JPH0752143A - Moisture measuring device for concrete - Google Patents

Moisture measuring device for concrete

Info

Publication number
JPH0752143A
JPH0752143A JP5220558A JP22055893A JPH0752143A JP H0752143 A JPH0752143 A JP H0752143A JP 5220558 A JP5220558 A JP 5220558A JP 22055893 A JP22055893 A JP 22055893A JP H0752143 A JPH0752143 A JP H0752143A
Authority
JP
Japan
Prior art keywords
concrete
pipe
rays
neutron beam
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5220558A
Other languages
Japanese (ja)
Other versions
JP3221988B2 (en
Inventor
Takashi Iwashimizu
隆 岩清水
Nobunao Murakami
信直 村上
Sadatoshi Ono
定俊 大野
Takashi Nishizaki
隆氏 西崎
Yasuhiko Yoshioka
保彦 吉岡
Masao Otake
将夫 大竹
Yoshibumi Kumahara
義文 熊原
Hiroshi Tamura
博 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KENCHIKU SOGO SHIKENJO
Takenaka Komuten Co Ltd
Soil and Rock Engineering Co Ltd
Original Assignee
NIPPON KENCHIKU SOGO SHIKENJO
Takenaka Komuten Co Ltd
Soil and Rock Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KENCHIKU SOGO SHIKENJO, Takenaka Komuten Co Ltd, Soil and Rock Engineering Co Ltd filed Critical NIPPON KENCHIKU SOGO SHIKENJO
Priority to JP22055893A priority Critical patent/JP3221988B2/en
Publication of JPH0752143A publication Critical patent/JPH0752143A/en
Application granted granted Critical
Publication of JP3221988B2 publication Critical patent/JP3221988B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Abstract

PURPOSE:To measure the unit water content of cast concrete. CONSTITUTION:A neutron beam irradiation device 2 irradiating the outer surface of a pipe sending concrete under pressure with neutron beam to transmit neutron beam through the pipe 1 and the concrete sent under pressure, a moisture meter 3 measuring the attenuation factor of the neutron beam transmitted through the concrete sent under pressure, a gamma-ray irradiation device 4 irradiating the outer surface of the pipe 1 with gamma-rays to transmit the same through the pipe 1 and the concrete sent under pressure and a density meter 5 measuring the attenuation factor of gamma-rays transmitted through the pipe 1 and the concrete sent under pressure are provided. The measured attenuation factors of neutron beam and gamma-rays are inputted to a microcomputer 6 to continuously operate unit water quantity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コンクリートの水分量
測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water content measuring device for concrete.

【0002】[0002]

【従来の技術】近年では、コンクリートの1立米当りの
水量、すなわち、単位水量の上限が低くなってきてお
り、AE減水剤より減水性能の高い高性能AE減水剤が
使用されるようになっている。また、RC超高層集合住
宅を中心に高強度コンクリートが盛んに使用されるよう
になり、その高強度コンクリートの製造にも高性能AE
減水剤が使用されている。
2. Description of the Related Art In recent years, the upper limit of the amount of water per cubic meter of concrete, that is, the upper limit of the unit amount of water, has decreased, and high-performance AE water reducing agents having higher water reducing performance than AE water reducing agents have come to be used. There is. In addition, high-strength concrete has come to be used mainly in RC super high-rise apartments, and high-performance AE is also used for manufacturing the high-strength concrete.
A water reducing agent is used.

【0003】従来のAE減水剤では、標準添加量が定め
られていたために、コンクリートのスランプが単位水量
に比例して変動していた。そのために、AE減水剤を用
いたコンクリートの場合であれば、作業所などの現場へ
の搬入時の受け入れ検査において、スランプの試験をす
ることにより、単位水量を測定できた。
In the conventional AE water reducing agent, since the standard addition amount was set, the slump of concrete fluctuated in proportion to the unit water amount. Therefore, in the case of concrete using the AE water reducing agent, the unit water amount could be measured by performing a slump test in the acceptance inspection at the time of delivery to a site such as a work place.

【0004】ところが、高性能AE減水剤の場合、その
標準添加量が明確に定められていないために、高性能A
E減水剤を用いたコンクリートのスランプは、単位水量
の変動のみならず、高性能AE減水剤の使用量・効果に
よって変動するため、スランプの試験によって単位水量
を測定することが困難になっている。
However, in the case of the high-performance AE water reducing agent, the high-performance AE water reducing agent is not specified because the standard addition amount is not clearly defined.
The concrete slump using the E water-reducing agent varies not only with the fluctuation of the unit water amount but also with the usage amount and effect of the high-performance AE water-reducing agent, making it difficult to measure the unit water amount by the slump test. .

【0005】そこで、従来では、主として高強度コンク
リートの単位水量の測定を目的として開発された高周波
加熱法やL型フロー試験を実施工に適用し、コンクリー
トの単位水量を測定している。
Therefore, conventionally, the high-frequency heating method and the L-type flow test, which have been developed mainly for the purpose of measuring the unit water content of high-strength concrete, are applied to the construction work to measure the unit water content of the concrete.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来例
の高周波加熱法やL型フロー試験は、いずれも打設する
コンクリートから一部をサンプリングして行うものであ
り、打設するコンクリートすべてにおいて単位水量を測
定できるものでは無く、コンクリートの品質を十分に管
理できない欠点があった。また、測定作業そのものの実
施に手間を要する欠点があった。
However, the high-frequency heating method and the L-type flow test in the conventional examples are all carried out by sampling a part of the concrete to be placed, and the unit water amount is set in all the concrete to be placed. However, there is a drawback that the quality of concrete cannot be adequately controlled. In addition, there is a drawback that it takes time to carry out the measurement work itself.

【0007】本発明は、このような事情に鑑みてなされ
たものであって、打設するコンクリートすべての単位水
量を測定できるものを提供することを目的とする。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide one capable of measuring the unit water amount of all concrete to be placed.

【0008】[0008]

【課題を解決するための手段】本発明のコンクリートの
水分量測定装置は、上述のような目的を達成するため
に、コンクリートを圧送する配管の外表面から中性子線
を照射して、配管および圧送コンクリートを透過させる
中性子線照射装置と、配管および圧送コンクリートを透
過した中性子線の減衰率を計測する水分計と、配管の外
表面からγ線を照射して、配管および圧送コンクリート
を透過させるγ線照射装置と、配管および圧送コンクリ
ートを透過したγ線の減衰率を計測する密度計と、水分
計で計測された中性子線の減衰率と密度計で計測された
γ線の減衰率とから単位水量を演算する水量演算手段と
を備えて構成する。
In order to achieve the above-mentioned object, a concrete water content measuring apparatus of the present invention irradiates a neutron beam from an outer surface of a pipe for pumping concrete, and the pipe and the pump are fed. Neutron irradiation device that transmits concrete, moisture meter that measures the attenuation rate of neutron rays that have penetrated pipes and pumped concrete, and gamma rays that irradiate γ rays from the outer surface of the pipes and that transmit pipes and pumped concrete The irradiation unit, the density meter that measures the attenuation rate of γ-rays that have passed through the pipes and pumped concrete, the attenuation rate of neutron rays measured by the moisture meter and the attenuation rate of γ-rays measured by the density meter And a water amount calculating means for calculating

【0009】[0009]

【作用】本発明のコンクリートの水分量測定装置の構成
によれば、中性子線およびγ線それぞれの特性に着目し
て圧送コンクリートの単位水量を連続的に測定すること
ができる。すなわち、中性子線照射装置から投射される
中性子線が、圧送コンクリートを透過していく過程で、
骨材中の水分を構成する水素原子と弾性散乱を引き起こ
し、水分計で計測される中性子線の量がコンクリートの
単位体積中に含まれる水分量に比例して指数関数的に減
少する。一方、γ線照射装置から投射されるγ線が圧送
コンクリートを透過していく過程においての吸収度合い
が、コンクリートの密度に比例し、密度計で計測される
γ線の量がコンクリートの湿潤密度に比例して指数関数
的に減少する。これらのことに着目し、水分計で計測さ
れた中性子線の減衰率と密度計で計測されたγ線の減衰
率とから単位水量を演算し、圧送コンクリートの単位水
量を連続的に測定することができる。
According to the structure of the concrete water content measuring apparatus of the present invention, the unit water content of the pumped concrete can be continuously measured by paying attention to the characteristics of each of neutron rays and γ rays. That is, the neutron beam projected from the neutron beam irradiation device, in the process of passing through the pumped concrete,
The amount of neutron rays measured by a moisture meter decreases exponentially in proportion to the amount of water contained in the concrete, which causes elastic scattering with hydrogen atoms that make up the water in the aggregate. On the other hand, the degree of absorption of γ-rays projected from the γ-ray irradiator in the process of passing through pumped concrete is proportional to the density of concrete, and the amount of γ-rays measured by a densitometer determines the wet density of concrete. It decreases exponentially in proportion. Focusing on these points, calculate the unit water volume from the attenuation rate of neutron rays measured with a moisture meter and the attenuation rate of γ rays measured with a density meter, and continuously measure the unit water volume of pumped concrete. You can

【0010】[0010]

【実施例】次に、本発明の実施例を図面に基づいて詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0011】図1は、本発明に係るコンクリートの水分
量測定装置の実施例を示す縦断面図であり、コンクリー
ト圧送用の配管に接続される配管1に、互いに対向する
ように、中性子線照射装置2と水分計3とが取り付けら
れ、配管1の外表面から中性子線を照射して、配管1お
よび圧送コンクリートを透過させるとともに、その透過
した中性子線の減衰率を水分計3で計測するように構成
されている。
FIG. 1 is a vertical cross-sectional view showing an embodiment of a water content measuring apparatus for concrete according to the present invention, in which a neutron beam is applied to a pipe 1 connected to a pipe for concrete pumping so as to face each other. The apparatus 2 and the moisture meter 3 are attached, and neutron rays are irradiated from the outer surface of the pipe 1 to allow the pipe 1 and the pumped concrete to pass therethrough, and the attenuation rate of the transmitted neutron beam is measured by the moisture meter 3. Is configured.

【0012】また、配管1に、互いに対向するように、
γ線照射装置4と密度計5とが取り付けられ、配管1の
外表面からγ線を照射して、配管1および圧送コンクリ
ートを透過させるとともに、その透過したγ線の減衰率
を密度計5で計測するように構成されている。
Further, the pipe 1 is arranged so as to face each other.
The γ-ray irradiation device 4 and the densitometer 5 are attached, and γ-rays are radiated from the outer surface of the pipe 1 to allow the pipe 1 and the pressure-fed concrete to pass through, and the attenuation rate of the γ-ray that has passed through the densimeter 5 It is configured to measure.

【0013】水分計3および密度計5それぞれが水量演
算手段としてのマイクロコンピュータ6に接続され、中
性子線の減衰率とγ線の減衰率とから単位水量を演算す
るようになっており、次に説明する。
Each of the moisture meter 3 and the densitometer 5 is connected to a microcomputer 6 as a water amount calculating means, and the unit water amount is calculated from the attenuation rate of neutron rays and the attenuation rate of γ rays. explain.

【0014】先ず、配管1の透過時における減衰分を補
正するために、予め、コンクリートを圧送しない空の状
態でのγ線および中性子線それぞれの減衰率を求め、そ
れを分母とし、密度計5および水分計3で計測された減
衰率を分子とした密度計カウント比Rρおよび水分計カ
ウント比Rmそれぞれを用いた較正式(1)、(2)を
メモリに記憶させておく。
First, in order to correct the attenuation during transmission through the pipe 1, the attenuation rates of γ-rays and neutron rays in an empty state in which concrete is not pumped are obtained in advance, and these are used as the denominator, and the density meter 5 Further, calibration formulas (1) and (2) using the density meter count ratio Rρ and the moisture meter count ratio Rm, which have the attenuation rate measured by the moisture meter 3 as a numerator, are stored in the memory.

【数1】 [Equation 1]

【数2】 [Equation 2]

【0015】式(1)におけるρtは湿潤密度、Aおよ
びBはそれぞれ較正定数である。また、式(2)におけ
るρmは含水量、ρdは乾燥密度、CおよびDはそれぞ
れ較正定数、αは補正係数である。含水量ρmは、 110
℃の炉で乾燥させたときに24時間で蒸発する水分量であ
り、 ρm=ρw+ρq ・・・・(3) ここで、ρwは自由水量(ρtの中での単位水量に相
当)、ρqは吸水量である。また、補正係数αは、水分
計3が基本的には水素濃度計であるから、炉乾燥で蒸発
しない水素の量と、ある程度は水素原子以外の影響を受
けるので、その量を炉乾燥水分相当量に換算するための
ものである。
In equation (1), ρt is the wet density, and A and B are calibration constants. Further, in the equation (2), ρm is a water content, ρd is a dry density, C and D are calibration constants, and α is a correction coefficient. The water content ρm is 110
It is the amount of water that evaporates in 24 hours when dried in a furnace at ℃, ρm = ρw + ρq (3) where ρw is the free water amount (corresponding to the unit water amount in ρt) and ρq is The amount of water absorption. In addition, since the moisture meter 3 is basically a hydrogen concentration meter, the correction coefficient α is affected by the amount of hydrogen that does not evaporate during furnace drying and other than hydrogen atoms to some extent. It is for converting into quantity.

【0016】密度計5で計測されるγ線の減衰率から密
度計カウント比Rρが得られるので式(1)よりρtが
求められる。一方、水分計3で計測される中性子線の減
衰率から水分計カウント比Rmが得られるので式(2)
よりρm+α・ρdが求められる。ここで、乾燥密度ρ
d=ρt−ρmであるので、次式(4)および(5)の
ようにして含水量ρmが求められる。
Since the density meter count ratio Rρ is obtained from the attenuation rate of γ rays measured by the density meter 5, ρt can be obtained from the equation (1). On the other hand, since the moisture meter count ratio Rm is obtained from the attenuation rate of the neutron beam measured by the moisture meter 3, the formula (2)
Therefore, ρm + α · ρd can be obtained. Where the dry density ρ
Since d = ρt−ρm, the water content ρm is obtained by the following equations (4) and (5).

【数3】 [Equation 3]

【数4】 [Equation 4]

【0017】すなわち、含水量ρmが、前述した水分計
3および密度計5それぞれで計測される中性子線および
γ線それぞれの減衰率によって求められる。また、乾燥
密度ρd=ρt−ρmであるから、この乾燥密度ρd
も、湿潤密度ρtと含水量ρmとから求められる。
That is, the water content ρm is obtained by the attenuation rate of each of the neutron ray and the γ ray measured by the moisture meter 3 and the density meter 5 described above. Further, since the dry density ρd = ρt−ρm, this dry density ρd
Is also determined from the wet density ρt and the water content ρm.

【0018】骨材、セメントも含めて平均吸水率Qが予
めわかっていれば、吸水量ρq=Q・ρdであるため、
自由水量ρwが求められる。この自由水量ρwは湿潤密
度ρtの中での水量であるから、コンクリートの調合上
での単位容積質量ρt0 での単位水量ρw0 は、
If the average water absorption rate Q including the aggregate and cement is known in advance, the water absorption amount ρq = Q · ρd.
The free water amount ρw is obtained. Since this free water amount ρw is the water amount in the wet density ρt, the unit water amount ρw 0 in the unit volume mass ρt 0 when mixing concrete is

【数5】 となる。[Equation 5] Becomes

【0019】このように、マイクロコンピュータ6にお
いて、較正式(1)、(2)をメモリに記憶させておく
とともに、較正定数A,B,C,D、補正係数αおよび
平均吸水率Qそれぞれを入力しておくことにより、コン
クリートの単位容積質量での単位水量を、水分計3およ
び密度計5それぞれで計測される中性子線およびγ線そ
れぞれの減衰率によって求めることができるのである。
As described above, in the microcomputer 6, the calibration equations (1) and (2) are stored in the memory, and the calibration constants A, B, C and D, the correction coefficient α and the average water absorption rate Q are respectively stored. By inputting it, the unit water amount per unit volume mass of concrete can be obtained by the attenuation rate of each of neutron ray and γ ray measured by the moisture meter 3 and the densitometer 5, respectively.

【0020】次に、上述コンクリートの水分量測定装置
を用いて行った確認実験について説明する。先ず、コン
クリートの使用材料ならびに調合について説明すると、
セメントとしては、普通ポルトランドセメント(住友セ
メント製)を、細骨材としては、本島産海砂(表乾比
重:2.56、吸水率:1.64%)と 尾山産砕砂(表乾比
重:2.57、吸水率:1.41%)とを6:4で混合した砂
(表乾比重:2.56、FM:2.70)を、粗骨材としては、
尾山産砕石(最大寸法:20mm、表乾比重:2.61、実績
率:58%、吸水率:0.99%)を、そして、混和剤として
は、高性能AE減水剤(ポゾリスNO. 70)をそれぞれ用
い、表−1の(a)の割合で調合した三種のものを供試
体として用いた。
Next, a confirmation experiment carried out using the concrete water content measuring apparatus will be described. First, when explaining the materials used and the mixing of concrete,
As the cement, ordinary Portland cement (made by Sumitomo Cement) was used, and as the fine aggregate, the main island sea sand (surface dry specific gravity: 2.56, water absorption rate: 1.64%) and Oyama crushed sand (surface dry specific gravity: 2.57, water absorption rate) : 1.41%) and sand mixed at a ratio of 6: 4 (surface dry specific gravity: 2.56, FM: 2.70), as coarse aggregate,
Oyama crushed stone (maximum size: 20 mm, surface dry specific gravity: 2.61, actual rate: 58%, water absorption rate: 0.99%) and a high-performance AE water reducing agent (Pozoris NO. 70) were used as admixtures. , Three types prepared in the proportion of (a) in Table 1 were used as test pieces.

【表1】 表−1の(a)中のCはセメント量を、Sは細骨材量
を、そして、Gは粗骨材量をそれぞれ示している。ま
た、表−1の(b)は、後述する測定試験結果を示す。
[Table 1] In Table 1 (a), C indicates the amount of cement, S indicates the amount of fine aggregate, and G indicates the amount of coarse aggregate. Moreover, (b) of Table-1 shows the measurement test result mentioned later.

【0021】上述のように調合した三種の供試体1、供
試体2、供試体3それぞれを、図2の確認実験に供する
概略構成の平面図に示すように、第1の生コン車7内に
入れ、そのコンクリートをポンプ車8により配管1およ
びブーム車9を通じて第2の生コン車10に圧送するよ
うに構成する。そして、ポンプ車8の吐出箇所に近い位
置で配管1に上述したコンクリートの水分量測定装置A
を取り付けるとともに、その前後に第1および第2の圧
力計11,12を付設する。
Each of the three types of specimen 1, specimen 2, and specimen 3 prepared as described above is placed in the first ready-mixed concrete truck 7 as shown in the plan view of the schematic configuration used for the confirmation experiment in FIG. The concrete is put in and pumped by the pump car 8 through the pipe 1 and the boom car 9 to the second ready-mixed concrete car 10. Then, the water content measuring device A for concrete described above in the pipe 1 at a position near the discharge point of the pump car 8
And the first and second pressure gauges 11 and 12 are attached before and after.

【0022】第1および第2の圧力計11,12によっ
てコンクリートを供給する圧力を調整し、その圧送速度
を低速20m3/hr、中速40m3/hr、高速80m3/hrと変化さ
せて前記供試体1、供試体2、供試体3それぞれを供給
し、その単位重量と単位水量とを計測し、各供試体1、
供試体2、供試体3それぞれの設定値と比較したとこ
ろ、表−1の(b)に示す測定試験結果を得た。なお、
供試体1については、低速での圧送途中でコンクリート
が閉塞状態になったため、中速および高速での圧送は行
わなかった。
The pressure for supplying concrete is adjusted by the first and second pressure gauges 11 and 12, and the pumping speed is changed to a low speed of 20 m 3 / hr, a medium speed of 40 m 3 / hr and a high speed of 80 m 3 / hr. Each of the specimen 1, the specimen 2, and the specimen 3 was supplied, and the unit weight and the unit water amount thereof were measured to obtain each specimen 1,
When compared with the set values of each of the specimen 2 and the specimen 3, the measurement test results shown in (b) of Table-1 were obtained. In addition,
For sample 1, the concrete was blocked during the low-speed pressure feeding, and therefore the medium-speed and high-speed pressure feeding was not performed.

【0023】また、各供試体1、供試体2、供試体3そ
れぞれの単位重量と単位水量の全データの平均値の経時
的変化を求めたところ、図3の(a)[供試体1の単位
重量]および(b)[供試体1の単位水量]、図4の
(a)[供試体2の単位重量]および(b)[供試体2
の単位水量]、ならびに、図5の(a)[供試体3の単
位重量]および(b)[供試体3の単位水量]それぞれ
のグラフに示す結果が得られた。なお、単位重量および
単位水量それぞれの測定値は、水分計3および密度計5
それぞれで計測される中性子線およびγ線それぞれの減
衰率を1秒ごとに入力し、それらの10秒ごとの値によっ
て単位重量および単位水量それぞれを演算し、更に、そ
の演算値に対し、例えば、計測開始後 120秒における12
個の計測値の平均値を最初の10秒間の測定値とし、次の
10〜 130秒における12個の計測値の平均値を次の10〜20
秒間の測定値とするといったように、12回分の平均をと
って求めた。
Further, the change with time of the average value of all the data of the unit weight and the unit water amount of each of the test piece 1, the test piece 2, and the test piece 3 was obtained. Unit weight] and (b) [Unit water amount of Specimen 1], (a) [Unit weight of Specimen 2] and (b) [Specimen 2] of FIG.
The unit water amount], and the graphs of (a) [unit weight of sample 3] and (b) [unit water amount of sample 3] in FIG. 5 were obtained. In addition, the measured values of the unit weight and the unit water amount are the moisture meter 3 and the density meter 5, respectively.
Attenuation rate of each neutron ray and γ ray measured in each is input every 1 second, unit weight and unit water amount are respectively calculated by the value every 10 seconds, and further, for the calculated value, for example, 12 at 120 seconds after starting measurement
The average of the measured values is used as the measured value for the first 10 seconds, and the next
The average value of 12 measured values in 10 to 130 seconds is calculated as the next 10 to 20.
It was calculated by taking the average of 12 times, such as the measured value for 2 seconds.

【0024】上記結果から、単位重量および単位水量そ
れぞれとして安定した測定値が得られるとともに、設定
値と比較しても1%程度の誤差しか無く、上記コンクリ
ートの水分量測定装置Aによって、単位重量および単位
水量それぞれを精度良く連続的に測定できていることが
明らかであった。
From the above results, stable measured values can be obtained as the unit weight and the unit water amount, respectively, and there is only an error of about 1% when compared with the set value. It was clear that the water content and the unit water content were continuously measured with high accuracy.

【0025】[0025]

【発明の効果】以上説明したように、本発明のコンクリ
ートの水分量測定装置によれば、中性子線およびγ線そ
れぞれの特性に着目して圧送コンクリートの単位水量を
連続的に測定することができるから、打設するコンクリ
ートすべての単位水量を測定してコンクリートの品質管
理を良好に行うことができ、安定した品質のコンクリー
ト構造体を構築するうえで極めて有用なコンクリートの
水分量測定装置を提供できるようになった。
As described above, according to the water content measuring apparatus for concrete of the present invention, it is possible to continuously measure the unit water content of pumped concrete by paying attention to the characteristics of neutron rays and γ rays. Therefore, it is possible to measure the unit water amount of all the concrete to be placed and perform good quality control of the concrete, and it is possible to provide a concrete water content measuring device that is extremely useful in constructing a concrete structure of stable quality. It became so.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るコンクリートの水分量測定装置の
実施例を示す縦断面図である。
FIG. 1 is a vertical cross-sectional view showing an embodiment of a concrete water content measuring apparatus according to the present invention.

【図2】確認実験に供する概略構成を示す平面図であ
る。
FIG. 2 is a plan view showing a schematic configuration used in a confirmation experiment.

【図3】(a)は供試体1の測定単位重量の経時的変化
を示すグラフ、(b)は供試体1の測定単位水量の経時
的変化を示すグラフである。
FIG. 3 (a) is a graph showing a change with time of a measurement unit weight of the sample 1, and FIG. 3 (b) is a graph showing a change with time of a measurement unit water amount of the sample 1.

【図4】(a)は供試体2の測定単位重量の経時的変化
を示すグラフ、(b)は供試体2の測定単位水量の経時
的変化を示すグラフである。
FIG. 4 (a) is a graph showing a change with time of a measurement unit weight of the sample 2, and FIG. 4 (b) is a graph showing a change with time of a measurement unit water amount of the sample 2.

【図5】(a)は供試体3の測定単位重量の経時的変化
を示すグラフ、(b)は供試体3の測定単位水量の経時
的変化を示すグラフである。
5 (a) is a graph showing a change with time of a measurement unit weight of the sample 3, and FIG. 5 (b) is a graph showing a change with time of a measurement unit water amount of the sample 3. FIG.

【符号の説明】[Explanation of symbols]

1…配管 2…中性子線照射装置 3…水分計 4…γ線照射装置 5…密度計 6…水量演算手段としてのマイクロコンピュータ DESCRIPTION OF SYMBOLS 1 ... Piping 2 ... Neutron beam irradiation device 3 ... Moisture meter 4 ... γ-ray irradiation device 5 ... Density meter 6 ... Microcomputer as water amount calculation means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩清水 隆 東京都江東区南砂二丁目5番14号 株式会 社竹中工務店技術研究所内 (72)発明者 村上 信直 東京都江東区南砂二丁目5番14号 株式会 社竹中工務店技術研究所内 (72)発明者 大野 定俊 東京都江東区南砂二丁目5番14号 株式会 社竹中工務店技術研究所内 (72)発明者 西崎 隆氏 東京都江東区南砂二丁目5番14号 株式会 社竹中工務店技術研究所内 (72)発明者 吉岡 保彦 東京都江東区南砂二丁目5番14号 株式会 社竹中工務店技術研究所内 (72)発明者 大竹 将夫 大阪府豊中市庄内栄町2丁目21番1号 ソ イルアンドロックエンジニアリング株式会 社内 (72)発明者 熊原 義文 大阪府豊中市庄内栄町2丁目21番1号 ソ イルアンドロックエンジニアリング株式会 社内 (72)発明者 田村 博 大阪府吹田市藤白台5丁目8番1号 財団 法人 日本建築総合試験所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Iwashimizu 2-5-14 Minamisuna, Koto-ku, Tokyo Inside the Takenaka Corporation Technical Research Institute (72) Inventor Nobunao Murakami 2-chome, Minamisuna, Koto-ku, Tokyo 5-14 No. 14 in Takenaka Corporation Technical Research Institute (72) Inventor Sadatoshi Ono 2-5-14 Minamisuna, Koto-ku, Tokyo Incorporated Takenaka Corporation Technical Research Institute (72) Inventor Takashi Nishizaki Tokyo 2-5-14 Minamisuna, Koto-ku, Ltd. Takenaka Corp. Technical Research Institute (72) Inventor Yasuhiko Yoshioka 2-5-14 Minamisuna, Koto-ku, Tokyo Incorporated Takenaka Corp. Technical Research Institute (72) Inventor Masao Otake 2-21-1, Shonai-cho, Toyonaka-shi, Osaka Soil and Rock Engineering Co., Ltd. In-house (72) Inventor Yoshifumi Kumahara Shoei-cho, Toyonaka-shi, Osaka Chome No. 21 No. 1 source yl and lock engineering shares meeting-house (72) inventor Hiroshi Tamura Suita, Osaka Prefecture Fujishirodai 5-chome No. 8 No. 1 Foundation Japanese architecture comprehensive test house

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 コンクリートを圧送する配管の外表面か
ら中性子線を照射して、前記配管および圧送コンクリー
トを透過させる中性子線照射装置と、前記配管および圧
送コンクリートを透過した中性子線の減衰率を計測する
水分計と、前記配管の外表面からγ線を照射して、前記
配管および圧送コンクリートを透過させるγ線照射装置
と、前記配管および圧送コンクリートを透過したγ線の
減衰率を計測する密度計と、前記水分計で計測された中
性子線の減衰率と前記密度計で計測されたγ線の減衰率
とから単位水量を演算する水量演算手段とを備えたこと
を特徴とするコンクリートの水分量測定装置。
1. A neutron beam irradiation device for irradiating neutron rays from the outer surface of a pipe for pumping concrete so as to pass through the pipe and the pump concrete, and an attenuation rate of the neutron beam passing through the pipe and the pump concrete. Moisture meter, a γ-ray irradiation device that irradiates γ-rays from the outer surface of the pipe, and transmits the pipe and the pumped concrete, and a density meter that measures the attenuation rate of the γ-ray that has passed through the pipe and the pumped concrete. And a water content calculation means for calculating a unit water content from the attenuation rate of neutron rays measured by the moisture meter and the attenuation rate of γ rays measured by the density meter, and the water content of concrete. measuring device.
JP22055893A 1993-08-12 1993-08-12 Concrete moisture meter Expired - Lifetime JP3221988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22055893A JP3221988B2 (en) 1993-08-12 1993-08-12 Concrete moisture meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22055893A JP3221988B2 (en) 1993-08-12 1993-08-12 Concrete moisture meter

Publications (2)

Publication Number Publication Date
JPH0752143A true JPH0752143A (en) 1995-02-28
JP3221988B2 JP3221988B2 (en) 2001-10-22

Family

ID=16752879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22055893A Expired - Lifetime JP3221988B2 (en) 1993-08-12 1993-08-12 Concrete moisture meter

Country Status (1)

Country Link
JP (1) JP3221988B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355811A (en) * 2001-05-31 2002-12-10 Ohbayashi Corp Apparatus for measuring unit water amount of fresh concrete
JP2003103513A (en) * 2001-09-28 2003-04-09 Nikko Co Ltd Method for controlling quality of ready-mixed concrete

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4020837B2 (en) * 2003-07-09 2007-12-12 東日本高速道路株式会社 Method for measuring moisture content of fresh concrete

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016595A (en) * 1973-06-08 1975-02-21
JPS5089094A (en) * 1973-12-07 1975-07-17
JPS6082257U (en) * 1983-11-11 1985-06-07 新日本製鐵株式会社 Powder moisture measuring device
JPH0447253A (en) * 1990-06-13 1992-02-17 Aasunikusu Kk Measuring apparatus for density and moisture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016595A (en) * 1973-06-08 1975-02-21
JPS5089094A (en) * 1973-12-07 1975-07-17
JPS6082257U (en) * 1983-11-11 1985-06-07 新日本製鐵株式会社 Powder moisture measuring device
JPH0447253A (en) * 1990-06-13 1992-02-17 Aasunikusu Kk Measuring apparatus for density and moisture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355811A (en) * 2001-05-31 2002-12-10 Ohbayashi Corp Apparatus for measuring unit water amount of fresh concrete
JP2003103513A (en) * 2001-09-28 2003-04-09 Nikko Co Ltd Method for controlling quality of ready-mixed concrete

Also Published As

Publication number Publication date
JP3221988B2 (en) 2001-10-22

Similar Documents

Publication Publication Date Title
Ouda et al. The effect of replacing sand by iron slag on physical, mechanical and radiological properties of cement mortar
Groot Effects of water on mortar-brick bond
Alderete et al. Capillary imbibition in mortars with natural pozzolan, limestone powder and slag evaluated through neutron radiography, electrical conductivity, and gravimetric analysis
Moradllo et al. Quantifying fluid absorption in air-entrained concrete using neutron radiography
CN109776033A (en) A kind of prefabricated components radiation protection C40 concrete and preparation method thereof
Bentz et al. VERDiCT: viscosity enhancers reducing diffusion in concrete technology
Castro et al. Using isothermal calorimetry to assess the water absorbed by fine LWA during mixing
JPH0752143A (en) Moisture measuring device for concrete
Moradllo et al. Using neutron radiography to quantify the settlement of fresh concrete
Luković et al. Moisture movement in cement-based repair systems monitored by X-ray absorption
Saafan et al. Strength and nuclear shielding performance of heavyweight concrete experimental and theoretical analysis using WinXCom program
Yun et al. Influence of colloidal silica and silica fume on the rheology and mechanical properties of high-performance shotcrete
Otoo et al. Enhancing the radiographic imaging of void defects in grouts by attenuation coefficient modification of grouting materials
Luo et al. Influence of corrosion inhibitors on concrete transport properties
JP3525099B2 (en) Method and apparatus for producing concrete
JP3715559B2 (en) Quality control method of ready-mixed concrete
KOŤÁTKOVÁ et al. The effect of superplasticizers on the properties of gamma irradiated cement pastes
JP4555244B2 (en) Unit water measurement method for fresh concrete
JP6180019B2 (en) Unit water measurement method for fresh concrete or fresh mortar
Simon et al. On the efficacy of concrete produced using Nigerian cement in shielding gamma and X-ray facilities
CN107382194B (en) Preparation method of anti-ray concrete
Robertson The impact of water and C3A on Portland cement hydration
JP2883289B2 (en) Method and apparatus for measuring water content of aggregate in batcher plant
JP2004163317A (en) Method and instrument for measuring unit water amount for ready-mixed concrete
Bouchelil et al. Quantifying Impact of Internally Cured Concrete on Duration of External Curing

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070817

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 12

EXPY Cancellation because of completion of term