JPH0751942A - Piercing detecting method and piercing detecting device for machined hole - Google Patents

Piercing detecting method and piercing detecting device for machined hole

Info

Publication number
JPH0751942A
JPH0751942A JP22054393A JP22054393A JPH0751942A JP H0751942 A JPH0751942 A JP H0751942A JP 22054393 A JP22054393 A JP 22054393A JP 22054393 A JP22054393 A JP 22054393A JP H0751942 A JPH0751942 A JP H0751942A
Authority
JP
Japan
Prior art keywords
hole
electrode
penetration
piercing
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22054393A
Other languages
Japanese (ja)
Other versions
JP2642850B2 (en
Inventor
Kunio Chikamori
邦夫 近森
Eiichi Suganuma
榮一 菅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5220543A priority Critical patent/JP2642850B2/en
Publication of JPH0751942A publication Critical patent/JPH0751942A/en
Application granted granted Critical
Publication of JP2642850B2 publication Critical patent/JP2642850B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To detect piercing of a machined hole of a work piece in electric discharge drilling with high accuracy. CONSTITUTION:In the case of drilling a through hole in a hon-conductive material using electrolytic discharge, a piercing detecting electrode 6 connected to an auxiliary electrode 7 through a resistance is provided under a work piece 4, whereby piercing of a drilled hole of the work piece can be electrically detected from the change in voltage between a tool electrode 5 and the piercing detecting electrode 6 caused by very small current flowing between the piercing detecting electrode 6 and the tool electrode 5 through the drilled hole when the drilled hole pierces.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は電解液中放電加工によ
って非導電性硬質材料部品に穴あけ加工をする場合の加
工穴の貫通を検出するための技術に関するものである。
この発明はセンサ等の微小電子装置に使用されるセラミ
ックス、パイレックスガラス等の非導電性硬質材料部品
に小穴を加工する分野において利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for detecting penetration of a machined hole when a non-conductive hard material part is machined by electric discharge machining in an electrolytic solution.
INDUSTRIAL APPLICABILITY The present invention is used in the field of processing small holes in non-conductive hard material parts such as ceramics and Pyrex glass used in microelectronic devices such as sensors.

【0002】[0002]

【従来の技術】最近電子部品やセンサ等の小型化の要求
に伴い、半導体集積回路技術から発展したいわゆるシリ
コンプロセスを利用して微小部品が製作されることが多
くなってきた。しかしシリコンプロセスを利用しにく
い、例えばパイレックスガラスなどに微小穴を加工しな
ければならないことも多い。パイレックスガラスや非導
電性セラミックスなどの微小穴加工には電解液中放電を
利用した加工法が有望と見られ、検討されている。しか
しこの方法での問題点の一つは加工穴の貫通を検出する
ことである。加工穴が貫通した後も加工を続行すると、
予定の穴径よりも大きくなったり、入口側と逆のテーパ
が穴の出口側に形成されたりする。後者はその後の蒸着
工程で逆テーパの部分に金属が蒸着できず、導通不良等
のトラブルを起こす。逆に不完全な貫通状態で加工を停
止した場合には、穴形状が不完全となったり、バリが残
ったりする。加工穴が工作物を貫通後、直ちに、或いは
一定時間経過後に加工を停止させることにより、希望し
た出口側の穴径、断面形状を得るために、加工穴が工作
物を貫通したことを検出することが必要である。
2. Description of the Related Art Recently, with the demand for miniaturization of electronic parts, sensors, etc., micro parts have been often manufactured by utilizing a so-called silicon process developed from semiconductor integrated circuit technology. However, it is often difficult to use a silicon process, for example, it is often necessary to form fine holes in Pyrex glass or the like. A machining method using electric discharge in an electrolytic solution seems to be promising and is being studied for the machining of minute holes such as Pyrex glass and non-conductive ceramics. However, one of the problems with this method is to detect the penetration of the machined hole. If machining is continued after the machining hole has penetrated,
It may be larger than the expected hole diameter, or a taper opposite to the inlet side may be formed on the outlet side of the hole. In the latter case, metal cannot be vapor-deposited on the reverse taper portion in the subsequent vapor deposition step, which causes trouble such as conduction failure. On the contrary, if the processing is stopped in an incomplete penetration state, the hole shape becomes incomplete or burr remains. Detecting that the machined hole has penetrated the workpiece to obtain the desired hole diameter and cross-sectional shape on the outlet side by stopping the machining immediately after the machined hole penetrates the workpiece or after a certain period of time has passed. It is necessary.

【0003】このような加工穴が工作物を貫通したこと
を検出するための従来の技術としてはガラス、ルビー等
の非電導性硬質材料の小穴加工における小穴の貫通を検
出する方法がある。すなわち、この従来の加工装置で
は、電解中に浸漬している工具電極と補助電極とを備
え、工作物をはさんで、工具電極に対向して貫通検出電
極を配置し、貫通検出電極に接続した電流計に電流が流
れたときに、工作物に工具電極によって貫通穴が形成さ
れたと判定するものである(電気加工ハンドブック(昭
和45年10月25日初版発行)第80頁)。
As a conventional technique for detecting the penetration of such a machined hole into a workpiece, there is a method of detecting the penetration of a small hole in machining a small hole of a non-conductive hard material such as glass or ruby. That is, in this conventional processing apparatus, a tool electrode immersed in electrolysis and an auxiliary electrode are provided, and the penetration detection electrode is arranged facing the tool electrode across the workpiece and connected to the penetration detection electrode. When a current flows through the ammeter described above, it is determined that a through hole is formed in the workpiece by the tool electrode (Electrical Processing Handbook (published on October 25, 1970, first edition), page 80).

【0004】[0004]

【発明が解決しようとする課題】この方法では、工具電
極と貫通検出電極は同電位にあり、貫通検出電流は貫通
検出電極と遠く離れた補助電極間に流れるので、検出感
度が低く、感度を上げるためには大面積の貫通検出電極
を使用しなければならず、微小穴を多数個並べて加工す
る場合にそれぞれの穴の貫通を個々に検出するために貫
通検出電極を複数個配列するなどの場合に面積的な制約
を受ける。また検出電流の絶対値が大きいので貫通検出
電極で発生する気体量も多く、気泡が貫通穴を塞いだり
するトラブルが生じやすい。
In this method, since the tool electrode and the penetration detecting electrode are at the same potential, and the penetration detecting current flows between the penetration detecting electrode and the auxiliary electrode far away, the detection sensitivity is low and the sensitivity is low. In order to raise it, it is necessary to use a large area penetration detection electrode, and when processing a large number of minute holes side by side, arrange a plurality of penetration detection electrodes to detect the penetration of each hole individually. It is subject to area restrictions. In addition, since the absolute value of the detection current is large, the amount of gas generated in the penetration detection electrode is large, and the problem that bubbles block the through holes is likely to occur.

【0005】この発明は上記の如き事情に鑑みてなされ
たものであって、工作物の加工穴の貫通を高精度で検出
することができ、かつ装置の小型化が可能な加工穴の貫
通検出方法及び貫通検出装置を提供することを目的とす
るものである。
The present invention has been made in view of the above circumstances, and it is possible to detect the penetration of a machined hole of a workpiece with high accuracy and to detect the penetration of a machined hole capable of downsizing the device. It is an object of the present invention to provide a method and a penetration detection device.

【0006】[0006]

【課題を解決するための手段】この目的に対応して、こ
の発明の加工穴の貫通検出方法は、非導電性材料に電解
液中放電を利用して貫通穴を加工する場合に、工作物の
下に抵抗を介して補助電極に接続された貫通検出電極を
設け、加工穴の貫通時にその穴を通して貫通検出電極と
工具電極間に流れる微小電流によって引き起こされる工
具電極と貫通検出電極間の電圧変化により、加工穴が工
作物を貫通したことを電気的に検出することを特徴とし
ている。またこの発明の加工穴の貫通検出装置は、非導
電性材料に電解液中放電を利用して貫通穴を加工する場
合の貫通穴の貫通を検出する加工穴の貫通検出装置であ
って、電解液中に浸漬している工具電極と補助電極とを
備え、工作物をはさんで工具電極に対向して貫通検出電
極を配置し、補助電極と貫通検出電極とを抵抗を介して
接続してなることを特徴としている。
To solve this problem, the method of detecting a through hole of a machined hole according to the present invention provides a workpiece for machining a through hole in a non-conductive material by utilizing discharge in an electrolytic solution. A penetration detection electrode connected to the auxiliary electrode via a resistor is installed underneath, and the voltage between the tool electrode and the penetration detection electrode caused by the minute current flowing between the penetration detection electrode and the tool electrode through the hole when the machining hole is penetrated. It is characterized by electrically detecting that the machined hole has penetrated the workpiece by the change. Further, the processing hole penetration detecting device of the present invention is a processing hole penetration detecting device for detecting penetration of a through hole when a through hole is processed by utilizing discharge in an electrolytic solution to a non-conductive material, Equipped with a tool electrode and an auxiliary electrode immersed in a liquid, a penetration detection electrode is arranged facing the tool electrode across the workpiece, and the auxiliary electrode and the penetration detection electrode are connected via a resistor. It is characterized by becoming.

【0007】[0007]

【作用】工具電極からの放電によって工作物に対する穴
あけ加工が進み、加工穴が工作物を貫通すると、その穴
を通して貫通検出電極と工具電極の間に電流が流れ、こ
れにより加工穴が工作物を貫通したことを検知すること
ができる。
[Operation] When the machining hole is drilled by the electric discharge from the tool electrode and the machining hole penetrates the workpiece, an electric current flows between the penetration detection electrode and the tool electrode through the hole, which causes the machining hole to penetrate the workpiece. The penetration can be detected.

【0008】[0008]

【実施例】以下、この発明の詳細を一実施例を示す図面
について説明する。図1に電解液中放電を利用した非導
電材料の小穴加工装置における加工穴貫通検出装置の概
念図を示す。加工穴貫通検出装置1は、容器2の内に電
解液3を満している。電解液3は硝酸ナトリウム、水酸
化ナトリウムなどの水溶液である。工作物4を挟んで工
具電極5と貫通検出電極6とが対向して配置され、この
他に、補助電極7が電解液中3に浸漬している。工具電
極5と貫通検出電極6は共にコンパレータ8に接続して
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the drawings showing an embodiment. FIG. 1 shows a conceptual diagram of a machined hole penetration detecting device in a machined hole machining device for a non-conductive material utilizing discharge in an electrolytic solution. The machined hole penetration detection device 1 is filled with the electrolytic solution 3 in the container 2. The electrolytic solution 3 is an aqueous solution of sodium nitrate, sodium hydroxide or the like. A tool electrode 5 and a penetration detection electrode 6 are arranged so as to face each other with the workpiece 4 sandwiched therebetween, and in addition to this, an auxiliary electrode 7 is immersed in the electrolytic solution 3. Both the tool electrode 5 and the penetration detection electrode 6 are connected to the comparator 8.

【0009】工作物4は非導電材料で製作したテーブル
11に固定され、電解液3中に浸かっている。電解液3
中の工具電極5と補助電極7に直流、或いはパルス電流
を発生することができる加工電源12を通常は工具電極
5が−極、補助電極7が+極になるように接続し、電圧
を加えると、表面積の小さい工具電極5と電解液3との
間で放電が発生する。工具電極5は工作物4に接触して
置かれているので工作物4は放電の熱と電解液3の化学
作用を受け、工具電極5の先端に対向する部分で溶出が
起こる。工具電極5を重力を利用する方法等によって加
工量に応じて送っていくことにより穴を加工することが
できる。貫通検出電極6は抵抗13を経て補助電極7に
接続されている。加工穴が工作物4を貫通する前は、貫
通検出電極6と工具電極5との間は非導電材料である工
作物4に遮られているためにほとんど電流は流れない。
このため抵抗13による電圧降下はほとんどなく、した
がって工具電極5(接地電位)に対する貫通検出電極6
の電圧は加工電源12の電圧にほぼ等しくなっている。
加工穴が工作物4を貫通すると、その穴を通して貫通検
出電極6と工具電極5の間に電流が流れ、その電流と抵
抗13のために電圧降下が生じ、接地された工具電極5
に対する貫通検出電極6の電圧は降下する。この電圧変
化をコンパレータ8に加え、あらかじめ設定してある基
準電圧と比較することによって判定を行い、その出力を
調べることによって、加工穴が工作物4を貫通したこと
を電気的信号として取り出すことができる。抵抗13は
また貫通時に流れる電流を制限することにより貫通検出
電極6上で発生する気体の量を抑え、発生気体によるト
ラブル等を予防する。
The workpiece 4 is fixed to a table 11 made of a non-conductive material and immersed in the electrolytic solution 3. Electrolyte 3
A machining power source 12 capable of generating a direct current or a pulsed current is normally connected to the tool electrode 5 and the auxiliary electrode 7 therein so that the tool electrode 5 is the negative pole and the auxiliary electrode 7 is the positive pole, and a voltage is applied. Then, a discharge is generated between the tool electrode 5 having a small surface area and the electrolytic solution 3. Since the tool electrode 5 is placed in contact with the workpiece 4, the workpiece 4 is subjected to the heat of discharge and the chemical action of the electrolytic solution 3, and elution occurs at the portion facing the tip of the tool electrode 5. The holes can be machined by sending the tool electrode 5 in accordance with the machining amount by a method utilizing gravity. The penetration detection electrode 6 is connected to the auxiliary electrode 7 via the resistor 13. Before the processed hole penetrates the workpiece 4, almost no current flows because the workpiece 4 made of a non-conductive material blocks the space between the penetration detection electrode 6 and the tool electrode 5.
Therefore, there is almost no voltage drop due to the resistor 13, and therefore the penetration detection electrode 6 with respect to the tool electrode 5 (ground potential) is
Is almost equal to the voltage of the machining power supply 12.
When the machined hole penetrates the workpiece 4, a current flows through the hole between the penetration detection electrode 6 and the tool electrode 5, a voltage drop occurs due to the current and the resistance 13, and the grounded tool electrode 5
The voltage of the penetrating detection electrode 6 with respect to is dropped. By applying this voltage change to the comparator 8 and making a comparison by comparing it with a preset reference voltage, and by checking the output, the fact that the machined hole has penetrated the workpiece 4 can be taken out as an electrical signal. it can. The resistor 13 also limits the amount of gas generated on the penetration detection electrode 6 by limiting the current flowing at the time of penetration, and prevents troubles and the like due to the generated gas.

【0010】(実験例1)図1に示す装置(ただしコン
パレータ8の代わりに電圧計を接続)を用い、以下に示
すような条件で実験を行った。 工作物:0.2mm厚パイレックスガラス 工具電極:外径0.2mmの放電加工用銅パイプ 工具電極押付力:8g 貫通検出電極:φ0.3mm×3mm白金線 抵抗:10kΩ,100kΩ,1MΩ,10MΩ 電解液:比重1.20のNaNO3 水溶液 加工電源:50Vの直流定電圧
(Experimental Example 1) An experiment was conducted under the following conditions using the apparatus shown in FIG. 1 (however, a voltmeter was connected instead of the comparator 8). Workpiece: 0.2 mm thick Pyrex glass Tool electrode: Copper pipe for electrical discharge machining with an outer diameter of 0.2 mm Tool electrode pressing force: 8 g Penetration detection electrode: φ0.3 mm × 3 mm platinum wire Resistance: 10 kΩ, 100 kΩ, 1 MΩ, 10 MΩ Electrolyte: NaNO 3 aqueous solution with a specific gravity of 1.20 Processing power supply: DC constant voltage of 50V

【0011】まず貫通検出電極と補助電極間に挿入して
いる抵抗の値を上記の4種についてそれぞれ加工時間を
変えて実験を行い、工具電極に対する貫通検出電極の電
圧に注目した。電圧の急激な低下が見られるまでの時間
はばらつきがあるが、電圧低下が見られた直後に加工を
停止した場合は加工穴が貫通し、電圧低下が見られない
うちに加工を停止した場合は加工穴は貫通していないこ
とを確認した。
First, an experiment was conducted for the above-mentioned four types of resistance values inserted between the penetration detecting electrode and the auxiliary electrode while changing the processing time, and attention was paid to the voltage of the penetration detecting electrode with respect to the tool electrode. The time until a sharp voltage drop is observed varies, but if machining is stopped immediately after a voltage drop is seen, the machining hole penetrates and machining is stopped before a voltage drop is seen. Confirmed that the processed hole did not penetrate.

【0012】抵抗値を1MΩとした場合の電圧変化の一例
を記すと、加工電圧50Vに対して、工具電極に対する貫
通検出電極の電圧は、最初は47Vを示すが、加工開始後5
6sで30V以下に急激に低下し、以後変動しながら75sで15
V、90sで10V程度まで低下した。これは、加工穴が大き
くなるにつれて加工穴を通して流れる電流が大きくな
り、そのために抵抗による電圧降下が大きくなるためと
考えられる。このことを利用して出口側の加工穴の大き
さの制御を行うことも可能であろう。また、この場合に
流れる電流値は最大でも50V/1MΩ=50μAであり、非常
に小さなことがわかる。2min15sで加工を停止して加工
穴の大きさを測定したところ、入口でφ0.8mm、出口で
φ0.3mmのすり鉢状の貫通穴が加工できていた。
As an example of the voltage change when the resistance value is 1 MΩ, the penetration detection electrode voltage with respect to the tool electrode shows 47 V at the beginning with respect to the machining voltage of 50 V, but 5 V after the start of machining.
It drops sharply to 30V or less in 6s and then fluctuates after that for 15s in 75s.
It dropped to about 10V at V and 90s. It is considered that this is because the current flowing through the machined hole increases as the machined hole becomes larger, resulting in a larger voltage drop due to the resistance. It may be possible to use this to control the size of the processed hole on the outlet side. In addition, the current value flowing in this case is 50 V / 1 MΩ = 50 μA at the maximum, which is very small. When the processing was stopped for 2 min15s and the size of the processed hole was measured, a mortar-shaped through hole with a diameter of 0.8 mm at the inlet and a diameter of 0.3 mm at the outlet was formed.

【0013】次に抵抗値を10kΩに変更した場合は、電
圧は最初は49Vであったが、急激に電圧が低下する現象
はこの場合は加工開始120s後に見られ、約40Vまで低下
した。しかしその後は電圧は上昇し、最初の49V近くに
まで回復した。これは貫通検出電極を流れる電流(最大
値は50V/10kΩ=5mA)によって貫通検出電極で電解によ
る気体(この場合は酸素)が発生し、それによって貫通
検出電極表面が覆われたり、発生気体が加工穴を塞ぐこ
となどが原因と考えられる。10kΩの場合は電圧と穴の
大きさとの相関関係を見ることは困 難であるが、加工
穴の貫通を検出することは可能である。150sで加工を停
止し、入口でφ0.75mm、出口でφ0.25mmの加工穴形状を
得た。
Next, when the resistance value was changed to 10 kΩ, the voltage was initially 49 V, but a phenomenon in which the voltage suddenly dropped was observed 120 seconds after the start of machining in this case, and dropped to about 40 V. After that, however, the voltage rose and recovered to nearly the original 49V. This is because the electric current (maximum value is 50V / 10kΩ = 5mA) flowing through the penetration detection electrode generates gas (oxygen in this case) due to electrolysis at the penetration detection electrode, which covers the surface of the penetration detection electrode or generates gas. The cause is considered to be blocking the processed hole. In the case of 10 kΩ, it is difficult to see the correlation between the voltage and the size of the hole, but it is possible to detect the penetration of the machined hole. Machining was stopped at 150s, and a hole size of φ0.75mm at the inlet and φ0.25mm at the outlet was obtained.

【0014】上とほぼ同じ条件で別に加工したところ、
60sで加工穴の貫通が検出された。上と同じ150sで加工
を停止し、加工穴径を測定したところ、入口でφ0.7m
m、出口でφ0.3mmであった。これは同じ加工時間でも種
々の原因で加工速度(貫通までの時間)が異なった場合
に、貫通後の加工時間に差異が生じるために出口の穴径
が異なったものになると考えられ、出口の穴径を制御す
るには加工穴の貫通を検出することが必要であることを
示唆している。
When separately processed under the same conditions as above,
Penetration of the machined hole was detected at 60s. Machining was stopped in the same 150s as above, and the hole diameter was measured.
m was 0.3 mm at the exit. This is because, even if the processing time is the same, if the processing speeds (time until penetration) differ due to various causes, it is considered that the hole diameter of the outlet will be different because the processing time after penetration will differ. It suggests that it is necessary to detect the penetration of the machined hole to control the hole diameter.

【0015】図2に貫通後の加工時間と出口穴径の関係
を示す。ただし工具電極として待針を用い、工具電極押
付力:12g、抵抗:1MΩ、とした。加工穴が貫通するま
での時間は59sから85sまでと差があるが、貫通後の加工
時間で整理すると図2のようによい相関関係が得 られ
ている。
FIG. 2 shows the relationship between the machining time after penetration and the exit hole diameter. However, a needle was used as the tool electrode, and the tool electrode pressing force was 12 g and the resistance was 1 MΩ. The time taken for the machined hole to penetrate varies from 59s to 85s, but a good correlation is obtained as shown in Fig. 2 when arranged by the machining time after penetration.

【0016】(実験例2)上記の実験例1と同様の条件
で加工電源として同電圧(ピーク値:50V)のパルス電源
(オンタイム:50μs,オフタイム:5μs)を用いた場
合は貫通までの時間は約25sであり加工速度がかなり向
上する。貫通時の出口穴径はほぼ同等に保たれるため、
直流電源よりは有利と考えられる。貫通後の加工時間に
対しては加工速度の大きいことを反映して出口穴系は図
3に示すように拡大速度が大きい。パルス電源の効果に
ついてはパルス的な気体発生に伴う衝撃力の作用などが
考えられる。
(Experimental Example 2) Under the same conditions as in Experimental Example 1 above, when a pulsed power source (on time: 50 μs, off time: 5 μs) of the same voltage (peak value: 50 V) was used as the processing power source, the penetration The time is about 25s, and the processing speed is considerably improved. Since the exit hole diameter at the time of penetration is kept almost the same,
Considered to be more advantageous than DC power supply. The exit hole system has a high expansion speed as shown in FIG. 3, reflecting the fact that the processing time after penetration is high. As for the effect of the pulse power source, it is considered that the impact force is generated due to the pulsed gas generation.

【0017】[0017]

【発明の効果】大面積の貫通検出電極を工具電極と同極
性に接続し、貫通検出電極と遠距離の補助電極間に流れ
る比較的大きな電流値の電流変化を測定している従来の
加工穴検出装置に対し、この発明の加工穴検出装置にお
いては微小面積の貫通検出電極を高い抵抗値を有する抵
抗を介して補助電極に接続し、貫通検出電極と接近した
工具電極間に流れる微小な電流の変化による貫通検出電
極の電圧変化を検出している。このように、貫通検出電
流は貫通検出電極とその直上の工具電極間に流れるの
で、検出感度がよく、検出電流値はmA以下に抑えること
ができるので貫通検出電極からの発生気体量を非常に小
さくすることができる。このため、発生気体による悪影
響を非常に小さくすることが可能である。また、高感度
であるために貫通検出電極は微小な面積ですみ、複数個
の穴を同時加工する場合に貫通検出電極を接近して配列
可能である。貫通検出電極の材質として白金等の非溶解
性の材料を使用せねばならないが、貫通検出電極自体は
小さなものでよいのでコスト的にはほとんど問題になら
ない。
EFFECTS OF THE INVENTION A conventional machined hole in which a large area penetration detecting electrode is connected to the same polarity as a tool electrode and a relatively large current value flowing between the penetration detecting electrode and a long distance auxiliary electrode is measured. In contrast to the detection device, in the processed hole detection device of the present invention, a penetrating detection electrode having a small area is connected to an auxiliary electrode through a resistor having a high resistance value, and a minute current flowing between the penetrating detection electrode and a tool electrode close to the auxiliary electrode. The change in voltage of the penetrating detection electrode due to the change in is detected. In this way, since the penetration detection current flows between the penetration detection electrode and the tool electrode immediately above it, the detection sensitivity is good, and the detection current value can be suppressed to mA or less, so the amount of gas generated from the penetration detection electrode is extremely small. Can be made smaller. Therefore, it is possible to make the adverse effect of the generated gas extremely small. Further, because of the high sensitivity, the penetrating detection electrodes need only a small area, and the penetrating detection electrodes can be arranged closely when processing a plurality of holes at the same time. Although a non-dissolving material such as platinum must be used as the material of the penetration detecting electrode, since the penetration detecting electrode itself may be small, there is almost no cost problem.

【図面の簡単な説明】[Brief description of drawings]

【図1】加工穴貫通検出装置の構成説明図。FIG. 1 is a structural explanatory view of a machined hole penetration detection device.

【図2】加工穴貫通後の加工時間と加工穴径の関係を示
すグラフ。
FIG. 2 is a graph showing a relationship between a processing time after the processing hole is penetrated and a processing hole diameter.

【図3】加工穴貫通後の加工時間と加工穴径の関係を示
すグラフ。
FIG. 3 is a graph showing the relationship between the processing time after the processing hole is penetrated and the processing hole diameter.

【符号の簡単な説明】[Simple explanation of symbols]

1 加工穴貫通検出装置 2 容器 3 電解液 4 工作物 5 工具電極 6 貫通検出電極 7 補助電極 8 コンパレータ 11 テーブル 12 加工電源 13 抵抗 1 Processing Hole Penetration Detection Device 2 Container 3 Electrolyte 4 Workpiece 5 Tool Electrode 6 Penetration Detection Electrode 7 Auxiliary Electrode 8 Comparator 11 Table 12 Processing Power Supply 13 Resistance

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 非導電性材料に電解液中放電を利用して
貫通穴を加工する場合に、工作物の下に抵抗を介して補
助電極に接続された貫通検出電極を設け、加工穴の貫通
時にその穴を通して貫通検出電極と工具電極間に流れる
微小電流によって引き起こされる工具電極と貫通検出電
極間の電圧変化により、加工穴が工作物を貫通したこと
を電気的に検出することを特徴とする加工穴の貫通検出
方法。
1. When machining a through-hole in a non-conductive material by utilizing discharge in an electrolyte, a through-detection electrode connected to an auxiliary electrode via a resistor is provided below the workpiece, It is characterized by electrically detecting that the machined hole has penetrated the workpiece by a voltage change between the tool electrode and the penetration detection electrode caused by a minute current flowing between the penetration detection electrode and the tool electrode through the hole at the time of penetration. Method for detecting penetration of machined holes.
【請求項2】 非導電性材料に電解液中放電を利用して
貫通穴を加工する場合の前記貫通穴の貫通を検出する加
工穴の貫通検出装置であって、電解液中に浸漬している
工具電極と補助電極とを備え、工作物をはさんで前記工
具電極に対向して貫通検出電極を配置し、前記補助電極
と前記貫通検出電極とを抵抗を介して接続してなること
を特徴とする加工穴の貫通検出装置。
2. A penetration detecting device for a processed hole, which detects penetration of the through hole when a through hole is processed in a non-conductive material by utilizing electric discharge in an electrolyte solution. A tool electrode and an auxiliary electrode are provided, a penetration detection electrode is arranged to face the tool electrode across a workpiece, and the auxiliary electrode and the penetration detection electrode are connected via a resistor. A machined hole penetration detection device.
JP5220543A 1993-08-12 1993-08-12 Penetration detection method and penetration detection device for machined hole Expired - Lifetime JP2642850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5220543A JP2642850B2 (en) 1993-08-12 1993-08-12 Penetration detection method and penetration detection device for machined hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5220543A JP2642850B2 (en) 1993-08-12 1993-08-12 Penetration detection method and penetration detection device for machined hole

Publications (2)

Publication Number Publication Date
JPH0751942A true JPH0751942A (en) 1995-02-28
JP2642850B2 JP2642850B2 (en) 1997-08-20

Family

ID=16752643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5220543A Expired - Lifetime JP2642850B2 (en) 1993-08-12 1993-08-12 Penetration detection method and penetration detection device for machined hole

Country Status (1)

Country Link
JP (1) JP2642850B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131285A (en) * 2009-12-22 2011-07-07 Mitsubishi Electric Corp Electric discharge machining device
CN103342913A (en) * 2013-06-17 2013-10-09 哈尔滨工业大学 Conductive coating material for insulating-ceramic electrosparking technology and method for preparing auxiliary electrode by the conductive coating material
CN113199095A (en) * 2021-05-28 2021-08-03 深圳大学 Surface micro-groove machining method and micro electric spark machining device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108031936B (en) * 2017-12-07 2019-05-17 中山市天隆燃具电器有限公司 Numerical control electric machining aperture machine through-hole detection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02237722A (en) * 1988-10-26 1990-09-20 Rolls Royce Plc Electrical discharge drilling machine and drilling method of electric conductive work piece having non-conductive surface stratum
JPH04283022A (en) * 1991-03-12 1992-10-08 Seibu Electric & Mach Co Ltd Detecting device for electric discharge machining penetration

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02237722A (en) * 1988-10-26 1990-09-20 Rolls Royce Plc Electrical discharge drilling machine and drilling method of electric conductive work piece having non-conductive surface stratum
JPH04283022A (en) * 1991-03-12 1992-10-08 Seibu Electric & Mach Co Ltd Detecting device for electric discharge machining penetration

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011131285A (en) * 2009-12-22 2011-07-07 Mitsubishi Electric Corp Electric discharge machining device
CN103342913A (en) * 2013-06-17 2013-10-09 哈尔滨工业大学 Conductive coating material for insulating-ceramic electrosparking technology and method for preparing auxiliary electrode by the conductive coating material
CN113199095A (en) * 2021-05-28 2021-08-03 深圳大学 Surface micro-groove machining method and micro electric spark machining device

Also Published As

Publication number Publication date
JP2642850B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
CA2113290C (en) Wafer sensing and clamping monitor
EP2158994B1 (en) Electro Discharge Machining Apparatus and Method
Mithu et al. A step towards the in-process monitoring for electrochemical microdrilling
Malik et al. An experimental investigation on developed WECSM during micro slicing of e-glass fibre epoxy composite
Fan et al. Experimental investigation on the influence of electrochemical micro-drilling by short pulsed voltage
Park et al. Micro-electrochemical machining using multiple tool electrodes
Madhavi et al. Investigation on machining of holes and channels on borosilicate and sodalime glass using μ-ECDM setup
JP2642850B2 (en) Penetration detection method and penetration detection device for machined hole
Paul et al. Experimental investigation and parametric analysis of electro chemical discharge machining
Mithu et al. How microtool dimension influences electrochemical micromachining
Wang et al. Fabrication of multiple electrodes and their application for micro-holes array in ECM
Krötz et al. Sparc assisted electrochemical machining: a novel possibility for microdrilling into electrical conductive materials using the electrochemical discharge phenomenon
Kulkarni et al. Measurement of temperature transients in the electrochemical discharge machining process
US6620307B2 (en) Method for a removal of cathode depositions by means of bipolar pulses
JP5247670B2 (en) EDM machine
GB2074326A (en) Determining tool/workpiece relative position in machine tools
JP4529802B2 (en) Fine processing method and fine processing apparatus
US6156188A (en) Method for making a probe device having detective function
US6596152B2 (en) Method and device for simultaneous arc processing and chemical etching
Xu et al. Electrochemical micromachining using vibrating tool electrode
Rajput et al. Finite element modeling based material removal analysis of non-conductive materials in ECDM using adaptive tool feed system
Zhang et al. Experimental research on the localized electrochemical micro-machining
Zaripov et al. Electrical discharge machining of nonconductive materials
JP4320967B2 (en) EDM machine
JP3062732B2 (en) Electrolytic processing method and electrolytic processing apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term