JPH0752052A - Super-abrasive grain electrodeposited cutting blade - Google Patents

Super-abrasive grain electrodeposited cutting blade

Info

Publication number
JPH0752052A
JPH0752052A JP15164994A JP15164994A JPH0752052A JP H0752052 A JPH0752052 A JP H0752052A JP 15164994 A JP15164994 A JP 15164994A JP 15164994 A JP15164994 A JP 15164994A JP H0752052 A JPH0752052 A JP H0752052A
Authority
JP
Japan
Prior art keywords
cutting blade
chip channel
electrodeposited
cutting
abrasive grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15164994A
Other languages
Japanese (ja)
Inventor
Shoichi Murakami
正一 村上
Kenichiro Oshita
賢一郎 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryobi Ltd
Original Assignee
Ryobi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryobi Ltd filed Critical Ryobi Ltd
Priority to JP15164994A priority Critical patent/JPH0752052A/en
Publication of JPH0752052A publication Critical patent/JPH0752052A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PURPOSE:To easily provide the desired cutting speed and the cutting length of a workpiece in a super abrasive grain electrodeposited cutting blade having a super abrasive grain electrodeposited layer electrodeposited on the outer circumferential part of a base metal by setting a chip channel ratio showing the electrodeposited condition of the abrasive grains in a decided range. CONSTITUTION:A circular cutting blade 10 is provided with an electrodeposited layer 4 on the outer circumferential edge part of a circular base metal 1, and the electrodeposited layer 4 is constituted so that super brasive grains 2a, 2b,... such as diamonds or CBN are electrodeposited through holding plating 3. In this case, all spaces between adjoining abrasive grains in the circumferential direction of the cutting blade (chip channel width) a1, a2,... are summed up, and the total is divided by the number of the all abrasive grains on the circumference so as to obtain the mean chip channel width T, and when the mean grain diameter of the abrasive grains is set (d), the electrodeposition is performed so that the chip channel ratio T/d is in the range of 0.2-5. Hereby the cutting speed and the life of the cutting blade can be improved, and in addition smooth discharge of chips can be performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超砥粒電着切断刃に関
し、特に、台金の外周部に電着によりダイヤモンドやC
BN等の超砥粒を固着した超砥粒電着切断刃に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superabrasive electrodeposition cutting blade, and more particularly to diamond or C by electrodeposition on the outer periphery of a base metal
The present invention relates to a superabrasive grain electrodeposition cutting blade to which superabrasive grains such as BN are fixed.

【0002】[0002]

【従来の技術】ポータブルカッター等で磁気タイル等の
硬脆材料を切断する場合、寿命の点からメタルボンド切
断刃が使われるが、切断速度が遅くチッピング(割れや
欠け)が生じやすい。また硬度が非常に高いダイヤモン
ドやCBN(Cubic Boron Nitride)は超砥粒の名のもと
に急速に用途が拡大されており、電着等により台金に一
体化される。しかし電着ダイヤモンド切断刃(以下、電
着切断刃)を使用すると、切断速度やチッピングは向上
するが、寿命が短くなり、特に乾式切断には使用されな
かった。
2. Description of the Related Art When cutting a hard brittle material such as a magnetic tile with a portable cutter or the like, a metal bond cutting blade is used from the viewpoint of life, but the cutting speed is slow and chipping (cracking or chipping) is likely to occur. In addition, diamond and CBN (Cubic Boron Nitride), which have extremely high hardness, are rapidly expanding in use under the name of superabrasive grains, and are integrated into a base metal by electrodeposition or the like. However, when an electrodeposited diamond cutting blade (hereinafter referred to as an electrodeposited cutting blade) was used, the cutting speed and chipping were improved, but the life was shortened, and it was not particularly used for dry cutting.

【0003】特公昭59−32267号公報は、台金の
端面と台金の表面及び裏面に千鳥状に溝を形成し、該溝
内に多数の超硬砥粒を電着するとともに、溝と反対側の
台金の面であって溝が形成されていない部分にも超硬砥
粒を接着剤により固着した切断刃について記載してい
る。
Japanese Examined Patent Publication No. 59-32267 discloses that staggered grooves are formed on the end surface of the base metal and the front and back surfaces of the base metal, and a large number of cemented carbide grains are electro-deposited in the grooves. It also describes a cutting blade in which cemented carbide particles are fixed by an adhesive also on the opposite surface of the base metal where no groove is formed.

【0004】また特開昭58−114863号公報は、
電着ダイヤモンド砥石について記載しており、通常の粒
径よりも小さい粒径、例えばメッシュサイズ200のダ
イヤモンド砥粒を通常の密度に比較してきわめて低密度
に分布して電着させ、ダイヤモンドの省資源化と、砥粒
の摩耗面積の低減による長寿命化を図っている。
Further, Japanese Patent Laid-Open No. 58-114863 discloses that
It describes an electrodeposited diamond grindstone, and a diamond abrasive grain having a grain size smaller than a normal grain size, for example, a mesh size of 200, is distributed at an extremely low density as compared with a normal grain size for electrodeposition to save diamond. We are aiming to extend the life of the product by using resources and reducing the wear area of the abrasive grains.

【0005】[0005]

【発明が解決しようとする課題】しかし特公昭59−3
2267号公報に記載された発明では、千鳥状に電着し
ていても、電着部自体は従来品と変わらず、1かたまり
に電着された部分が1つの刃となり刃数の増加には限界
がある。よって刃数が全体として少ないため切断速度は
増加しない。また千鳥状の構成のためのマスキングや溝
加工等、工程数が多くなるという欠点がある。
[Problems to be Solved by the Invention] However, JP-B-59-3
In the invention described in Japanese Patent No. 2267, even if the electrodes are electrodeposited in a zigzag manner, the electrodeposited portion itself is the same as the conventional product, and the portion electrodeposited in one block becomes one blade to increase the number of blades. There is a limit. Therefore, since the number of blades is small as a whole, the cutting speed does not increase. Further, there is a drawback that the number of steps is increased, such as masking and groove processing for the zigzag configuration.

【0006】また特開昭58−114863号公報記載
の発明では、研削速度との関係が明かでなく、単に砥粒
の粒径を小さくしたり、砥粒を台金上に粗に電着させる
ことのみでは、研削速度が低下することが予想される。
Further, in the invention described in Japanese Patent Laid-Open No. 58-114863, the relationship with the grinding speed is not clear, and the particle size of the abrasive grains is simply reduced, or the abrasive grains are roughly electrodeposited on the base metal. Only by doing so, it is expected that the grinding speed will decrease.

【0007】そこで本発明は上記従来の問題点を克服す
ると共に、砥粒の被削材への喰い込みが良好で、高温の
摩擦熱も生じず乾式での切断が可能であるとともに、切
削抵抗が小さく砥粒の長寿命化をもたらすことが可能で
あり、切削屑が良好に排泄され、結果的に切削速度の向
上を図れる超砥粒電着切断刃を提供することを目的とす
る。
In view of the above, the present invention overcomes the above-mentioned problems of the prior art, and the abrasive grains are satisfactorily incorporated into the work material, so that high-temperature frictional heat is not generated and dry cutting is possible, and the cutting resistance is high. It is an object of the present invention to provide a superabrasive grain electrodeposition cutting blade that is small in size, can prolong the life of the abrasive grains, excretes cutting waste satisfactorily, and consequently can improve the cutting speed.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明は、台金と、該台金の外周部に電着された超砥
粒電着層とを有する超砥粒電着切断刃において、該砥粒
の電着状態を示すチップチャンネル比を−0.2以上、
5以下とした超砥粒電着切断刃を提供している。該チッ
プチャンネル比は0以上、1.5以下であるのが特に好
ましい。
To achieve the above object, the present invention provides a superabrasive grain electrodeposition cutting having a base metal and a superabrasive grain electrodeposition layer electrodeposited on the outer periphery of the base metal. In the blade, the tip channel ratio showing the electrodeposition state of the abrasive grains is -0.2 or more,
A superabrasive grain electrodeposition cutting blade of 5 or less is provided. It is particularly preferable that the chip channel ratio is 0 or more and 1.5 or less.

【0009】[0009]

【作用】上記構成を有する本発明の超砥粒電着切断刃に
よると、チップチャンネル比が所定の範囲に設定されて
いるので、電着層における隣合う砥粒が切断刃円周回転
方向において互いに重なり合う可能性が極めて低く、個
々の砥粒が1つの刃として作用可能となるとともに、隣
合う砥粒が同方向において離れ過ぎてもいないために、
所望の切断速度、被削材切断長さを得ることができる。
チップチャンネル比が−0.2〜5の範囲にあること
で、超砥粒電着切断刃の寿命をある程度維持しながら良
好な切断速度にて切断が可能である。またチップチャン
ネル比を0〜1.5にすると、超砥粒電着切断刃の寿命
を更に延ばすことができる。
According to the superabrasive electrodeposition cutting blade of the present invention having the above-mentioned structure, since the chip channel ratio is set within the predetermined range, the adjacent abrasive particles in the electrodeposition layer are arranged in the circumferential direction of the cutting blade. It is extremely unlikely that they will overlap with each other, and individual abrasive grains can act as one blade, and since adjacent abrasive grains are not too far apart in the same direction,
It is possible to obtain a desired cutting speed and a desired work material cutting length.
When the chip channel ratio is in the range of -0.2 to 5, it is possible to cut at a good cutting speed while maintaining the life of the superabrasive grain electrodeposition cutting blade to some extent. When the chip channel ratio is 0 to 1.5, the life of the superabrasive electrodeposition cutting blade can be further extended.

【0010】[0010]

【実施例】本発明による超砥粒電着切断刃を円形切断ブ
レードに適用した1実施例について図1、図4、図6に
基づき説明する。円形切断ブレード10は、円形の台金
1と、その外周縁部に設けられた電着層4により構成さ
れる。電着層4はダイヤモンドやCBN等の超砥粒が電
着されることにより構成される。それらの粒径はメッシ
ュサイズで#50〜#60の範囲にある。電着は例えば
電気ニッケルメッキにより行なわれる。
EXAMPLE An example in which the superabrasive grain electrodeposition cutting blade according to the present invention is applied to a circular cutting blade will be described with reference to FIGS. 1, 4 and 6. The circular cutting blade 10 is composed of a circular base metal 1 and an electrodeposition layer 4 provided on the outer peripheral edge portion thereof. The electrodeposition layer 4 is formed by electrodeposition of superabrasive grains such as diamond and CBN. Their particle size is in the range of # 50 to # 60 in mesh size. Electrodeposition is performed by, for example, electroless nickel plating.

【0011】そして、電着はチップチャンネル比を−
0,2以上、5以下になるように行われる。ここでチッ
プチャンネル比の定義を図2に基づき説明する。 図2
(A)は切断刃を図1の矢印II方向から見た電着層4
の円周端面を示し、図2(B)は同切断刃を軸方向から
見たときの電着層4の円周部端面を示す。2a、2b、
2c、2d、・・・・は電着された超砥粒であり、3は
保持メッキである。これらの図で隣接する砥粒間の切断
刃円周方向の間隔、例えば砥粒2aとすぐ隣に電着され
た砥粒2bとの円周方向の間隔a1をチップチャンネル
幅と称する。そしてこれらの幅a1,a2、a3,a
4、・・・を全て加算して円周上にある全ての砥粒の個
数で除した値を平均チップチャンネル幅Tとする。なお
図2において、砥粒2cと2dのように砥粒が円周方向
で互いに重なった時には、間隔a3はマイナスとし、重
ならない時はプラスとして算出する。そして砥粒の平均
粒径をdとしたとき、T/dをチップチャンネル比
(r)として定義する。
Then, the electrodeposition reduces the chip channel ratio to −
It is performed so as to be 0, 2 or more and 5 or less. Here, the definition of the chip channel ratio will be described with reference to FIG. Figure 2
(A) is an electrodeposition layer 4 in which the cutting blade is viewed from the direction of arrow II in FIG.
2B shows a circumferential end face of the electrodeposition layer 4 when the cutting blade is viewed from the axial direction. 2a, 2b,
.. are electrodeposited superabrasive grains, and 3 is holding plating. In these figures, the gap between the adjacent abrasive grains in the circumferential direction of the cutting blade, for example, the gap a1 in the circumferential direction between the abrasive grain 2a and the abrasive grain 2b electrodeposited immediately next to it is called the chip channel width. And these widths a1, a2, a3, a
A value obtained by adding all 4, ... And dividing by the number of all the abrasive grains on the circumference is taken as the average chip channel width T. In FIG. 2, when the abrasive grains 2c and 2d overlap each other in the circumferential direction, the interval a3 is calculated as negative, and when they do not overlap each other, the interval is calculated as positive. When the average grain size of the abrasive grains is d, T / d is defined as the chip channel ratio (r).

【0012】本発明は、このチップチャンネル比が−
0.2以上、5,0以下となるように電着した切断刃で
ある。ここでチップチャンネル比が5を超えると、砥粒
が少なすぎて、それぞれの砥粒に作用する負荷が過大と
なり、切断速度を増してゆくと極端な砥粒の脱落が生じ
て寿命が低下する。実用上、チップチャンネル比の上限
を5とすれば、寿命は従来と変わらないまま高い切断速
度での切断が可能となる。またチップチャンネル比を−
0.2未満とすると、図3、図5に示されるような砥粒
の重なりが極端に生じ、砥粒2がわずかに摩耗しただけ
で多数の砥粒2が重なりあって被削材5に同時に接触す
るようになり、個々の砥粒に対する面圧が低下して被削
材5への喰い込みができず、摩擦のみが生じるようにな
る。そのことにより切断速度が極端に低下する。以上の
範囲は後述する実験(図9)からも明かとなる。
In the present invention, this chip channel ratio is −
It is a cutting blade electrodeposited so as to be 0.2 or more and 5,0 or less. If the chip channel ratio exceeds 5, the number of abrasive grains is too small, and the load acting on each abrasive grain becomes excessive. If the cutting speed is increased, the abrasive grains will fall off extremely and the life will be shortened. . In practice, if the upper limit of the chip channel ratio is set to 5, the cutting can be performed at a high cutting speed while maintaining the same life as the conventional one. In addition, the chip channel ratio
If it is less than 0.2, the abrasive grains are extremely overlapped as shown in FIGS. 3 and 5, and a large number of the abrasive grains 2 are overlapped with each other even if the abrasive grains 2 are slightly worn. As they come into contact with each other at the same time, the surface pressure on the individual abrasive grains is lowered, so that they cannot be bitten into the work material 5 and only friction occurs. As a result, the cutting speed is extremely reduced. The above range will be apparent from the experiment (FIG. 9) described later.

【0013】次に砥粒のメッシュサイズが#50/#6
0の場合のチップチャンネル比の具体的な調整方法につ
いて説明する。メッキ浴には、ワット浴(硫酸ニッケ
ル:300g/リットル、塩化ニッケル:50g/リッ
トル、ホウ酸:45g/リットル、光沢剤:10g/リ
ットル)を使用し、台金に砥粒を付着させるために3A
/dm2、50℃の条件で60分間電解する。チップチ
ャンネル比はめっき時間(電解時間)を変化させること
によって調整可能となる。そして未電着の余分な砥粒を
除去するために超音波洗浄(45KHz)が1分間行わ
れる。次に砥粒の付着を確実なものとするために保持メ
ッキとして4.5A/dm2、50℃の条件で、埋込率
が約70%になるまで電解することにより所望のチップ
チャンネル比を備えた電着層4が得られる。なお、ここ
で埋込率とは、メッキにより埋め込まれる砥粒の割合で
ある。たとえば、砥粒の平均粒径に対してその半分をメ
ッキにより保持した場合には、埋込率は50%と表示す
る。またチップチャンネル比はマスキングテープ等を台
金の外周端部に貼付けることによっても調整可能であ
る。また埋込率は砥粒径の55〜100%で良い。
Next, the abrasive grain mesh size is # 50 / # 6.
A specific method of adjusting the chip channel ratio in the case of 0 will be described. A watt bath (nickel sulfate: 300 g / liter, nickel chloride: 50 g / liter, boric acid: 45 g / liter, brightening agent: 10 g / liter) is used as the plating bath to attach abrasive grains to the base metal. 3A
Electrolysis is performed for 60 minutes under the conditions of / dm2 and 50 ° C. The chip channel ratio can be adjusted by changing the plating time (electrolysis time). Then, ultrasonic cleaning (45 KHz) is performed for 1 minute in order to remove excess abrasive grains that have not been electrodeposited. Next, in order to ensure the adherence of the abrasive grains, a desired chip channel ratio was provided by electrolyzing as a holding plating under conditions of 4.5 A / dm2 and 50 ° C until the embedding rate became about 70%. An electrodeposited layer 4 is obtained. Here, the embedding rate is the rate of the abrasive grains embedded by plating. For example, when half of the average grain size of the abrasive grains is held by plating, the embedding rate is displayed as 50%. The chip channel ratio can also be adjusted by attaching masking tape or the like to the outer peripheral edge of the base metal. The embedding rate may be 55 to 100% of the abrasive grain size.

【0014】次にチップチャンネル比(r)と切断刃の
寿命との関係を調べた実験について説明する。#50/
#60のダイヤモンド砥粒を直径105mm、厚さ1.
0mmの台金1の外周部に電気ニッケルめっきで仮止め
し、本発明品としてチップチャンネル比r=0.56と
なるように調整した。また比較材としてr=−0.82
となるように調整した。その後、電気ニッケルメッキで
埋込率を平均砥粒径の70%とし、完全に砥粒を保持
し、図1に示される切断ブレード10を作成した。図3
に示されるようにチップチャンネル比(r)が−0.8
2の比較材では砥粒同士の円周方向の重なりが多く存在
している。一方図4に示されるチップチャンネル比
(r)が0.56の本発明材材では砥粒同士の円周方向
の重なりがほとんど存在しない。
Next, an experiment for investigating the relationship between the chip channel ratio (r) and the life of the cutting blade will be described. # 50 /
A # 60 diamond abrasive grain having a diameter of 105 mm and a thickness of 1.
The outer peripheral portion of the base metal 1 of 0 mm was temporarily fixed by nickel electroplating, and the chip channel ratio r of the product of the present invention was adjusted to r = 0.56. As a comparative material, r = -0.82
Was adjusted so that After that, the embedding ratio was set to 70% of the average abrasive grain size by electroplating with nickel, and the abrasive grains were completely retained to prepare the cutting blade 10 shown in FIG. Figure 3
, The chip channel ratio (r) is -0.8.
In the comparative material of No. 2, there are many circumferential overlaps between the abrasive grains. On the other hand, in the material of the present invention having a chip channel ratio (r) of 0.56 shown in FIG. 4, there is almost no circumferential overlap between the abrasive grains.

【0015】上記の切断刃を用いて切断荷重2.0kg
f、切断回転数12,000rpmの切断条件で被削材
として磁器タイル(厚さ9mm、長さ200mm)を用
い、乾式で切断実験を行った。比較材としての切断ブレ
ード(r=−0.82)と本発明の切断ブレード(r=
0.56)の切断速度と切断長さの関係を図7に示す。
図7から明かなように、比較材は切削速度を8mm/秒
と遅くしても23mまでしか被削材を切断できなかった
が(寿命が23m)、本発明品では120mまで切断が
可能であり、飛躍的に寿命が延びていることがわかっ
た。
Cutting load of 2.0 kg using the above cutting blade
f, a cutting experiment was carried out by a dry method using a porcelain tile (thickness: 9 mm, length: 200 mm) as a work material under the cutting conditions of a cutting speed of 12,000 rpm. A cutting blade (r = -0.82) as a comparative material and a cutting blade of the present invention (r =
The relationship between the cutting speed of 0.56) and the cutting length is shown in FIG.
As is clear from FIG. 7, the comparative material can cut the work material up to 23 m even if the cutting speed is slowed down to 8 mm / sec (the life is 23 m), but the product of the present invention can cut up to 120 m. Yes, it was found that the life was dramatically extended.

【0016】次に、上述した条件にて、チップチャンネ
ル比のみを異ならせた種々切断ブレード試験片を制作し
た。そして上述したと同様の切断条件にて、チップチャ
ンネル比と切断長さ(寿命)との関係、及びチップチャ
ンネル比と平均切断速度との関係について調べた。それ
ぞれの実験結果を図8、図9にに示す。図9から明らか
なように、チップチャンネル比が−0.2〜5の範囲に
ある場合には、切断刃の寿命を維持しつつ所望の切断速
度での切削が可能であった。なおチップチャンネル比を
7とした場合には、切断刃の寿命が尽きて測定不能であ
った。また図8から明らかなように、チップチャンネル
比が0以上、1.5以下の場合には、切断刃の寿命が特
に良好であることが判った。
Next, under the above-mentioned conditions, various cutting blade test pieces having different chip channel ratios were produced. Then, under the same cutting conditions as described above, the relationship between the chip channel ratio and the cutting length (lifetime) and the relationship between the chip channel ratio and the average cutting speed were examined. The results of each experiment are shown in FIGS. 8 and 9. As is clear from FIG. 9, when the chip channel ratio was in the range of −0.2 to 5, it was possible to cut at the desired cutting speed while maintaining the life of the cutting blade. When the chip channel ratio was 7, the cutting blade was out of service life and could not be measured. Further, as is apparent from FIG. 8, it was found that the life of the cutting blade was particularly good when the chip channel ratio was 0 or more and 1.5 or less.

【0017】図9、図8に示される実験結果から類推す
ると、チップチャンネル比rが−0.2以下である場合
には、図3のように砥粒の重なり領域が多くなり、図5
に示すように切断時に切断刃が矢印A方向に回転してい
るとき、磁器タイルのような硬脆材料の切断をする場合
には、砥粒2が新しいときには砥粒2のエッジ部によっ
て切断可能であるが、砥粒2がわずかに摩耗すると多数
の砥粒2が重なりあって被削材5に同時に接触するた
め、個々の砥粒に対する面圧が低下し、被削材5への喰
い込み能力が低下し、被削材5に対する摩擦力が増加す
ると考えられる。またチップチャンネル比rが−0.2
以下だと、砥粒の重なり領域が増加するので研削屑が砥
粒間に詰り易くなる。上記面圧低下と研削屑の詰りとに
より、砥粒2と被削材5間に発熱が生じ、砥粒2の劣化
と被削材5の異常破壊が発生するので、砥粒の10〜2
0%程度しか切断に寄与せずに寿命となってしまうと考
えられる。よって実験結果からチップチャンネル比の下
限値を−0.2とするのが妥当である。
By analogy with the experimental results shown in FIGS. 9 and 8, when the chip channel ratio r is −0.2 or less, the abrasive grain overlapping region increases as shown in FIG.
When cutting the hard and brittle material such as porcelain tile when the cutting blade is rotating in the direction of arrow A at the time of cutting as shown in FIG. However, when the abrasive grains 2 are slightly worn, a large number of the abrasive grains 2 overlap and come into contact with the work material 5 at the same time, so that the surface pressure for each abrasive grain decreases, and the abrasive material 2 bites into the work material 5. It is considered that the ability is reduced and the frictional force with respect to the work material 5 is increased. Also, the chip channel ratio r is -0.2
When it is less than the above range, the overlapping area of the abrasive grains increases, and thus the grinding debris is likely to be clogged between the abrasive grains. Due to the decrease in surface pressure and the clogging of grinding dust, heat is generated between the abrasive grains 2 and the work material 5, and the deterioration of the abrasive grains 2 and the abnormal destruction of the work material 5 occur.
It is considered that only about 0% contributes to cutting and reaches the end of life. Therefore, from the experimental results, it is appropriate to set the lower limit of the chip channel ratio to -0.2.

【0018】更にチップチャンネル比を0より大きくし
た場合には、砥粒2e、2g・・・がわずかに摩耗した
としても面圧の低下の傾向は弱まり、図6に示すように
砥粒2e,2gが被削材5に喰い込みながら被削材5の
内部へ喰い込み、次の砥粒2fが被削材3のエッジ3a
に喰い込み易くなるとともに、更に次の砥粒は摩擦が生
じることなく連続的な切断ができると考えられる。また
研削屑6が砥粒間に位置することができ、円滑な排出が
可能となる。なお図6の鎖線7は研削前の被削材5の被
削面を意味する。
Further, when the chip channel ratio is made larger than 0, even if the abrasive grains 2e, 2g, ... Are slightly worn, the tendency of the decrease of the surface pressure is weakened, and as shown in FIG. 2 g bites into the work material 5 while biting into the work material 5, and the next abrasive grain 2 f is the edge 3 a of the work material 3.
It is considered that it is easier to bite into, and further abrasive grains can be continuously cut without causing friction. Further, the grinding dust 6 can be located between the abrasive grains, and the smooth discharge is possible. The chain line 7 in FIG. 6 means the work surface of the work material 5 before grinding.

【0019】また、チップチャンネル比の上限値を5と
することにより、上述したように切断刃の寿命を維持し
つつ所望の切断速度での切削が可能となる。更に上限値
を1.5とすれば、砥粒間の距離が更に適度なものとな
り、それぞれの砥粒に作用する被切断物からの衝撃力も
更に少なくなる。以上のことから、本技術分野で要求さ
れている一般的な寿命を維持しつつ切削速度を増加させ
るためにはチップチャンネル比rを−0.2以上、5以
下とする。また所望の切断速度を維持しつつ切断刃の寿
命を更に延ばすためには、チップチャンネル比rを0以
上、1.5以下とするのが特に好ましい。
By setting the upper limit of the chip channel ratio to 5, it becomes possible to cut at a desired cutting speed while maintaining the life of the cutting blade as described above. Further, if the upper limit value is set to 1.5, the distance between the abrasive grains becomes more appropriate, and the impact force from the object to be cut that acts on each abrasive grain is further reduced. From the above, in order to increase the cutting speed while maintaining the general life required in this technical field, the chip channel ratio r is set to -0.2 or more and 5 or less. Further, in order to further extend the life of the cutting blade while maintaining a desired cutting speed, it is particularly preferable that the chip channel ratio r is 0 or more and 1.5 or less.

【0020】[0020]

【発明の効果】以上詳述した本発明の超砥粒電着切断刃
によれば、砥粒と砥粒の間隔を所定の範囲に設定してい
るので、砥粒が被削材へ喰い込みやすくなり、切断刃の
切断速度や寿命を向上させることができる。また喰い込
みがスムーズであることから摩擦熱も生じにくい為、高
価な砥粒が有効に利用され、また乾式の切断も可能とな
る。更にチップチャンネル比がメタルボンドや従来の電
着切断刃に比べて大きいため切削屑の排泄がスムーズと
なり、速い切断速度を維持できるとともにチッピングも
小さくなる。そして台金自体の機械加工が不要であり、
チップチャンネル比をコントロールするだけの簡単な方
法で超砥粒電着切断刃が提供できるという利点がある。
According to the superabrasive grain electrodeposition cutting blade of the present invention described in detail above, the gap between the abrasive grains is set within a predetermined range, so that the abrasive grains bite into the work material. It becomes easier and the cutting speed and life of the cutting blade can be improved. Further, since the bite is smooth, frictional heat is unlikely to be generated, so expensive abrasive grains are effectively used, and dry cutting is also possible. Further, since the chip channel ratio is larger than that of the metal bond or the conventional electrodeposition cutting blade, the excretion of cutting waste is smoothed, a high cutting speed can be maintained, and chipping is reduced. And the machining of the base metal itself is unnecessary,
There is an advantage that the superabrasive grain electrodeposition cutting blade can be provided by a simple method of controlling the chip channel ratio.

【図面の簡単な説明】[Brief description of drawings]

【図1】円形超砥粒電着切断刃の平面図。FIG. 1 is a plan view of a circular superabrasive grain electrodeposition cutting blade.

【図2】(A)は図1の矢印II方向から見た切断刃の
最外周端面部分における電着層の模式拡大図であり、
(B)は切断刃の軸方向から見た最外周端面部分におけ
る電着層の模式拡大図。
2 (A) is a schematic enlarged view of an electrodeposition layer at the outermost peripheral end face portion of the cutting blade as viewed in the direction of arrow II in FIG.
(B) is a schematic enlarged view of the electrodeposition layer in the outermost peripheral end face portion viewed from the axial direction of the cutting blade.

【図3】チップチャンネル比rが−0.82である最外
周端面部分の電着層を示す模式拡大図。
FIG. 3 is a schematic enlarged view showing an electrodeposited layer on the outermost peripheral end face portion having a chip channel ratio r of −0.82.

【図4】本発明によるチップチャンネル比rが0.56
である最外周端面部分の電着層を示す模式拡大図
FIG. 4 shows a chip channel ratio r of 0.56 according to the present invention.
An enlarged schematic view showing the electrodeposited layer on the outermost peripheral end face portion

【図5】チップチャンネル比rが−0.82である電着
層を有する切断刃の切削状態示す概略図。
FIG. 5 is a schematic view showing a cutting state of a cutting blade having an electrodeposition layer having a chip channel ratio r of −0.82.

【図6】本発明によるチップチャンネル比rが0.56
である電着層を有する切断刃の切削状態示す概略図。
FIG. 6 shows a chip channel ratio r of 0.56 according to the present invention.
FIG. 6 is a schematic view showing a cutting state of a cutting blade having an electrodeposited layer.

【図7】本発明品と比較材における切断速度と切断長さ
との関係を示すグラフ。
FIG. 7 is a graph showing the relationship between the cutting speed and the cutting length of the product of the present invention and the comparative material.

【図8】チップチャンネル比と切断長さとの関係を示す
グラフ。
FIG. 8 is a graph showing the relationship between chip channel ratio and cutting length.

【図9】チップチャンネル比と平均切断速度との関係を
示すグラフ。
FIG. 9 is a graph showing the relationship between chip channel ratio and average cutting speed.

【符号の説明】[Explanation of symbols]

1 台金 2a,2b,2c,2d,2e 超砥粒 3 保持メッキ 4 電着層 1 base metal 2a, 2b, 2c, 2d, 2e super abrasive grain 3 holding plating 4 electrodeposition layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 台金と、該台金の外周部に電着された超
砥粒電着層とを有する超砥粒電着切断刃において、該砥
粒の電着状態を示すチップチャンネル比を−0.2以
上、5以下としたことを特徴とする超砥粒電着切断刃。
1. A superabrasive grain electrodeposition cutting blade having a base metal and a superabrasive grain electrodeposition layer electrodeposited on the outer periphery of the base metal, and a chip channel ratio indicating the electrodeposition state of the abrasive grains. Is -0.2 or more and 5 or less, a superabrasive electrodeposition cutting blade.
【請求項2】 該チップチャンネル比を0以上、1.5
以下としたことを特徴とする請求項1に記載の超砥粒電
着切断刃。
2. The chip channel ratio is 0 or more and 1.5.
The superabrasive grain electrodeposition cutting blade according to claim 1, wherein:
JP15164994A 1993-06-10 1994-06-09 Super-abrasive grain electrodeposited cutting blade Pending JPH0752052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15164994A JPH0752052A (en) 1993-06-10 1994-06-09 Super-abrasive grain electrodeposited cutting blade

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16510493 1993-06-10
JP5-165104 1993-06-10
JP15164994A JPH0752052A (en) 1993-06-10 1994-06-09 Super-abrasive grain electrodeposited cutting blade

Publications (1)

Publication Number Publication Date
JPH0752052A true JPH0752052A (en) 1995-02-28

Family

ID=26480827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15164994A Pending JPH0752052A (en) 1993-06-10 1994-06-09 Super-abrasive grain electrodeposited cutting blade

Country Status (1)

Country Link
JP (1) JPH0752052A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114871954A (en) * 2022-04-15 2022-08-09 郑州磨料磨具磨削研究所有限公司 Special scribing cutter for ultrathin IC wafer and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114871954A (en) * 2022-04-15 2022-08-09 郑州磨料磨具磨削研究所有限公司 Special scribing cutter for ultrathin IC wafer and manufacturing method thereof
CN114871954B (en) * 2022-04-15 2024-02-06 郑州磨料磨具磨削研究所有限公司 Special dicing blade for ultrathin IC wafer and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CA2773197A1 (en) Electroplated super abrasive tools with the abrasive particles chemically bonded and deliberately placed, and methods for making the same
KR19990087801A (en) Single metal layer abrasive cutting tool with undulating cutting plane
JPS6190876A (en) Super abrasive grain electrodeposition circular saw
JPH10193269A (en) Electrodeposition tool and manufacture therefor
JP3020434B2 (en) Electroplated wheel and manufacturing method thereof
US20050016517A1 (en) Abrasive blade
JPH0752052A (en) Super-abrasive grain electrodeposited cutting blade
JPH10113878A (en) Super abrasive grain wheel and its manufacturing method
US8191545B2 (en) Electroformed thin-wall core drills impregnated with abrasives
EP1252975A2 (en) Electro-deposited thin-blade grindstone
JPS6234719A (en) Circular saw for cutting hard material
JPS61152375A (en) Rotary cutting blade
JP2003326464A (en) Cutting wheel and method of manufacturing the wheel
KR20070102016A (en) Wire saw bead
JP2022538213A (en) Cutting tool with asymmetric teeth with cutting particles
JP3370226B2 (en) Diamond bead saw
KR20010090196A (en) Grinding wheel for saw blade for cut ting reinforcing structures
JPH08216031A (en) Electrodeposited blade
JP2001087943A (en) Composite rotary cutter
JPH08309668A (en) Manufacture of inner circumferential blade grinding wheel
JP3317478B2 (en) Diamond cutting whetstone
RU2808089C2 (en) Cutting tool with asymmetrical teeth containing cutting particles
JPH0288177A (en) Grinding wheel with inner peripheral cutting edge
JP4169612B2 (en) Electrodeposition tool manufacturing method
JP2554425Y2 (en) Inner circumference grinding wheel