JPH0753291B2 - Continuous production method of fiber reinforced metal pipe - Google Patents

Continuous production method of fiber reinforced metal pipe

Info

Publication number
JPH0753291B2
JPH0753291B2 JP4317587A JP4317587A JPH0753291B2 JP H0753291 B2 JPH0753291 B2 JP H0753291B2 JP 4317587 A JP4317587 A JP 4317587A JP 4317587 A JP4317587 A JP 4317587A JP H0753291 B2 JPH0753291 B2 JP H0753291B2
Authority
JP
Japan
Prior art keywords
wire
pipe
reinforced
preform
mandrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4317587A
Other languages
Japanese (ja)
Other versions
JPS63212013A (en
Inventor
敏功 石川
義一 今井
義和 田中
Original Assignee
日本カ−ボン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本カ−ボン株式会社 filed Critical 日本カ−ボン株式会社
Priority to JP4317587A priority Critical patent/JPH0753291B2/en
Publication of JPS63212013A publication Critical patent/JPS63212013A/en
Publication of JPH0753291B2 publication Critical patent/JPH0753291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は繊維強化金属製パイプの連続製造法に関するも
のである。
TECHNICAL FIELD The present invention relates to a continuous method for producing a fiber-reinforced metal pipe.

(従来の技術および問題点) 繊維強化金属(FRM)パイプの連続製造法としては、強
化繊維のチョップあるいはウイスカーをマトリックス金
属の溶湯中に分散させ、これを押出あるいは引抜成形法
によりパイプに成形することが考えられるが、これは短
繊維強化であって引張強度、曲げ強度および圧縮強度等
が低いものしか得られないという欠点がある。
(Prior art and problems) As a continuous manufacturing method of fiber reinforced metal (FRM) pipe, chop or whiskers of reinforcing fiber is dispersed in a molten metal of matrix metal, and this is formed into a pipe by extrusion or pultrusion molding method. However, this has the drawback that it is short fiber reinforced and only low tensile strength, bending strength and compressive strength can be obtained.

この欠点を改善するための連続繊維強化法として、金属
あるいは黒鉛等を中芯としてこれに強化連続繊維を巻き
付けたものをプリフォームとし、これにマトリックス金
属を溶融含浸し、その後加工により中芯を除去し、パイ
プを得る溶融含浸法が実験室的に実施されている。しか
しこの方法は連続パイプの成形方法ではなく、成形され
るパイプの長さに設備上の制約があり、肉厚も薄いもの
はできない。このようにこれまでは繊維強化金属製の薄
肉パイプの連続的製造方法は知られていない。
As a continuous fiber reinforced method for improving this drawback, a preform is made by winding a reinforced continuous fiber around a metal or graphite as a core, melt-impregnated with a matrix metal, and then processed to form a core. The melt impregnation method of removing and obtaining pipes is practiced in the laboratory. However, this method is not a method for forming a continuous pipe, but there is a facility limitation on the length of the pipe to be formed, and a thin wall cannot be used. Thus, up to now, no continuous production method of a thin pipe made of fiber reinforced metal has been known.

(問題点を解決するための手段) 本発明者らはかかる状況に鑑み薄肉の繊維強化金属製パ
イプの連続的製造方法を開発すべく種々研究の結果、強
化連続繊維をマトリックス金属と複合したプリフォーム
ワイヤの環状に配列した供給部、例えばプリフォームワ
イヤを巻回したボビンから、プリフォームワイヤを予熱
引揃ガイドを通して予熱し引揃えて超音波振動マンドレ
ル上に供給し、超音波振動ダイスとマンドレルとの隙間
に通しこの間超音波振動エネルギーを付与することによ
りプリフォームワイヤ同志が接合し、塑性加工され連続
繊維強化金属製パイプが得られることを確め本発明を達
成するに至った。
(Means for Solving the Problems) In view of the above situation, the inventors of the present invention have conducted various studies to develop a continuous method for producing a thin-walled fiber-reinforced metal pipe, and as a result of the research, The preform wire is preheated and aligned through a preheat alignment guide from a supply part arranged in an annular shape of the reform wire, for example, a bobbin around which the preform wire is wound, and supplied on the ultrasonic vibration mandrel. It has been confirmed that the preform wires are joined to each other by passing through the gap between them and ultrasonic vibration energy is applied during the gaps, and they are plastically processed to obtain a continuous fiber-reinforced metal pipe, thereby achieving the present invention.

本発明の方法においては、強化連続繊維がマトリックス
金属とあらかじめ複合化されたプリフォームワイヤを用
いる。強化繊維としては炭素繊維(ポリアクリロニトリ
ル(PAN)系、ピッチ系)、アルミナ繊維、炭化珪素(S
iC)繊維が用いられ、マトリックス金属としてはマグネ
シウム(Mg)、アルミニウム(Al)、亜鉛(Zn)、銅
(Cu)、チタン(Ti)、銀(Ag)、金(Au)等およびそ
の合金等があり、これ等の1種に限定されるものでな
く、広範囲なものから選定される系が用いられる。これ
等の強化繊維とマトリックス金属の複合化されたプリフ
ォームワイヤは、0.1〜5mmの直径を有するものが好まし
く、断面形状は必らずしも円形である必要はなく、方形
あるいは異形のものでも良い。
In the method of the present invention, a preformed wire in which reinforced continuous fibers are pre-composited with a matrix metal is used. As the reinforcing fibers, carbon fibers (polyacrylonitrile (PAN) -based, pitch-based), alumina fibers, silicon carbide (S
iC) fibers are used, and the matrix metal is magnesium (Mg), aluminum (Al), zinc (Zn), copper (Cu), titanium (Ti), silver (Ag), gold (Au), etc., and their alloys, etc. However, the system is not limited to one of these, and a system selected from a wide range is used. The preform wire in which the reinforcing fibers and the matrix metal are compounded preferably has a diameter of 0.1 to 5 mm, and the cross-sectional shape does not necessarily need to be circular, and may be rectangular or irregular. good.

次に図面により本発明を説明する。The present invention will now be described with reference to the drawings.

本発明の方法を実施するに当っては、第1図(a)に示
すように、プリフォームワイヤ5の供給部6、例えばプ
リフォームワイヤを巻回したボビンからプリフォームワ
イヤを予熱引揃部3に通し、ここでプリフォームワイヤ
を予熱し、引揃え、次いで超音波振動マンドレル2上に
供給する。
In carrying out the method of the present invention, as shown in FIG. 1 (a), the preheating wire is fed from the feeding portion 6 of the preforming wire 5, for example, the bobbin wound with the preforming wire. 3 through which the preform wire is preheated, aligned and then fed onto the ultrasonic vibrating mandrel 2.

上記ボビンは、作製せんとするパイプの大きさにより決
定される数が環状に配置されており、各ボビンから第1
図(c)に示すようにプリフォームワイヤ5が予熱引揃
部3に向って供給される。予熱はワイヤに可塑性を与え
るために行うもので、200〜500℃の範囲の温度で行なう
のが好ましい。予熱温度が200℃より低い場合には、プ
リフォームワイヤの可塑性が不足し、ワイヤ同志の接合
が不充分となるかもしくはワイヤ中の繊維が振動により
損傷をきたしてパイプ特性を低下させる。一方500℃を
越えるとワイヤ表面に酸化被膜が形成され易く、接合性
を悪化したり、ワイヤ強度の劣化を招き、またダイスや
マンドレルへ凝集し易くなり好ましくない。
The bobbins are arranged in a ring shape in a number determined by the size of the pipe to be manufactured.
As shown in FIG. 3C, the preform wire 5 is supplied toward the preheating aligning section 3. Preheating is carried out to impart plasticity to the wire and is preferably carried out at a temperature in the range of 200 to 500 ° C. If the preheating temperature is lower than 200 ° C, the plasticity of the preformed wire is insufficient, the bonding between the wires is insufficient, or the fibers in the wire are damaged by vibration, and the pipe characteristics are deteriorated. On the other hand, when the temperature exceeds 500 ° C., an oxide film is likely to be formed on the surface of the wire, the bondability is deteriorated, the strength of the wire is deteriorated, and the die or mandrel is likely to be aggregated, which is not preferable.

次にワイヤ5をマンドレル2と超音波振動ダイス1の隙
間を通し、例えば第1図(b)に示すように配置した超
音波ダイスの振動子7による超音波振動エネルギーによ
って、ワイヤ同志の接合、塑性加工が行われ引取部4よ
り繊維強化パイプを連続的に引取る。この場合ダイス1
とマンドレル2との隙間は予め調節しておくことは勿論
のことである。また超音波振動は5〜100KHzで、接触部
振幅2〜40μ、好ましくは超音波振動15〜25KHz、振幅
5μ以上に設定する。超音波振動は異常振動系の設計に
おける制約を受けるものであり、振幅については40μを
越える大振幅になるとそれだけのエネルギーを発生する
こと自体が困難になると同時にワイヤと超音波ホーンと
が接合してしまう傾向があり、一方2μより小さくなる
と振動による加圧力が小さくなりワイヤの塑性変形、接
合が不十分であり望ましくない。
Next, the wire 5 is passed through the gap between the mandrel 2 and the ultrasonic vibration die 1, and the ultrasonic vibration energy by the vibrator 7 of the ultrasonic die arranged as shown in FIG. The plastic working is performed and the fiber reinforced pipe is continuously taken from the take-up part 4. In this case, die 1
It goes without saying that the clearance between the mandrel 2 and the mandrel 2 is adjusted in advance. The ultrasonic vibration is set to 5 to 100 KHz, the contact portion amplitude is set to 2 to 40 μ, and preferably the ultrasonic vibration is set to 15 to 25 KHz and the amplitude is set to 5 μ or more. Ultrasonic vibration is subject to restrictions in the design of an abnormal vibration system, and it becomes difficult to generate enough energy itself when the amplitude exceeds 40μ, and at the same time the wire and the ultrasonic horn are joined. On the other hand, if it is smaller than 2 μm, the pressing force due to vibration becomes small, and the plastic deformation and joining of the wire are insufficient, which is not desirable.

上記ダイス1とマンドレル2は加工材質によって同期振
動あるいは個別に振動され、さらにはダイスとマンドレ
ルの一方だけの超音波振動により加工が行われる。
The die 1 and the mandrel 2 are oscillated synchronously or individually depending on the material to be processed, and further the ultrasonic wave vibration of only one of the die and the mandrel is used for processing.

以上の方法では、繊維強化方向がパイプ軸に対して0゜
であるパイプが得られるが、引揃ガイド部でワイヤに所
定の角度を与え、引取部4で一定の回転を与えることに
よって所定の角度に強化した繊維強化金属(FRM)パイ
プを得ることができる。
By the above method, a pipe having a fiber reinforced direction of 0 ° with respect to the pipe axis can be obtained, but a predetermined angle is given to the wire by the aligning guide portion and a certain rotation is given by the take-up portion 4 to obtain a predetermined rotation. Angle reinforced fiber reinforced metal (FRM) pipes can be obtained.

更にはワイヤ供給部6を複層構造として、一層を全体的
に回転させる構造とすることによって例えば0゜方向と
アングル強化の複層二方向強化パイプの成形も可能であ
る。勿論、同様の手法により、多層多方向強化パイプの
成形も可能である。
Further, by forming the wire supply unit 6 as a multi-layer structure and rotating one layer as a whole, it is possible to form a multi-layer two-way reinforced pipe having 0 ° direction and angle reinforced. Of course, a multi-layer multi-directional reinforced pipe can be formed by the same method.

(実施例および比較例) 本発明を次の実施例および比較例により説明する。(Examples and Comparative Examples) The present invention will be described with reference to the following Examples and Comparative Examples.

比較例1 SiCウイスカーを繊維体積含有率15%としてAl合金(AC4
C)中に分散させ、これを押出し成形してFRM製の内径12
mm×外径14mmの連続パイプを得た。
Comparative Example 1 A SiC whisker was used as an Al alloy (AC4
C) and then extruded to form an FRM inner diameter of 12
A continuous pipe of mm × outer diameter 14 mm was obtained.

比較例2 直径12mm×長さ150mmの黒鉛丸棒にSiC連続繊維(ニカロ
ン、日本カーボン(株)製)のスリーブをかぶせたもの
を、オートクレーブ中で繊維体積含有率30%として純Al
を溶融含浸し、その後加工を行い、FRM製の内径12mm×
外径17mm、長さ150mmのパイプを得た。
Comparative Example 2 A graphite rod having a diameter of 12 mm and a length of 150 mm covered with a sleeve of SiC continuous fiber (Nicalon, manufactured by Nippon Carbon Co., Ltd.) was used as pure Al with a fiber volume content of 30% in an autoclave.
Melted and impregnated, then processed, FRM inner diameter 12 mm ×
A pipe with an outer diameter of 17 mm and a length of 150 mm was obtained.

実施例1 14〜15μmの直径を有するSiC連続繊維と純Alよりなる
直径0.5mmのプリフォームワイヤ(繊維の体積含有率40
%)を、第1図(a)に示す装置を用い、予熱引揃部で
300℃に予熱し、引揃えてマンドレルに供給し、次いで
超音波振動ダイスとマンドレルの隙間(0.4mm)を通
し、この間超音波ダイスだけに超音波を付与し、超音波
振動20KHz、振幅20μmで接合、塑性加工し、0.75m/分
の引抜速度で引抜き:一方向強化(長さ方向)した内径
12mm×外径12.8mmのFRM製の連続パイプを得た。
Example 1 Preformed wire of 0.5 mm in diameter composed of SiC continuous fibers having a diameter of 14 to 15 μm and pure Al (volume content of fibers 40
%) In the preheat aligning section using the device shown in FIG. 1 (a).
Preheat to 300 ℃, align and supply to the mandrel, then pass through the gap (0.4 mm) between the ultrasonic vibration die and the mandrel, while applying ultrasonic waves only to the ultrasonic die, ultrasonic vibration 20 KHz, amplitude 20 μm Joined, plastically processed and drawn at a drawing speed of 0.75 m / min: One-way strengthened (length direction) inner diameter
A continuous pipe made of FRM having an outer diameter of 12 mm and an outer diameter of 12.8 mm was obtained.

実施例2 実施例1と同様のプリフォームワイヤを用い、本例では
内層は0゜方向、外層は45゜方向の2層に供給すること
により、内径12mm×外径13.6mmの複層2方向強化FRM製
パイプを作製した。この場合の引抜速度は0.75m/分と
し、超音波はダイス、マンドレル共に付与し、おのおの
20KHz、20μmの振動を与えた。また超音波振動ダイス
とマンドレルの隙間は0.6mmであった。
Example 2 The same preform wire as in Example 1 was used, and in this example, the inner layer was fed in two layers of 0 ° direction and the outer layer was in 45 ° direction, so that two layers of inner diameter 12 mm × outer diameter 13.6 mm were bidirectional. A reinforced FRM pipe was made. The drawing speed in this case was 0.75 m / min, ultrasonic waves were applied to both the die and mandrel, and
A vibration of 20 KHz and 20 μm was applied. The gap between the ultrasonic vibration die and the mandrel was 0.6 mm.

上記実施例1〜2および比較例1〜2のFRM製パイプの
曲げ強度、曲げ弾性率および円環圧縮強度を測定し、得
た結果を第1表に示す。
The bending strength, bending elastic modulus, and annular compression strength of the FRM pipes of Examples 1 and 2 and Comparative Examples 1 and 2 were measured, and the obtained results are shown in Table 1.

(発明の効果) 以上説明してきたように、本発明の方法によると、強化
連続繊維とマトリックス金属を複合させたプリフォーム
ワイヤを用い、超音波振動を利用し、塑性加工によりパ
イプを形成するため、溶融含浸法と異なり低温で成形が
でき、これにより、プリフォームワイヤの強度を損わな
いで、高強度の連続繊維強化金属薄肉パイプが得られ
る。また繊維強化方向をパイプ軸に対し、0゜あるいは
所定の角度として構造また複層構造を自由に構成できる
という効果が得られる。
(Effects of the Invention) As described above, according to the method of the present invention, a preformed wire in which a reinforced continuous fiber and a matrix metal are combined is used, and ultrasonic vibration is utilized to form a pipe by plastic working. Unlike the melt impregnation method, molding can be performed at a low temperature, whereby a high-strength continuous fiber-reinforced thin metal pipe can be obtained without impairing the strength of the preform wire. Further, there is an effect that the structure or the multi-layered structure can be freely constructed by setting the fiber reinforced direction to 0 ° or a predetermined angle with respect to the pipe axis.

【図面の簡単な説明】 第1図(a)は本発明の繊維強化金属製パイプの連続製
造の概念図、 第1図(b)は第1図(a)の超音波ダイスの正面図、 第1図(c)は第1図(a)のX−X′線の断面図であ
る。 1……超音波ダイス、2……超音波マンドレル 3……予熱引揃部、4……引取部 5……プリフォームワイヤ 6……プリフォームワイヤ供給部 7……振動子
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 (a) is a conceptual diagram of continuous production of a fiber-reinforced metal pipe of the present invention, FIG. 1 (b) is a front view of the ultrasonic die of FIG. 1 (a), FIG. 1 (c) is a sectional view taken along the line XX 'in FIG. 1 (a). 1 ... Ultrasonic Die, 2 ... Ultrasonic Mandrel 3 ... Preheating Alignment Section, 4 ... Take-Up Section 5 ... Preform Wire 6 ... Preform Wire Supply Section 7 ... Transducer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】強化連続繊維をマトリックス金属と複合し
たプリフォームワイヤの環状に配列された供給部からプ
リフォームワイヤを予熱引揃ガイドに通して予熱し引揃
えて超音波振動マンドレル上に供給し、超音波振動ダイ
スとマンドレルとの隙間を通す間超音波振動エネルギー
によりプリフォームワイヤ同志を接合塑性加工すること
を特徴とする繊維強化金属製パイプの連続製造法。
1. A preform wire is fed from an annularly arranged feed portion of a preform wire in which reinforced continuous fibers are compounded with a matrix metal through a preheat aligning guide to preheat and align the preform wires and feed them onto an ultrasonic vibration mandrel. , A continuous manufacturing method of a fiber-reinforced metal pipe, characterized in that the preform wires are joined and plastic-formed by ultrasonic vibration energy while passing through a gap between the ultrasonic vibration die and the mandrel.
JP4317587A 1987-02-27 1987-02-27 Continuous production method of fiber reinforced metal pipe Expired - Lifetime JPH0753291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4317587A JPH0753291B2 (en) 1987-02-27 1987-02-27 Continuous production method of fiber reinforced metal pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4317587A JPH0753291B2 (en) 1987-02-27 1987-02-27 Continuous production method of fiber reinforced metal pipe

Publications (2)

Publication Number Publication Date
JPS63212013A JPS63212013A (en) 1988-09-05
JPH0753291B2 true JPH0753291B2 (en) 1995-06-07

Family

ID=12656545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4317587A Expired - Lifetime JPH0753291B2 (en) 1987-02-27 1987-02-27 Continuous production method of fiber reinforced metal pipe

Country Status (1)

Country Link
JP (1) JPH0753291B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7989028B2 (en) 2003-03-19 2011-08-02 Allied Tube & Conduit Corporation Continuously manufactured colored metallic products and method of manufacture of such products
CN115042439B (en) * 2022-06-16 2023-04-25 南京航空航天大学 Continuous fiber reinforced composite 3D printing head device and 3D printer

Also Published As

Publication number Publication date
JPS63212013A (en) 1988-09-05

Similar Documents

Publication Publication Date Title
KR101186458B1 (en) Metal-cladded metal matrix composite wire
US3615277A (en) Method of fabricating fiber-reinforced articles and products produced thereby
CA2555243C (en) Method for making metal cladded metal matrix composite wire
US4649060A (en) Method of producing a preform wire, sheet or tape fiber reinforced metal composite
JPH11508325A (en) Fiber reinforced aluminum matrix (base) composite material
US6082436A (en) Method of centrifugally casting reinforced composite articles
JP2007518876A (en) Filament winding for metal matrix composites
JPS5967336A (en) Manufacture of composite material
JPS5970736A (en) Composite material and its production
JPH0753291B2 (en) Continuous production method of fiber reinforced metal pipe
JP2002524887A (en) Composite wire with precious metal coating
WO2005054536A2 (en) Glass fiber metal matrix composites
WO2005053880A1 (en) Continuously formed metal matrix composite shapes
JP3296663B2 (en) Method for producing fiber or woven fabric whose surface is coated with ultrafine particles
TW200815182A (en) Solidified molded article including additive body having a varying diameter, amongst other things
JP3261874B2 (en) Method and apparatus for manufacturing composite material
JPH0568530B2 (en)
JP4290324B2 (en) Fiber reinforced composite material
JPH0790421A (en) Fiber reinforced composite metallic material and its production
JPS63109128A (en) Production of fiber reinforced composite metallic material
JPS62120446A (en) Production of fiber reinforced metallic composite material
JPS6225067B2 (en)
JPH01301827A (en) Manufacture of hybrid material
JPH1192841A (en) Production of parts made of metallic composite material
JPH07242959A (en) Reinforced metallic composite material formed by using chopped carbon fibers adhered with superfine particle