JPH0752723B2 - Impurity introduction method - Google Patents

Impurity introduction method

Info

Publication number
JPH0752723B2
JPH0752723B2 JP2309088A JP2309088A JPH0752723B2 JP H0752723 B2 JPH0752723 B2 JP H0752723B2 JP 2309088 A JP2309088 A JP 2309088A JP 2309088 A JP2309088 A JP 2309088A JP H0752723 B2 JPH0752723 B2 JP H0752723B2
Authority
JP
Japan
Prior art keywords
doping
diffusion source
plasma
impurities
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2309088A
Other languages
Japanese (ja)
Other versions
JPH01196816A (en
Inventor
裕一 広藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2309088A priority Critical patent/JPH0752723B2/en
Publication of JPH01196816A publication Critical patent/JPH01196816A/en
Publication of JPH0752723B2 publication Critical patent/JPH0752723B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体装置の製造方法であって特に、基板に
不純物を導入する方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for introducing impurities into a substrate.

従来の技術 従来より行なわれているSiウェーハへのドーピング層形
成の1方法として、ドーピング不純物やその化合物を含
む平板(固体拡散源)を用いる、固体拡散法がある。こ
の方法は、ウェーハとほぼ同形状の固体拡散源、及び、
Siウェーハを石英チューブ内に入れて、不活性ガス雰囲
気中で、常圧下に於て800℃〜1000℃の高温にする事に
より、不純物原子を拡散源からウェーハ表面に移動させ
て、不純物をSi中にドーピングするものである。〔R.E.
Tressler等.,ソリッド ステート テクノロジー(soli
d state technology)日本版,p54−60,12日(1984
年).〕 発明が解決しようとする課題 従来の固体拡散法では、拡散源を熱分解するために、少
なくとも800℃〜900℃程度の高温を要する為、サブミク
ロンの構造制御を必要とする微細化デバイスの作成に用
いると、前工程で導入した不純物が再拡散するという問
題点があった。この理由を、例えばAs固体拡散源(AlAs
O4)の場合について考える。AlAsO4は次式(*)の様な
分解反応を起す。
2. Description of the Related Art One conventional method for forming a doping layer on a Si wafer is a solid diffusion method using a flat plate (solid diffusion source) containing doping impurities and compounds thereof. This method comprises a solid-state diffusion source having almost the same shape as the wafer, and
Put a Si wafer in a quartz tube and raise it to a high temperature of 800 ° C to 1000 ° C under atmospheric pressure in an inert gas atmosphere to move impurity atoms from the diffusion source to the surface of the wafer to remove impurities. Doping inside. [RE
Tressler et al., Solid State Technology (soli
d state technology) Japan version, p54-60, 12th (1984
Year). Problems to be Solved by the Invention In the conventional solid diffusion method, in order to thermally decompose the diffusion source, a high temperature of at least about 800 ° C. to 900 ° C. is required. When it is used for production, there is a problem that the impurities introduced in the previous step re-diffuse. The reason for this is, for example, As solid diffusion source (AlAs
Consider the case of O 4 ). AlAsO 4 causes a decomposition reaction as shown in the following formula (*).

2AlAsO4(solid)Al2O3(solid)+As2O3(gas)+O2
(gas) ……(*) AlAsO4は熱分解を起し、生成されたAs2O3がSi表面へ飛
来し、表面に砒素を含む酸化膜が形成される。砒素原子
Asは基板表面の酸化膜中からSi中に熱拡散してドーピン
グ層を形成する。従って固体拡散源の熱分解温度より高
温にしないとAs2O3蒸気が発生しないので、ドーピング
はできない。その為、上記As固体拡散源を用いる場合、
850℃以上の温度を要した。
2AlAsO 4 (solid) Al 2 O 3 (solid) + As 2 O 3 (gas) + O 2
(Gas) ...... (*) AlAsO 4 undergoes thermal decomposition, the generated As 2 O 3 flies to the Si surface, and an oxide film containing arsenic is formed on the surface. Arsenic atom
As thermally diffuses from the oxide film on the substrate surface into Si to form a doping layer. Therefore, unless the temperature is higher than the thermal decomposition temperature of the solid diffusion source, As 2 O 3 vapor is not generated, so that doping cannot be performed. Therefore, when using the As solid diffusion source,
A temperature of 850 ° C or higher was required.

課題を解決するための手段 そこで、本発明においては、より低温でドーピングを行
なうことを目的として、例えばAlAsO4,SiP2O7又はBN等
を含む平板をSi基板とほぼ平行に配置し、不活性ガス又
はこれに微量の酸素を含むガス雰囲気中で、減圧下にお
いてプラズマを発生させる構成を含むことを特徴とする
方法を採用する。
Means for Solving the ProblemsTherefore, in the present invention, for the purpose of performing doping at a lower temperature, a flat plate containing, for example, AlAsO 4 , SiP 2 O 7 or BN is arranged substantially parallel to the Si substrate, and The method is characterized by including a configuration in which plasma is generated under reduced pressure in an active gas or a gas atmosphere containing a trace amount of oxygen.

作 用 本発明では、上記固体拡散源をプラズマ中に導入し、よ
り低温で固体拡散源が分解することを促進し、基板表面
にドーパントを含む層が形成され、この後低温で熱処理
を施すことにより、表面から不純物をドーピングする事
が可能である また、本発明は、減圧雰囲気下で行なわれる為、不純物
を含む分子の平均自由工程が大きくなり、例えば、Si基
板表面に設けられたトレンチ溝の中へも不純物を含む分
子が侵入し易く、溝側壁へも溝の深さ方向に均一なドー
ピング層を形成できる。
Operation In the present invention, the above solid diffusion source is introduced into plasma to promote decomposition of the solid diffusion source at a lower temperature, a layer containing a dopant is formed on the substrate surface, and then heat treatment is performed at a low temperature. By this, it is possible to dope impurities from the surface. Further, since the present invention is performed in a reduced pressure atmosphere, the mean free path of molecules containing impurities is increased, and for example, a trench groove provided on the surface of a Si substrate. Molecules containing impurities easily enter the inside of the groove, and a uniform doping layer can be formed on the side wall of the groove in the depth direction of the groove.

また減圧雰囲気にする事により、Si基板表面でのAs、P
の相対濃度を低くできるので1018cm3台の比較的低濃度
領域に於てもAs,Pの濃度の制御性も向上する。
Also, by setting a reduced pressure atmosphere, As and P on the Si substrate surface
Since the relative concentration of As can be lowered, the controllability of As and P concentrations is improved even in the relatively low concentration region of 10 18 cm 3 .

実施例 図は本発明の1実施例として、減圧プラズマ雰囲気での
基板熱処理機構を有するドーピング装置の断面図を示
す。石英チューブ5内に、AlAsO4を表面に含んだウェー
ハと同形状のAs固体拡散源6(例えば、カーボランダム
社製、AS1000L)とSiウェーハ7を、1枚の固体拡散源
の両側に、1枚づつ配置した石英ボート8を挿入する。
雰囲気ガスとしては純度6Nのアルゴン(Ar)と5000ppm
酸素(O2)を含む、アルゴン/酸素の混合気体を使用す
る。アルゴンの流量を600cc/分、アルゴン/酸素の混合
気体の流量を100cc/分に設定して、酸素の含有量を約70
0ppmとする。
EXAMPLE FIG. 1 shows a cross-sectional view of a doping apparatus having a substrate heat treatment mechanism in a low pressure plasma atmosphere as an example of the present invention. In a quartz tube 5, an As solid diffusion source 6 (for example, AS1000L manufactured by Carborundum Co.) having the same shape as the wafer containing AlAsO 4 on the surface and a Si wafer 7 are provided on both sides of one solid diffusion source. The quartz boats 8 arranged one by one are inserted.
Argon (Ar) with a purity of 6N and 5000ppm as atmosphere gas
A mixed gas of argon / oxygen containing oxygen (O 2 ) is used. The flow rate of argon is 600cc / min, the flow rate of the mixed gas of argon / oxygen is 100cc / min, and the oxygen content is about 70.
Set to 0 ppm.

チューブ内は、メカニカルポンプにより0.2Torrの減圧
雰囲気9に設定し、チューブ内温度は、外部ヒータ10に
より400℃に設定する。これは、プラズマにより温度は
上昇するが、これでは基板とボートの接触部での熱伝導
により基板面内の温度が不均一になるので、外部ヒータ
10により温度を制御し、均一性を向上させる為である。
この状態で、石英管内部のプラズマ電極12,13に高周波
電力と、直流バイアス電圧を印加する。この場合、高周
波としては13.56MHz,直流バイアス電圧は数百ボルト印
加した。
The inside of the tube is set to a reduced pressure atmosphere 9 of 0.2 Torr by a mechanical pump, and the temperature inside the tube is set to 400 ° C. by an external heater 10. This is because the temperature rises due to the plasma, but this causes the temperature inside the substrate surface to become non-uniform due to heat conduction at the contact portion between the substrate and the boat, so an external heater
This is because the temperature is controlled by 10 to improve the uniformity.
In this state, high frequency power and DC bias voltage are applied to the plasma electrodes 12 and 13 inside the quartz tube. In this case, a high frequency of 13.56 MHz and a DC bias voltage of several hundred volts were applied.

この時、分子の平均自由工程は、5μm程度になる事か
ら、5μm以下の深さのトレンチ溝には、底面でも不純
物原子の到達量は表面と変わりなく溝側壁2にも深さに
関係なく均一にドーピング層3を形成できる。なお、プ
ラズマを用いない場合、6インチ径のAs固体拡散源6の
1枚当りから熱分解して出てくるAs2O3の量は、900℃、
酸素700ppmを含んだアルゴン雰囲気では、30分間の熱処
理により、4.5×1017ケ発生することが、固体拡散源の
重量減少量から計算して得られた。減圧プラズマ雰囲気
9においては、それ以上のAsを発生させることが可能で
この量は、6インチウェーハを使って、トレンチ構造の
4MDRAMを製造する場合、トレンチ溝側壁に1×1018/cm3
程度の濃度のAsをドーピングする際のAsの必要量が約10
15ケ/ウェーハである事から、発生量との間に約3桁の
差を有しており、Asの基板への付着係数、及び、As2O3
として排気される量を考慮しても、十分な量である。
At this time, since the mean free path of the molecule is about 5 μm, the amount of impurity atoms reaching the trench groove having a depth of 5 μm or less is the same as that on the bottom surface regardless of the depth. The doping layer 3 can be formed uniformly. If plasma is not used, the amount of As 2 O 3 that is thermally decomposed from one As solid diffusion source 6 having a diameter of 6 inches is 900 ° C.
In an argon atmosphere containing 700 ppm of oxygen, it was found from the weight loss of the solid diffusion source that 4.5 × 10 17 cells were generated by the heat treatment for 30 minutes. In the low-pressure plasma atmosphere 9, it is possible to generate more As, and this amount is larger than that of a trench structure using a 6-inch wafer.
When manufacturing 4M DRAM, 1 × 10 18 / cm 3 on the trench sidewall
The required amount of As is about 10 when doping As with a certain concentration.
Since there are 15 wafers / wafer, there is a difference of about 3 digits from the generated amount, and the adhesion coefficient of As to the substrate and As 2 O 3
It is a sufficient amount even if the amount exhausted as is considered.

また、プラズマ発生機構として、石英管の周囲に、高周
波コイルを巻いた物も使用できる。この場合、管内のプ
ラズマの均一性が向上する。
Further, as the plasma generating mechanism, a high frequency coil wound around a quartz tube can be used. In this case, the uniformity of plasma in the tube is improved.

発明の効果 以上のように、本発明を用いると、400℃の低温でもAs
やP等をドーピングすることができる。これは、熱拡散
のみではなく、プラズマ中にSi等の基板を曝すことによ
り、基板中に不純物が導入される効果を含むものであ
る。従って、前工程で形成された不純物導入領域内の不
純物が熱拡散により再分布することは極めて少なくする
ことができる。
As described above, according to the present invention, As
Or P or the like can be doped. This includes not only thermal diffusion but also the effect of introducing impurities into the substrate by exposing the substrate such as Si to plasma. Therefore, redistribution of impurities in the impurity introduction region formed in the previous step due to thermal diffusion can be extremely reduced.

しかも、本発明の減圧プラズマ雰囲気下に於ける不純物
ドーピング方法を用いる事により、不純物種の平均自由
工程が長くなりトレンチ溝側壁への均一ドーピングが可
能になった。又、開孔0.5μm,3μm深さのトレンチ溝へ
のドーピング量の精密制御を、1018cm-3のオーダーで可
能になった。又、低温、かつ減圧雰囲気で酸素の巻き込
みを押える事により、基板表面に酸化膜が形成される事
を防ぎ、制御性,均一性,再現性の良いドーピングを可
能にした。
Moreover, by using the impurity doping method in the low-pressure plasma atmosphere of the present invention, the mean free path of the impurity species is lengthened, and the sidewall of the trench groove can be uniformly doped. In addition, the precise control of the doping amount into the trench groove with the opening of 0.5 μm and 3 μm depth has become possible on the order of 10 18 cm −3 . In addition, by suppressing the entrainment of oxygen in a low temperature and reduced pressure atmosphere, formation of an oxide film on the substrate surface was prevented, and doping with good controllability, uniformity, and reproducibility was made possible.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の方法を用いたドーピング装置の一構成例を
示す構成図である。 5……石英チューブ、6……As固体拡散源、7……Siウ
ェーハ、8……石英ボート、9……減圧雰囲気、10……
外部ヒータ、12,13……プラズマ発生電極。
The figure is a block diagram showing an example of the configuration of a doping apparatus using the method of the present invention. 5 ... Quartz tube, 6 ... As solid diffusion source, 7 ... Si wafer, 8 ... Quartz boat, 9 ... Reduced pressure atmosphere, 10 ...
External heater, 12, 13 ... Plasma generating electrode.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ドーピング不純物の化合物を含む平板と複
数の半導体基板をほぼ平行に対向させ、不活性ガス、又
は該不活性ガスに微量の酸素を含むガス雰囲気中で、減
圧プラズマを発生させる不純物導入方法。
1. An impurity for generating a low-pressure plasma in an inert gas or in a gas atmosphere containing a small amount of oxygen in the inert gas, with a flat plate containing a compound of a doping impurity and a plurality of semiconductor substrates facing each other substantially in parallel. Introduction method.
【請求項2】ドーピング不純物の化合物として、AlAs
O4,SiP2O7,又はBNを含む特許請求の範囲第1項記載の不
純物導入方法。
2. AlAs as a compound of doping impurities
The method of introducing impurities according to claim 1, which contains O 4 , SiP 2 O 7 , or BN.
JP2309088A 1988-02-02 1988-02-02 Impurity introduction method Expired - Lifetime JPH0752723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2309088A JPH0752723B2 (en) 1988-02-02 1988-02-02 Impurity introduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2309088A JPH0752723B2 (en) 1988-02-02 1988-02-02 Impurity introduction method

Publications (2)

Publication Number Publication Date
JPH01196816A JPH01196816A (en) 1989-08-08
JPH0752723B2 true JPH0752723B2 (en) 1995-06-05

Family

ID=12100729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2309088A Expired - Lifetime JPH0752723B2 (en) 1988-02-02 1988-02-02 Impurity introduction method

Country Status (1)

Country Link
JP (1) JPH0752723B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102933897B (en) * 2010-09-28 2014-07-16 李冰 Lamp and method for generating diffuse reflection light
JP5263266B2 (en) * 2010-11-09 2013-08-14 パナソニック株式会社 Plasma doping method and apparatus

Also Published As

Publication number Publication date
JPH01196816A (en) 1989-08-08

Similar Documents

Publication Publication Date Title
Nishizawa et al. Silicon molecular layer epitaxy
JPH06168922A (en) Vapor etching method of silicon
KR20010063478A (en) Method of forming an aluminum oxide film in a semiconductor device
US5479875A (en) Formation of highly oriented diamond film
JPH0878691A (en) Method and apparatus for processing gate insulating film
US4152182A (en) Process for producing electronic grade aluminum nitride films utilizing the reduction of aluminum oxide
US4246296A (en) Controlling the properties of native films using selective growth chemistry
US5304514A (en) Dry etching method
JP3130906B2 (en) Method of implanting impurities into semiconductor inner wall
JPH0752723B2 (en) Impurity introduction method
US6551947B1 (en) Method of forming a high quality gate oxide at low temperatures
JPS5884111A (en) Improved plasma deposition for silicon
JPH0245326B2 (en)
JPH0253097B2 (en)
EP0504857B1 (en) Process of diffusing boron into semiconductor wafers
JP2596027B2 (en) Compound semiconductor crystal growth method and crystal growth apparatus
JP2735190B2 (en) Molecular beam epitaxy growth method and growth apparatus
JPS61240635A (en) Dry etching method
JPS63168024A (en) Formation of semiconductor impurity layer
JP2805243B2 (en) Prevention of precipitation
JPH05206520A (en) Manufacture of p-type ii-vi compound semiconductor
JPH0143454B2 (en)
JP2617485B2 (en) (III) Heat treatment method for -V compound semiconductor
US5275692A (en) Method for fabricating integrated circuits
US3287188A (en) Method for producing a boron diffused sillicon transistor