めコーン部を
形成したシリコン原料棒を用いてもよいことは言うまで
もない。その場合、予め形成したコーン部の断面直径が
少なくとも60mm以上である断面部よりも先端側の部
分のみを溶融シリコンに浸漬して溶融させ、その後引き
上げて再結晶部を形成するようにすると、シリコン原料
棒を溶融する部分が比較的少なくて済む。これは、コー
ン部の直径が60mmを超える部分では、溶融帯を形成
したときに単結晶側の固液界面が十分に深くなるからで
ある。
As described above, it is not necessary to previously form the cone portion at the end of the silicon raw material rod, but it goes without saying that a silicon raw material rod in which the cone portion is previously formed may be used. In that case, if the preformed cone portion has a cross-sectional diameter of at least 60 mm or more, only the portion on the tip side of the cross-sectional portion is immersed in molten silicon for melting, and then pulled up to form a recrystallized portion. The part that melts the raw material rod can be relatively small. This is because the solid-liquid interface on the single crystal side becomes sufficiently deep when the molten zone is formed in the portion where the diameter of the cone portion exceeds 60 mm.

【0021】なお、本発明で用いる溶融シリコンは、多
結晶シリコンを溶融したものが利用でき、シリコン原料
棒の破片等を集めたものを溶融したものでも利用でき
る。
The molten silicon used in the present invention may be one obtained by melting polycrystalline silicon, or one obtained by melting pieces of silicon raw material rods collected.

【0022】[0022]

【実施例】以下、本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0023】図1は本発明のシリコン単結晶の成長方法
の一実施例を示す工程図である。図1(a)に示すよう
に、本実施例で用いるシリコン原料棒1は、通常法で用
いるようなコーン部が形成されていないものを用いる。
FIG. 1 is a process chart showing an embodiment of a method for growing a silicon single crystal according to the present invention. As shown in FIG. 1A, as the silicon raw material rod 1 used in this embodiment, a silicon raw material rod 1 which does not have a cone portion used in a usual method is used.

【0024】このシリコン原料棒1の一端部を、多結晶
シリコンをシリコンの融点温度以上に加熱溶融して得た
溶融シリコン3に浸漬し、該一端部を溶融する(図1
(b))。そして、CZ法で行うようにシリコン原料棒
1を徐々に引き上げて前記一端部を再結晶化してコーン
部2を形成する(図1(c))。こうして形成されたコ
ーン部2の結晶は、結晶粒の長さが1mm以上の大きい
ものが得られる。
One end of this silicon raw material rod 1 is immersed in molten silicon 3 obtained by heating and melting polycrystalline silicon at a melting point temperature of silicon or higher, and the one end is melted (FIG. 1).
(B)). Then, the silicon raw material rod 1 is gradually pulled up as in the CZ method to recrystallize the one end to form the cone portion 2 (FIG. 1C). The crystals of the cone portion 2 thus formed can have a large crystal grain length of 1 mm or more.

【0025】次に、上記のように結晶粒の長い比較的大
きな多結晶構造のコーン部2を有するシリコン原料棒1
を用い、FZ法によりシリコン単結晶8を成長させる。
具体的には、コーン部2の先端部に種結晶(図示せず)
を融着した後、溶融帯5に300〜1000gauss
の静磁場を印加しながら、誘導加熱コイル4の中空部を
通るようにシリコン原料棒1を上方から下方に徐々に移
動させ、溶融帯5をシリコン原料棒1のコーン部2から
上端方向へ移動させる。なお、溶融帯5に印加する静磁
場は垂直磁場でも水平磁場でもよい。
Next, as described above, the silicon raw material rod 1 having the relatively large polycrystalline cone portion 2 having a long crystal grain is described.
Using, the silicon single crystal 8 is grown by the FZ method.
Specifically, a seed crystal (not shown) is provided at the tip of the cone portion 2.
300 to 1000 gauss on the melting zone 5 after fusing
While applying the static magnetic field, the silicon raw material rod 1 is gradually moved from the upper side to the lower side so as to pass through the hollow portion of the induction heating coil 4, and the melting zone 5 is moved from the cone portion 2 of the silicon raw material rod 1 to the upper end direction. Let The static magnetic field applied to the melting zone 5 may be a vertical magnetic field or a horizontal magnetic field.

【0026】上記のFZ法による単結晶化工程を1回行
って得たシリコン単結晶の単結晶化率は85%以上であ
った。一方、図1(a)に示した当初のシリコン原料棒
1をそのまま用いて静磁場を印加しないでFZ法による
単結晶化工程を1回行って得たシリコン単結晶の単結晶
化率は30%と低率であった。従って、本実施例の方法
によれば高率の単結晶化率が得られることが確認でき
た。
The single crystallization rate of the silicon single crystal obtained by performing the single crystallization step by the FZ method once was 85% or more. On the other hand, the single crystallization rate of the silicon single crystal obtained by performing the single crystallization step by the FZ method once without using the static magnetic field using the original silicon raw material rod 1 shown in FIG. % Was low. Therefore, it was confirmed that a high rate of single crystallization could be obtained by the method of this example.

【0027】図2は本発明のシリコン単結晶の成長方法
の他の実施例を示す工程図である。なお、図2において
図1と同一又は相当部分は同一符合を付してその説明を
省略する。本実施例で用いるシリコン原料棒1は、図2
(a)に示すように、通常のFZ法で用いるものと同様
に一端部に予めコーン部2を形成したものを用いる。
FIG. 2 is a process diagram showing another embodiment of the method for growing a silicon single crystal according to the present invention. In FIG. 2, the same or corresponding parts as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. The silicon raw material rod 1 used in this embodiment is shown in FIG.
As shown in (a), a cone part 2 is preliminarily formed at one end as in the case of using a normal FZ method.

【0028】このシリコン原料棒1のコーン部2を、多
結晶シリコンをシリコンの融点温度以上に加熱溶融して
得た溶融シリコン3に浸漬し、コーン部2を溶融する
(図2(b))。そして、CZ法で行うようにシリコン
原料棒1を徐々に引き上げてコーン部2を再結晶化する
(図2(c))。こうして形成されたコーン部2の結晶
は、結晶粒の長さが1mm以上の大きいものが得られ
る。なお、コーン部2を全部再結晶化せず、断面直径が
少なくとも60mm以上の断面部よりも先端側の部分の
みを溶融シリコン3に浸漬して再結晶化するようにして
もよいことは前述した通りである。
The cone portion 2 of the silicon raw material rod 1 is immersed in molten silicon 3 obtained by melting and melting polycrystalline silicon at a melting point temperature of silicon or higher to melt the cone portion 2 (FIG. 2 (b)). . Then, as in the CZ method, the silicon raw material rod 1 is gradually pulled up to recrystallize the cone portion 2 (FIG. 2C). The crystals of the cone portion 2 thus formed can have a large crystal grain length of 1 mm or more. It should be noted that the cone portion 2 may not be entirely recrystallized, and only the portion closer to the tip than the cross-sectional portion having a cross-sectional diameter of at least 60 mm may be immersed in the molten silicon 3 for re-crystallization. On the street.

【0029】次に、上記のように結晶粒の長い比較的大
きな多結晶構造のコーン部2を有するシリコン原料棒1
を用い、第1の実施例と同様にFZ法により静磁場を印
加しながらシリコン単結晶8を成長させる。本実施例の
方法によっても単結晶化率85%以上のシリコン単結晶
が得られる。
Next, as described above, the silicon raw material rod 1 having the relatively large polycrystalline cone portion 2 having a long crystal grain is described.
Using, the silicon single crystal 8 is grown by applying the static magnetic field by the FZ method as in the first embodiment. A silicon single crystal having a single crystallization rate of 85% or more can also be obtained by the method of this embodiment.

【0030】[0030]

【発明の効果】以上説明したように本発明によれば、シ
リコン原料棒から1回のFZ工程でシリコン単結晶を成
長することができるシリコン単結晶の成長方法を提供す
ることができた。
As described above, according to the present invention, it is possible to provide a silicon single crystal growth method capable of growing a silicon single crystal from a silicon raw material rod in one FZ step.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のシリコン単結晶の成長方法の一実施例
を示す工程図である。
FIG. 1 is a process chart showing an embodiment of a method for growing a silicon single crystal according to the present invention.

【図2】本発明のシリコン単結晶の成長方法の他の実施
例を示す工程図である。
FIG. 2 is a process drawing showing another embodiment of the method for growing a silicon single crystal of the present invention.

【図3】シリコン原料棒1の直胴部における溶融帯5の
様子を示す部分断面図である。
FIG. 3 is a partial cross-sectional view showing a state of a melting zone 5 in the straight body portion of the silicon raw material rod 1.

【図4】シリコン原料棒1のコーン部における溶融帯5
の様子を示す部分断面図である。
FIG. 4 is a melting zone 5 in the cone portion of the silicon raw material rod 1.
It is a partial cross-sectional view showing the situation.

【符号の説明】[Explanation of symbols]

1 シリコン原料棒 2 コーン部 3 溶融シリコン 4 誘導加熱コイル 5 溶融帯 6,9 固液界面 7 結晶粒 8 シリコン単結晶 1 Silicon Raw Material Bar 2 Cone Part 3 Molten Silicon 4 Induction Heating Coil 5 Melting Zone 6,9 Solid-Liquid Interface 7 Crystal Grain 8 Silicon Single Crystal

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シリコン原料棒を部分的に加熱溶融して
溶融帯を形成し、該溶融帯を前記シリコン原料棒の一端
部から他端部へ移動させてシリコン単結晶を成長させる
FZ法によるシリコン単結晶の成長方法において、前記
シリコン原料棒の一端部を溶融シリコンに浸漬して部分
的に溶融させた後に引き上げて円錐形状の再結晶部を形
成し、この再結晶部を出発点として前記溶融帯に静磁場
を印加しながらFZ法によりシリコン単結晶を成長させ
ることを特徴とするシリコン単結晶の成長方法。
1. A FZ method in which a silicon raw material rod is partially heated and melted to form a molten zone, and the molten zone is moved from one end portion to the other end portion of the silicon raw material rod to grow a silicon single crystal. In the method for growing a silicon single crystal, one end of the silicon raw material rod is immersed in molten silicon to partially melt and then pulled up to form a conical recrystallized portion, and the recrystallized portion is used as a starting point. A method for growing a silicon single crystal, which comprises growing the silicon single crystal by the FZ method while applying a static magnetic field to the melting zone.
【請求項2】 前記再結晶部は、1mm以上の長さの結
晶粒を含むシリコン多結晶からなる請求項1に記載のシ
リコン単結晶の成長方法。
2. The method of growing a silicon single crystal according to claim 1, wherein the recrystallized portion is made of silicon polycrystal containing crystal grains having a length of 1 mm or more.
【請求項3】 前記シリコン原料棒の一端部に予め円錐
形状部を形成し、該円錐形状部の断面直径が少なくとも
60mm以上である断面部よりも先端側の部分を前記溶
融シリコンに浸漬して溶融させた後に引き上げて再結晶
部を形成するものである請求項1又は請求項2に記載の
シリコン単結晶の成長方法。
3. A cone-shaped portion is formed in advance at one end of the silicon raw material rod, and a portion of the cone-shaped portion having a cross-sectional diameter of at least 60 mm or more at the tip end side is immersed in the molten silicon. The method for growing a silicon single crystal according to claim 1 or 2, wherein the recrystallization portion is formed by pulling after melting.
JP21806193A 1993-08-09 1993-08-09 Silicon single crystal growth method Expired - Lifetime JP2833432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21806193A JP2833432B2 (en) 1993-08-09 1993-08-09 Silicon single crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21806193A JP2833432B2 (en) 1993-08-09 1993-08-09 Silicon single crystal growth method

Publications (2)

Publication Number Publication Date
JPH0753294A true JPH0753294A (en) 1995-02-28
JP2833432B2 JP2833432B2 (en) 1998-12-09

Family

ID=16714039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21806193A Expired - Lifetime JP2833432B2 (en) 1993-08-09 1993-08-09 Silicon single crystal growth method

Country Status (1)

Country Link
JP (1) JP2833432B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8709154B2 (en) 2007-07-25 2014-04-29 Amg Idealcast Solar Corporation Methods for manufacturing monocrystalline or near-monocrystalline cast materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022149310A (en) 2021-03-25 2022-10-06 Tdk株式会社 Crystal manufacturing method, crystal manufacturing apparatus, and single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8709154B2 (en) 2007-07-25 2014-04-29 Amg Idealcast Solar Corporation Methods for manufacturing monocrystalline or near-monocrystalline cast materials

Also Published As

Publication number Publication date
JP2833432B2 (en) 1998-12-09

Similar Documents

Publication Publication Date Title
US6869477B2 (en) Controlled neck growth process for single crystal silicon
JP2003313089A (en) Method for manufacturing single crystal silicon and single crystal silicon wafer, seed crystal for manufacturing single crystal silicon, single crystal silicon ingot, and single crystal silicon wafer
JPH09165298A (en) Pulling up of silicon single crystal
JP2833478B2 (en) Silicon single crystal growth method
JPH076972A (en) Growth method and device of silicon single crystal
JP2973917B2 (en) Single crystal pulling method
US6056818A (en) Method of manufacturing a silicon monocrystal, and method of holding the same
WO2001063022A2 (en) Controlled neck growth process for single crystal silicon
JP2833432B2 (en) Silicon single crystal growth method
JP2525300B2 (en) Method for producing silicon single crystal
JPH04104988A (en) Growth of single crystal
JP4407188B2 (en) Silicon wafer manufacturing method and silicon wafer
JPH11180793A (en) Method for controlling single crystal pulling-up rate
US6267815B1 (en) Method for pulling a single crystal
JPH09235186A (en) Seed crystal for lifting single crystal and lifting of single crystal with the seed crystal
JP3141975B2 (en) Method for growing doped silicon single crystal
KR20140018671A (en) Method for manufacturing silicon single crystal ingot
JP2001240494A (en) Single crystal growth method
JP4273793B2 (en) Single crystal manufacturing method
US5968260A (en) Method for fabricating a single-crystal semiconductor
JP2003246695A (en) Method for producing highly doped silicon single crystal
JPH0680493A (en) Method for crystal growth and crucible for use therefor
JPS62167213A (en) Production of silicon polycrystalline ingot
JPH0465387A (en) Growing method for single crystal
JPH0377159B2 (en)