JPH0751891A - Production of powdery and granular material filled pipe - Google Patents

Production of powdery and granular material filled pipe

Info

Publication number
JPH0751891A
JPH0751891A JP20336993A JP20336993A JPH0751891A JP H0751891 A JPH0751891 A JP H0751891A JP 20336993 A JP20336993 A JP 20336993A JP 20336993 A JP20336993 A JP 20336993A JP H0751891 A JPH0751891 A JP H0751891A
Authority
JP
Japan
Prior art keywords
raw material
prescription
powder
flux
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20336993A
Other languages
Japanese (ja)
Other versions
JP3197399B2 (en
Inventor
Nobuo Araki
信男 荒木
Toru Ono
徹 小野
Iwao Yamada
巖 山田
Haruji Hashimoto
晴次 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP20336993A priority Critical patent/JP3197399B2/en
Publication of JPH0751891A publication Critical patent/JPH0751891A/en
Application granted granted Critical
Publication of JP3197399B2 publication Critical patent/JP3197399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To provide a process for production of the powdery and granular material filled pipe which is free from crack in the pipe sheath by obtaining a deflectless joined weld zone. CONSTITUTION:The powdery and granular materials composed of ferromagnetic raw material powders and weak magnetic raw material powders at a prescribed compounding ration are used as the basic prescription of the powdery and granular materials in the process for production of the powdery and granular material filled pipe by supplying the powdery and granular materials into a tubular body 1 during the course of forming a metallic strip to the tubular body 1, joining both edge surfaces 2 of the tubular body by high-frequency welding and reducing the diameter of the welded pipe filled with the powdery and granular materials. The powdery and granular materials are supplied to the tubular body 1 by disposing the first kind divided prescription materials F1 of the plural divided prescription materials constituted by at least bisecting the basic prescription described above to the first kind divided prescription materials F1 compounded with the ferromagnetic raw material powders and the weak magnetic raw material powders and the second kind divided prescription material F2 compounded with the weak magnetic raw material powders on the lower layer side and disposing the second kind divided prescription materials F2 thereof on the upper layer side. The compounding ratio of the weak magnetic raw material powders with each other in the first kind divided prescription materials and the second kind divided prescription materials is set as the compounding ratio of the weak magnetic raw material powders with each other in the basic prescription materials F.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は炭素鋼、ステンレス
鋼、銅合金、アルミニウム合金その他の金属管に粉粒体
を充填した粉粒体充填管の製造方法に関する。ここで、
粉粒体とは溶接用フラックス、酸化物超電導体、溶鋼用
添加剤等の粉粒体をいう。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a powder / granule-filled tube in which carbon steel, stainless steel, copper alloy, aluminum alloy or other metal tube is filled with the powder / granular material. here,
The granular material refers to a granular material such as welding flux, oxide superconductor, and additive for molten steel.

【0002】[0002]

【従来の技術】粉粒体充填管の一つとして、溶接用フラ
ックス入りシームレスワイヤがある。このシームレスワ
イヤの製造では、帯鋼を所要の幅でスリッティングし、
スリット後の帯鋼を成形ロールによりU字形からO字形
に漸次成形する。この成形途中でU字形帯鋼の長手方向
に沿った開口からフィーダによりフラックスを帯鋼谷部
に供給する。ついで、O字形に成形すると同時に、開口
の相対するエッジ面を溶接により接合し、引き続いて縮
径する。さらに必要に応じて焼鈍したのちフラックスが
充填された管を所望の径に伸線、巻き取って製品とす
る。
2. Description of the Related Art A flux-cored seamless wire for welding is one type of powder-filled tube. In the production of this seamless wire, the strip steel is slit to the required width,
The strip steel after slitting is gradually formed from a U-shape to an O-shape by a forming roll. During this forming, the flux is supplied from the opening along the longitudinal direction of the U-shaped strip steel to the strip steel valley portion by the feeder. Then, while forming into an O-shape, the opposite edge surfaces of the opening are joined by welding, and the diameter is subsequently reduced. Further, after annealing if necessary, the tube filled with the flux is drawn into a desired diameter and wound up to obtain a product.

【0003】上記溶接用フラックス入りワイヤの製造に
おける溶接法として、高周波誘導溶接法、高周波抵抗溶
接法等の高周波溶接が広く用いられている。これらの溶
接法は、いずれもほぼO字形に成形したところで、高周
波電流により発生するジュール熱により開口のエッジ面
を溶融温度まで加熱し、相対するエッジ面を一対のスク
イズロールにより圧接する。
As a welding method in the production of the above flux-cored wire for welding, high-frequency induction welding, high-frequency resistance welding and other high-frequency welding are widely used. In all of these welding methods, when formed into a substantially O-shape, the edge surface of the opening is heated to the melting temperature by Joule heat generated by the high-frequency current, and the opposing edge surfaces are pressed by a pair of squeeze rolls.

【0004】ところで、フラックスを充填し溶接した管
を圧延、伸線等により縮径する際に、管外皮に割れが発
生することがある。そしてこの割れの原因として、次の
ように考えられている。溶接時に管状体の開口エッジ面
にフラックス粒子の一部が吸着する。すなわち溶接位置
では溶接電流によって発生した磁場により管状体の開口
エッジ部は磁極となる。したがってフラックス粒子のう
ちの強磁性成分は、磁力により吸引され開口エッジ部に
吸着される。このとき弱磁性成分も強磁性成分に伴われ
て開口エッジ部に吸着する。これら開口エッジ部に吸着
したフラックス粒子は、接合溶接部の介在物となり溶接
欠陥となる。そしてこの溶接欠陥により管縮径時に割れ
が発生する。縮径時の割れはそのまま製品すなわち溶接
用フラックス入りワイヤに持ち込まれ、溶接作業性を劣
化させる。
By the way, when the diameter of a tube filled with flux and welded is reduced by rolling, wire drawing, or the like, cracks may occur in the outer shell of the tube. The cause of this crack is considered as follows. During welding, some of the flux particles are adsorbed on the opening edge surface of the tubular body. That is, at the welding position, the opening edge of the tubular body becomes a magnetic pole due to the magnetic field generated by the welding current. Therefore, the ferromagnetic component of the flux particles is attracted by the magnetic force and adsorbed to the opening edge portion. At this time, the weak magnetic component is also attracted to the opening edge portion along with the ferromagnetic component. The flux particles adsorbed on these opening edge portions become inclusions in the welded joints and cause welding defects. Then, due to this welding defect, cracking occurs when the pipe diameter is reduced. The cracks when the diameter is reduced are directly introduced into the product, that is, the flux-cored wire for welding, and deteriorate the welding workability.

【0005】このような問題を解決する技術の一つに特
開昭54−109040号公報で開示された「粉末が充
填された管を製造する方法」がある。この技術は、管状
体いっぱいに充満されないようにして粉体を供給し、接
合溶接部と供給された粉体層表面との間に空隙すなわち
距離を設け、粉体が舞い上がって開口エッジ部に至らな
いようにしている。特開昭60−234794号公報で
開示された「溶接用複合ワイヤ」があり、比透磁率が
1.10以下の粉末原料の実質的に非磁性の粉体を充填
し、粉体が磁気吸引力により開口エッジ部に吸着するの
を防止する。また、特開昭60−234792号公報の
「フィラーワイヤの製造方法」があり、上層に非磁性材
料を下層に強磁性材料またはフェライト系材料を層状に
散布し、上層の非磁性材料層により強磁性材料またはフ
ェライト系材料が開口エッジ部に吸引されるのを抑制す
る。
One of the techniques for solving such a problem is "a method for producing a tube filled with powder" disclosed in Japanese Patent Laid-Open No. 54-109040. This technique supplies powder so that it does not fill the tubular body, and creates a gap or distance between the joint weld and the surface of the powder layer that has been supplied, so that the powder rises and reaches the opening edge. I try not to. There is a "composite wire for welding" disclosed in Japanese Patent Application Laid-Open No. 60-234794, which is filled with substantially non-magnetic powder of a powder raw material having a relative magnetic permeability of 1.10 or less, and the powder is magnetically attracted. It is prevented from sticking to the opening edge portion by force. Also, there is a "method for producing a filler wire" in Japanese Patent Laid-Open No. 60-234792, in which a non-magnetic material is dispersed in an upper layer in a layered manner and a ferromagnetic material or a ferrite-based material is dispersed in a lower layer, and the non-magnetic material layer in the upper layer enhances The magnetic material or the ferrite-based material is suppressed from being attracted to the opening edge portion.

【0006】[0006]

【発明が解決しようとする課題】しかし、特開昭54−
109040号のものでは強磁性原料粉を僅かでも含む
粉体の舞い上がりに対してほとんど効果はなく、特開昭
60−234794号のものでは強磁性原料粉を全く含
有することができない。また特開昭60−234792
号のものでは上層は非磁性材料のみ、下層は強磁性材料
(またはフェライト系材料)のみの完全分離方式である
ことから、縮径途中に管外皮の応力除去のための焼鈍、
あるいは脱水素のための熱処理を施した場合に、強磁性
材料粉(鉄粉等)同志が焼結して塊状となり、その結果
その後の縮径にさいし管外皮に局部的な薄肉化現象が生
じて断線を誘発するようになる。このように上記従来技
術はいずれも実用上の問題点を有し、管縮径時の外皮割
れ発生を防止するという課題は依然として残されてい
た。外皮割れは一度発生すると、最初は微小な割れで
も、管の縮径サイズが小さくなるにしたがって管長手方
向に延び、製品サイズではもはや無視できない程度の長
さとなる。
However, JP-A-54-
No. 109040 has almost no effect on the soaring of powder containing a small amount of ferromagnetic raw material powder, and the one disclosed in JP-A-60-234794 cannot contain ferromagnetic raw material powder at all. Also, JP-A-60-234792
In No. No., the upper layer is a non-magnetic material only and the lower layer is a ferromagnetic material (or ferrite material) only, so it is annealed to reduce the stress of the tube skin during diameter reduction,
Alternatively, when a heat treatment for dehydrogenation is performed, the ferromagnetic material powder (iron powder, etc.) sinters into a lump, and as a result, a local thinning phenomenon occurs in the tube outer skin during the subsequent diameter reduction. Will cause a disconnection. As described above, all of the above-described conventional techniques have practical problems, and the problem of preventing the occurrence of skin cracks when the pipe diameter is reduced still remains. Once a skin crack occurs, even a minute crack initially extends in the longitudinal direction of the tube as the reduced diameter size of the tube becomes smaller, and becomes a length that cannot be ignored in the product size.

【0007】そこで、この発明は、健全な接合溶接部を
得ることにより管縮径時の外皮割れをなくして製品歩留
りの向上を図ることができ、しかも製品品質の良好な溶
接用粉粒体充填管の製造方法を提供することを目的とす
る。
Therefore, according to the present invention, by obtaining a sound welded joint, it is possible to improve the product yield by eliminating the cracking of the outer cover when the pipe is reduced in diameter, and to fill the welding powder particles with good product quality. It is an object to provide a method for manufacturing a tube.

【0008】[0008]

【課題を解決するための手段】この発明の溶接用フラッ
クス入りワイヤの製造方法は、金属帯板を管状体に成形
する途中で管状体に粉粒体を供給し、管状体の両エッジ
面を高周波溶接により接合し、粉粒体が充填された溶接
管を縮径する粉粒体充填管の製造方法において、前記粉
粒体は強磁性原料粉と弱磁性原料粉を所定の配合比で構
成した粉粒体を基本処方とし、該基本処方を強磁性原料
粉と弱磁性原料粉を配合した第1種分割処方粉粒体と弱
磁性原料粉を配合した第2種分割処方粉粒体とに少なく
とも2分割して構成した複数の分割処方粉粒体であっ
て、前記第1種分割処方粉粒体を下層側に、第2種分割
処方粉粒体を上層側にして管状体に供給することを特徴
としている。また前記第1種分割処方粉粒体、第2種分
割処方粉粒体における 弱磁性原料粉同志の配合比を基
本処方粉粒体における弱磁性原料粉同志の配合比とした
ことを特徴としている。
According to the method for manufacturing a flux-cored wire for welding of the present invention, powder particles are supplied to a tubular body while forming a metal strip into a tubular body, and both edge surfaces of the tubular body are supplied. In a method for manufacturing a powder-filled tube, which is joined by high-frequency welding to reduce the diameter of a welded tube filled with powder, the powder is composed of a ferromagnetic raw material powder and a weak magnetic raw material powder in a predetermined mixing ratio. As a basic prescription, the above-mentioned basic prescription is used as a first type divided prescription granular material in which a ferromagnetic raw material powder and a weak magnetic raw material powder are mixed, and a second type divided prescription granular material in which a weak magnetic raw material powder is mixed. A plurality of divided prescription powders formed by dividing into at least two, and the first type divided prescription powders are provided on the lower layer side and the second type divided prescription powders are provided on the upper layer side and supplied to the tubular body. It is characterized by doing. Further, the mixing ratio of the weak magnetic raw material powders in the first type divided prescription powder and the second type divided prescription powders is set as the mixing ratio of the weak magnetic raw material powders in the basic prescription powder. .

【0009】管状体内に供給される粉粒体は、粉粒体充
填管の使用目的に合わせて各種の原料粉が選択され、そ
のままの状態すなわち非造粒であるいは造粒して使用さ
れるる。たとえば、溶接用フラックス入りワイヤに使用
されるフラックスでは、 ・スラグ生成剤としてルチールサンド、マグネシアクリ
ンカー等 ・アーク安定剤としてケイ酸ソーダ、チタン酸カリ等 ・脱酸剤・合金剤として低C−Fe−Si,Fe−Si
−Mn,Al−Mg等 の弱磁性原料粉が性能剤として配合され、また溶着速度
の向上、フラックス充填率の調整、溶接作業性のために
鉄粉、酸化鉄等の強磁性原料粉が調整剤として配合され
る。溶接性能剤、調整剤として選択された各種原料粉お
よびフラックス中の配合率は、所望の溶接用フラックス
入りワイヤに合わせて予め設計されており、この発明で
はこれを基本処方粉粒体(フラックス)という。
Various raw material powders are selected for the powder or granular material supplied to the tubular body according to the purpose of use of the powder or granular material filling tube, and the powder is used as it is, that is, in the non-granulated state or in the granulated state. For example, in the flux used for the flux-cored wire for welding: -rutile sand, magnesia clinker, etc. as a slag generator-sodium silicate, potassium titanate, etc. as an arc stabilizer-deoxidizing agent-low C-Fe-as an alloying agent Si, Fe-Si
-Mn, Al-Mg, etc. weak magnetic raw material powders are blended as performance agents, and ferromagnetic raw material powders such as iron powder, iron oxide, etc. are adjusted for improving welding speed, adjusting flux filling rate, and welding workability. It is compounded as an agent. Welding performance agents, various raw material powders selected as regulators, and the compounding ratio in the flux are designed in advance according to the desired welding flux-cored wire, and in the present invention, this is the basic prescription powder (flux). Say.

【0010】通常、造粒する場合にはすべてのフラック
ス粒子中にすべての原料粉が含有され、また非造粒の場
合にはすべての原料粉がそれぞれ単一粉として配合され
る。従って造粒する場合は鉄粉、酸化鉄、鉄合金等の強
磁性原料粉が他の弱磁性原料粉と共にフラックス粒子を
構成し、また非造粒の場合は鉄粉、酸化鉄、鉄合金等の
強磁性原料粉がそのままの状態で配合されている。すな
わち造粒、非造粒フラックスのいずれの場合にも高周波
溶接時に磁極化した開口エッジ面にフラックス粒子が磁
着する危険性は十分存在する。このように磁場の影響を
受けやすいというフラックス粒子自身の特質から、これ
まで様々な工夫(特開昭54−109040、特開昭6
0−234794、特開昭60−234792等)が提
案されたにも係わらず依然として実用的に満足する成果
は得られていないのが実情である。
Usually, all the raw material powders are contained in all the flux particles in the case of granulation, and all the raw material powders are mixed as a single powder in the case of non-granulation. Therefore, when granulating, ferromagnetic raw material powder such as iron powder, iron oxide, and iron alloy constitutes flux particles together with other weak magnetic raw material powder, and when non-granulating, iron powder, iron oxide, iron alloy, etc. The ferromagnetic raw material powder of is mixed as it is. That is, there is a sufficient risk of flux particles magnetically adhering to the opening edge surface which is magnetically poled at the time of high frequency welding in both cases of granulated and non-granulated flux. Due to the characteristics of the flux particles themselves, which are easily affected by the magnetic field as described above, various ideas have been developed so far (Japanese Patent Laid-Open Nos. 54-109040 and 54-90040).
Despite the proposals of 0-234794, JP-A-60-234792, etc.), practically satisfactory results have not yet been obtained.

【0011】この発明では図1に示すように、このよう
な強磁性原料粉と弱磁性原料粉とから構成される基本処
方フラックスFを強磁性原料粉と弱磁性原料粉を配合し
た処方フラックス (第1種分割処方) F1 と強磁性原料
粉を含有しない弱磁性原料粉だけからなる処方フラック
ス (第2種分割処方) F2 の複数グループに分ける。そ
して管状体1内の下層側に第1種分割処方フラックスF
1 を供給し、上層側に第2種分割処方フラックスF2 を
供給する。これにより磁場の影響を受けやすい上層側に
位置するフラックスの磁気感受性を低減させるととも
に、下層側に位置する強磁性原料粉の磁場による舞い上
がりを上層側の第2種分割処方フラックスF2 の遮蔽に
より抑制する。従って強磁性成分である鉄粉を比較的多
く配合したフラックスを管状体内に供給する場合でも、
高周波溶接時に磁極化した管状体1の開口エッジ面2に
フラックス粒子が磁着することがない。ここで強磁性原
料粉とは強磁性体(鉄粉、ニッケル粉、コバルト粉)の
原料粉をいい、弱磁性原料粉とは強磁性体以外の原料粉
(化合物として、あるいは合金として強磁性成分を含有
するものも含む)をいう。
According to the present invention, as shown in FIG. 1, a basic prescription flux F composed of such a ferromagnetic raw material powder and a weak magnetic raw material powder is used as a prescription flux containing a ferromagnetic raw material powder and a weak magnetic raw material powder. Divided into multiple groups of prescription flux consisting of F1 and weak magnetic raw material powder that does not contain ferromagnetic raw material powder (second type divided prescription) F2. Then, on the lower layer side in the tubular body 1, the first-class split prescription flux F
1 is supplied, and the second type divided prescription flux F2 is supplied to the upper layer side. This reduces the magnetic susceptibility of the flux located on the upper layer side, which is easily affected by the magnetic field, and suppresses the rising of the ferromagnetic raw material powder located on the lower layer side due to the magnetic field, by shielding the second-class split prescription flux F2 on the upper layer side. To do. Therefore, even when supplying a flux containing a relatively large amount of iron powder, which is a ferromagnetic component, to the tubular body,
Flux particles are not magnetically attached to the opening edge surface 2 of the tubular body 1 which is made into a magnetic pole during high frequency welding. Here, the ferromagnetic raw material powder means a raw material powder of a ferromagnetic material (iron powder, nickel powder, cobalt powder), and the weak magnetic raw material powder means a raw material powder (compound or alloy as a ferromagnetic component) other than the ferromagnetic material. (Including those containing).

【0012】また管状体内の下層側に強磁性原料粉と弱
磁性原料粉を混合した状態、つまり強磁性原料粉を分散
させて供給すると、フラックスを充填した管を縮径する
途中で管外皮の応力除去焼鈍、あるいは管内フラックス
の脱水素熱処理を施す場合にも、強磁性材料(鉄粉等)
同志が焼結して塊状とならず、その後の縮径時に管外皮
に局部的な薄肉化現象が生じることによる断線の発生を
回避できる。
Further, when the ferromagnetic raw material powder and the weak magnetic raw material powder are mixed in the lower layer side of the tubular body, that is, when the ferromagnetic raw material powder is dispersed and supplied, the tube filled with the flux is reduced in diameter while being reduced in diameter. Ferromagnetic materials (iron powder, etc.) even when stress relief annealing or dehydrogenation heat treatment of flux in pipe
It is possible to avoid the occurrence of wire breakage due to the phenomenon that the tubes do not sinter into a lump and the tube outer skin is locally thinned during the subsequent diameter reduction.

【0013】また粉粒体充填管が溶接用フラックス入り
ワイヤの場合には、管状体内の上層側のみでなく下層側
にも溶接性能剤としての弱磁性原料粉(スラグ生成剤、
アーク安定剤、脱酸剤・合金剤)を供給して管内全体に
性能剤が行き渡るようにし、しかも溶接調整剤としての
強磁性原料粉(鉄粉等)を下層側に集中的に供給する。
このようにして製造された溶接用フラックス入りワイヤ
を溶接に供すると充填フラックスの通電性が向上し、フ
ラックス突出長の短縮化、溶着速度の向上等が図れるこ
とから良好な溶接作業性を期待し得る。
In the case where the powdered and granular material filling pipe is a flux-cored wire for welding, a weak magnetic raw material powder (slag forming agent, as a welding performance agent, not only on the upper layer side of the tubular body but also on the lower layer side thereof, is used.
Arc stabilizer, deoxidizer / alloying agent) are supplied so that the performance agent is spread throughout the pipe, and the ferromagnetic raw material powder (iron powder etc.) as a welding modifier is intensively supplied to the lower layer side.
When the flux-cored wire for welding manufactured in this manner is used for welding, the conductivity of the filling flux is improved, the flux protrusion length is shortened, and the welding speed is improved. obtain.

【0014】次に、管内に充填すべき予め設計された基
本処方フラックスを第1種分割処方フラックスと第2種
分割処方フラックスとに分割する方法について説明す
る。基本的には、 基本処方フラックス …強磁性原料粉+弱磁性原料
粉 第1種分割処方フラックス…強磁性原料粉+弱磁性原料
粉 第2種分割処方フラックス…弱磁性原料粉 であるが、弱磁性原料粉としてスラグ生成剤、アーク安
定剤、脱酸剤・合金剤等の複数の性能剤が配合されてい
ることから弱磁性原料粉の具体的な分割態様はさらに別
れる。すなわち、基本処方フラックスの配合原料粉を 強磁性原料粉 … X 弱磁性原料粉 … スラグ生成剤 A、B アーク安定剤 C 脱酸剤・合金剤 E、F としたとき、表1に示すように大略3つの分割パターン
に分類される。
Next, a method of dividing the predesigned basic prescription flux to be filled into the pipe into the first type divided prescription flux and the second type divided prescription flux will be described. Basically, it is a basic prescription flux ... ferromagnetic raw material powder + weak magnetic raw material powder type 1 split prescription flux ... ferromagnetic raw material + weak magnetic raw material powder type 2 split prescription flux ... weak magnetic raw material powder, but weak Since a plurality of performance agents such as a slag generator, an arc stabilizer, and a deoxidizer / alloying agent are mixed as the magnetic raw material powder, the specific division mode of the weak magnetic raw material powder is further divided. That is, when the raw material powders for the basic prescription flux are ferromagnetic raw material powder ... X weak magnetic raw material powder ... Slag generator A, B arc stabilizer C deoxidizer / alloying agent E, F, as shown in Table 1. It is roughly classified into three division patterns.

【0015】[0015]

【表1】 [Table 1]

【0016】分割パターン1は基本処方に配合したすべ
ての弱磁性原料粉を第1種と第2種に配合した例、分割
パターン2は基本処方の弱磁性原料粉を構成するすべて
の性能剤を第1種と第2種に配合した例、分割パターン
3は基本処方の弱磁性原料粉を構成する性能剤を異なら
せて第1種と第2種に配合した例である。いずれの場合
も分割処方フラックス(第1種、第2種)における各原
料粉X、A、B…のトータル配合率は基本処方フラック
スにおける各原料粉の配合率と一致する。すなわち、基
本処方フラックスを第1種分割処方フラックスと第2種
分割処方フフラックスに分割比率(wt%) が、 第1種:第2種=n1 :n2 (但し、n1 +n2 =10
0 ) となるように分割し、基本処方フラックスの原料粉A
(配合率:Na(wt%))を第1種分割処方と第2種分割処
方に振り分けた場合において、原料粉Aの分割処方フラ
ックス第1種、第2種での配合率(wt%) をそれぞれNa
1、Na2としたとき、 Na =Na1・n1 /100 +Na2・n2 /100 となるように原料粉Aを基本処方から分割処方へと分割
配合する。
Divided pattern 1 is an example in which all the weak magnetic raw material powders mixed in the basic prescription are mixed in the first and second types, and divided pattern 2 is all the performance agents that constitute the weak magnetic raw material powder in the basic prescription. An example in which the first type and the second type are blended, and the division pattern 3 is an example in which the performance agents that constitute the weak magnetic raw material powder of the basic formulation are different and blended in the first type and the second type. In any case, the total blending ratio of the raw material powders X, A, B, ... In the split prescription flux (first type, second type) coincides with the blending ratio of each raw material powder in the basic prescription flux. That is, the division ratio (wt%) of the basic prescription flux into the first type divided prescription flux and the second type divided prescription flux is as follows: first type: second type = n1: n2 (where n1 + n2 = 10)
0), and the raw material powder A of the basic prescription flux is divided.
When the (mixing ratio: Na (wt%)) is divided into the first type divided prescription and the second type divided prescription, the mixture ratio (wt%) of the raw powder A divided prescription fluxes type 1 and type 2 Respectively Na
When 1 and Na2 are given, the raw material powder A is divided and blended from the basic prescription to the divided prescription so that Na = Na1.n1 / 100 + Na2.n2 / 100.

【0017】一般的に、粉粒体を構成する各原料粉が管
内全体に分散して存在していることが機能性材料として
の粉粒体充填管に望まれる場合が多い。溶接用フラック
ス入りワイヤにおいても溶接性能剤を構成する各原料粉
が管内全体に分散しているほうが溶接作業性にとって好
ましい。このような場合には、上記の分割パターンのう
ち分割パターン1を採用することが推奨される。そして
この分割パターン1の望ましい態様としては、第1種分
割処方フラックスおよび第2種分割処方フラックスにお
ける弱磁性原料粉同士の配合比を基本処方フラックスに
おける弱磁性原料粉同士の配合比とすることが望まれ
る。すなわち、弱磁性原料粉A、B、C、…、の基本処
方フラックスにおける配合率をNa 、Nb 、Nc 、…
第1種分割処方フラックスにおける配合率をNa1、Nb
1、Nc1、…、第2種分割処方フラックスにおける配合
率をNa2、Nb2、Nc2、…、とすると、 Na :Nb :Nc :…=Na1:Nb1:Nc1:…=Na2:
Nb2:Nc2:… のように等配合比とすることが望ましい。各配合率は次
式で表される。 (第1種分割処方フラックス) 強磁性原料粉Xの配合率 Nx1= (Nx ・100)/n1 (但し、Nx はXの基本処方フラックスにおける配合
率) 弱磁性原料粉Aの配合率(B、C、… も同様) Na1=f1 ( Na,Nx,n1) ={Na ・100 ・ (n1-Nx)}/{n1 ・(100−Nx)} (第2種分割処方フラックス) 弱磁性原料粉Aの配合率(B、C、… も同様) Na1=f2 ( Na,Nx)= (Na ・100)/(100−Nx) 表2は、この第1種、第2種分割処方フラックスにおけ
る強磁性原料粉および弱磁性原料粉の配合率を示したも
のである。また図2はこの関係を図式化して示したもの
である。
In general, it is often desired that the raw material powders forming the granular material are dispersed and present in the entire tube in the granular material-filled tube as the functional material. Also in the flux-cored wire for welding, it is preferable for the welding workability that each raw material powder constituting the welding performance agent is dispersed in the entire pipe. In such a case, it is recommended to adopt the division pattern 1 among the above division patterns. As a desirable mode of this division pattern 1, the mixing ratio of the weak magnetic raw material powders in the first type divided prescription flux and the second type divided prescription flux is set to the mixing ratio of the weak magnetic raw material powders in the basic prescription flux. desired. That is, the mixing ratios of the weak magnetic raw material powders A, B, C, ... In the basic prescription flux are Na, Nb, Nc ,.
The compounding ratio in the first type split prescription flux is Na1, Nb
1, Nc1, ..., When the mixing ratios in the second type split prescription flux are Na2, Nb2, Nc2, ..., Na: Nb: Nc: ... = Na1: Nb1: Nc1: ... = Na2:
It is desirable to have an equal mixing ratio such as Nb2: Nc2 :. Each mixing ratio is represented by the following formula. (Type 1 split prescription flux) Mixing ratio of ferromagnetic raw material powder Nx1 = (Nx.100) / n1 (where Nx is the mixing ratio in the basic prescription flux of X) Mixing ratio of weak magnetic raw material powder A (B, C, ... as well) Na1 = f 1 (Na, Nx, n1) = {Na · 100 · (n1-Nx)} / {n1 · (100-Nx)} ( second kind divided formulation flux) weakly magnetic material blending ratio of the powder a (B, C, ... similarly) Na1 = f 2 (Na, Nx) = (Na · 100) / (100-Nx) table 2, the first type, second type dividing formulation flux 3 shows the mixing ratio of the ferromagnetic raw material powder and the weak magnetic raw material powder in FIG. FIG. 2 is a diagrammatic representation of this relationship.

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【作用】この発明では、強磁性原料粉と弱磁性原料粉と
から構成される基本処方を強磁性原料粉と弱磁性原料粉
を配合した粉粒体(第1種分割処方)と強磁性原料粉を
含有しない弱磁性原料粉だけからなる粉粒体(第2種分
割処方)の複数グループに分ける。そして管状体内の下
層側に第1種分割処方粉粒体を供給し、上層側に第2種
分割処方粉粒体を供給する。これにより磁場の影響を受
けやすい上層側に位置する粉粒体の磁気感受性が低減で
き、かつ下層側に位置する強磁性原料粉の磁場による舞
い上がりを上層側の第2種分割処方粉粒体の遮蔽によっ
て抑制できる。従って強磁性成分である鉄粉を配合した
粉粒体を管状体内に供給する場合でも、高周波溶接時に
磁極化した管状体のエッジ面に粉粒体粒子が磁着するこ
とがない。従って粉粒体中の磁性粒子が管状体のエッジ
面に磁着することに起因する管の割れは実質的になくな
る。また管状体内の下層側に強磁性原料粉と弱磁性原料
粉を混合した状態、つまり強磁性原料粉を分散させて供
給しているので、粉粒体を充填した管を縮径する途中で
管外皮の応力除去焼鈍、あるいは管内粉粒体の脱水素熱
処理を施した場合にも、強磁性材料(鉄粉等)同志が焼
結して塊状とならず、その後の縮径時において管外皮に
局部的な薄肉化現象が生じることによる断線の発生を回
避できる。
In the present invention, the basic prescription composed of the ferromagnetic raw material powder and the weak magnetic raw material powder is the powder material (the first type divided prescription) in which the ferromagnetic raw material powder and the weak magnetic raw material powder are mixed, and the ferromagnetic raw material. It is divided into a plurality of groups of powder particles (second type divided prescription) consisting only of weak magnetic raw material powder that does not contain powder. Then, the first-type divided prescription granular material is supplied to the lower layer side of the tubular body, and the second-type divided prescription granular material is supplied to the upper layer side. As a result, the magnetic susceptibility of the granular material located on the upper layer side, which is easily affected by the magnetic field, can be reduced, and the rising of the ferromagnetic raw material powder located on the lower layer side due to the magnetic field is suppressed in the second-class split prescription granular material on the upper layer side. It can be suppressed by shielding. Therefore, even when supplying a granular material containing iron powder, which is a ferromagnetic component, into the tubular body, the granular particle does not magnetically adhere to the edge surface of the tubular body that is magnetically poled during high frequency welding. Therefore, the cracking of the tube caused by the magnetic particles in the granular material being magnetically attached to the edge surface of the tubular body is substantially eliminated. In addition, since the ferromagnetic raw material powder and the weak magnetic raw material powder are mixed in the lower layer side of the tubular body, that is, the ferromagnetic raw material powder is dispersed and supplied, the tube filled with the powder or granular material is reduced in diameter while being reduced. Even when stress-relieving annealing of the outer shell or dehydrogenation heat treatment of powder particles in the tube is performed, the ferromagnetic materials (iron powder, etc.) do not sinter and become agglomerates. It is possible to avoid the occurrence of disconnection due to a local thinning phenomenon.

【0020】[0020]

【実施例】以下、溶接用フラックス入りワイヤの製造を
実施例として説明する。図3は溶接用フラックス入りワ
イヤ製造装置の主要部の構成図である。図3に示すよう
に、オープン管(管状体)1の送り方向に沿って成形ロ
ール群3、サイドロール5およびフラックス供給装置4
1、42が配置されている。成形ロール3の上流側に
は、予成形ロール(図示しない)が設けられている。成
形途中のオープン管1内にはまずフラックス供給装置4
1から下層を形成する第1種分割処方フラックスF1 が
供給され、引き続いてフラックス供給装置42から上層
を形成する第2種分割処方フラックスF2 が供給され
る。フラックスF1 、F2 を供給されたオープン管1
は、フィンパスロール6、シームガイドロール7を通過
し、溶接ゾーンに入る。図4は第2種分割処方フラック
スF2 を供給した直後の図3IV−IV線断面図、また図5
は溶接ゾーンでの図3V−V線断面図であり、図示のご
とく上層側の第2種分割処方フラックスF2 は下層側の
第1種分割処方フラックスF1 を覆った状態になるよう
にして層状供給される。高周波誘導溶接装置8はワーク
コイル9およびスクイズロール10を備えている。ワー
クコイル9には電源12から、高周波溶接電流が供給さ
れる。溶接された管11は切削バイト13により外面側
の余盛りビード14が切削され(内面ビード16は管内
に残留する)、圧延ロール群15で圧延され、さらに焼
鈍を施しながら圧延装置および伸線装置(いずれも図示
しない)により外径1.0〜2.0 mm 程度の製品サイ
ズまで縮径される。
EXAMPLES The manufacturing of flux-cored wires for welding will be described below as examples. FIG. 3 is a configuration diagram of a main part of the welding flux-cored wire manufacturing apparatus. As shown in FIG. 3, the forming roll group 3, the side rolls 5, and the flux supply device 4 are arranged along the feed direction of the open pipe (tubular body) 1.
1, 42 are arranged. A preforming roll (not shown) is provided on the upstream side of the forming roll 3. In the open tube 1 in the middle of molding, first, the flux supply device 4
The first type divided prescription flux F1 forming the lower layer is supplied from No. 1, and subsequently the second type divided prescription flux F2 forming the upper layer is supplied from the flux supply device 42. Open tube 1 supplied with flux F1 and F2
Passes through the fin pass roll 6 and the seam guide roll 7 and enters the welding zone. FIG. 4 is a sectional view taken along the line IV-IV in FIG. 3 immediately after supplying the second type split prescription flux F2, and FIG.
FIG. 3 is a sectional view taken along the line V-V in the welding zone. As shown in the figure, the layer 2 is supplied in a layered manner so that the upper layer side second-class divided prescription flux F2 covers the lower layer side first-type divided prescription flux F1. To be done. The high frequency induction welding device 8 includes a work coil 9 and a squeeze roll 10. A high frequency welding current is supplied to the work coil 9 from a power source 12. The welded pipe 11 has an extra bead 14 on the outer surface side cut by a cutting tool 13 (the inner bead 16 remains in the pipe), is rolled by a group of rolling rolls 15, and is further annealed by a rolling device and a wire drawing device. (Neither is shown) The diameter is reduced to a product size of about 1.0 to 2.0 mm.

【0021】このような高周波誘導溶接により幅w=3
0〜150mm、厚さt=1〜5mm程度の鋼帯を外径do
=10〜50mm程度の管に造管する。このときの溶接条
件として 高周波電流の周波数 f=300〜800
kHz 入熱量(EpIp) P=50〜500kV
A ワークコイル〜溶接点間の距離 L=10〜100mm アペックス角(V収束角) θ=3〜15° 程度のものが採用され、溶接速度(造管速度)V=10
〜200m/min 程度の速度で造管が行われる。
By such high frequency induction welding, the width w = 3
A steel strip with a diameter of 0 to 150 mm and a thickness t of 1 to 5 mm is
= Make a pipe with a diameter of 10 to 50 mm. As welding conditions at this time, frequency of high frequency current f = 300 to 800
kHz Heat input (EpIp) P = 50-500kV
A Distance between work coil and welding point L = 10 to 100 mm Apex angle (V convergence angle) θ = 3 to 15 ° is adopted, welding speed (pipe forming speed) V = 10
Pipe forming is performed at a speed of about 200 m / min.

【0022】このような高周波溶接では、高周波溶接電
流の供給により管状体内に磁場が発生して開口エッジ部
が磁極となるから、フラックス表面層に存在する磁性粒
子は舞い上がって開口エッジ部に磁着しやすくなる。こ
の発明では、ルチール等の弱磁性原料粉とともに鉄粉等
の強磁性原料粉を配合した第1種分割処方フラックスを
下層側に供給し、次に弱磁性原料粉だけを配合した第2
種分割処方フラックスを上層側に供給することにより、
そのままでは磁気吸引力により開口エッジ部へと舞い上
がる第1種分割処方フラックスを、吸引力の影響を受け
ない第1種分割処方フラックスの遮蔽作用により抑える
(図4、図5)。
In such high-frequency welding, since a magnetic field is generated in the tubular body by supplying a high-frequency welding current and the opening edge becomes a magnetic pole, the magnetic particles existing in the flux surface layer soar and magnetically adhere to the opening edge. Easier to do. In the present invention, the first-class split prescription flux in which the ferromagnetic raw material powder such as the iron powder is blended together with the weak magnetic raw material powder such as the rutile is supplied to the lower layer side, and then the second weak magnetic raw material powder is blended.
By supplying the seed division prescription flux to the upper layer side,
The 1st-class divided prescription flux that floats up to the opening edge portion by the magnetic attraction force as it is is suppressed by the shielding action of the 1st-class divided prescription flux that is not affected by the attractive force (FIGS. 4 and 5).

【0023】つぎに、上記装置により製造した溶接用フ
ラックス入りワイヤの割れ発生結果について説明する。
Next, the result of cracking of the flux-cored wire for welding manufactured by the above apparatus will be described.

【0024】板厚2.5mm、幅75.0mmの鋼帯(SP
HC,C=0.05%)を、外径25.5mm、内径2
0.5mmの管に成形した。成形途中でフラックスを充填
率10〜20%で充填し、オープン管を連続的に突合せ
接合した。このときワークコイルに供給した高周波電流
の周波数は500kHz 、入熱量(EpIp)P=160kV
A、溶接速度Vは35m/min 、ワークコイル〜溶接点
距離は30mm、アペックス角は7°であった。溶接した
外径25.5mmの管を圧延ロール群により途中1回の連
続焼鈍を施して外径4.0mmまで縮径し、管外皮の焼鈍
および充填フラックスの脱水素のための加熱処理、めっ
き処理を施してコイルに巻き取った。ついで孔ダイスま
たはローラダイス等により仕上伸線し、管外径1.2mm
〜1.6mmの製品サイズまで縮径して製品ワイヤの割れ
発生状況を調べた。
Steel strip 2.5 mm thick and 75.0 mm wide (SP
HC, C = 0.05%), outer diameter 25.5 mm, inner diameter 2
Molded into 0.5 mm tubes. Flux was filled at a filling rate of 10 to 20% during molding, and open pipes were continuously butt-joined. At this time, the frequency of the high frequency current supplied to the work coil is 500 kHz, and the heat input (EpIp) P = 160 kV
A, welding speed V was 35 m / min, work coil to welding point distance was 30 mm, and apex angle was 7 °. Welded pipe with an outer diameter of 25.5 mm is subjected to continuous annealing once with a rolling roll group once to reduce the outer diameter to 4.0 mm, and heat treatment and plating for annealing the outer shell of the pipe and dehydrogenation of the filling flux. It was processed and wound into a coil. Next, finish wire drawing with a hole die or roller die, and the outer diameter of the pipe is 1.2 mm.
The diameter of the product wire was reduced to a product size of up to 1.6 mm and the occurrence of cracks in the product wire was examined.

【0025】使用した基本処方フラックスの原料粉(強
磁性原料粉(鉄粉)+弱磁性原料粉)とその配合率を表
3に示す。表3に示す4種類の基本処方を表1の分割パ
ターンに従って分割し、表4に示す第1種(強磁性原料
粉(鉄粉)+弱磁性原料粉)、第2種(弱磁性原料粉)
の分割処方フラックスを準備した。分割処方フラックス
は表1に示す各基本処方の原料粉を混合して造粒し、あ
るいは混合したままの非造粒状態とした。各原料粉の粒
度は250μm以下、また造粒フラックスの粒度は15
00μm以下であった。
Table 3 shows the raw material powder (ferromagnetic raw material powder (iron powder) + weak magnetic raw material powder) of the basic prescription flux used and its mixing ratio. The four types of basic prescriptions shown in Table 3 were divided according to the division pattern shown in Table 1, and the first type (ferromagnetic raw material powder (iron powder) + weak magnetic raw material powder) and the second type (weak magnetic raw material powder) shown in Table 4 were divided. )
The split prescription flux was prepared. The divided prescription flux was prepared by mixing the raw material powders of the respective basic prescriptions shown in Table 1 and granulating, or in the non-granulated state as it was mixed. The particle size of each raw material powder is 250 μm or less, and the particle size of the granulation flux is 15
It was less than 00 μm.

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【表5】 [Table 5]

【0029】割れの評価は伸線後の外径1.2〜1.6
mmφの製品ワイヤ100km(ワイヤ20kg巻スプール×
37)の全長にわたってワイヤ外皮の渦流探傷試験(E
CT)を実施して割れの有無と位置を確認し、割れ信号
が出たとき該当部分を拡大鏡で観察してワイヤ長手方向
の割れの存在を確認することにより実施した。割れの存
在が全く確認できないとき、これを良好(○)とした。
また、割れがあるとその割れの開口から表面処理中ある
いは伸線中に処理液がワイヤ中に浸入して製品の品質を
劣化させる傾向にあることから、割れの発生を1箇所で
も確認した場合にはこれを不良(×)とした。
The evaluation of cracks was made by drawing an outer diameter of 1.2 to 1.6.
mmφ product wire 100km (20kg wire spool ×
37) Eddy current flaw detection test (E)
CT) was performed to confirm the presence and position of cracks, and when a crack signal was output, the relevant portion was observed with a magnifying glass to confirm the presence of cracks in the wire longitudinal direction. When the presence of cracks could not be confirmed at all, this was evaluated as good (◯).
Also, if there is a crack, the treatment liquid tends to infiltrate into the wire during surface treatment or wire drawing from the opening of the crack and deteriorate the quality of the product. This was regarded as a defect (x).

【0030】表4において、実験No. 1〜9は本発明の
実験例である。 実験No. 1…基本処方F−1を分割パターン1(弱磁性
原料粉:等配合比…請求項2対応)により、第1種と第
2種に分割比率 第1種:第2種=50:50で分割し
たフラックス(第1種:造粒、第2種:造粒)を使用し
た。第1種を下層側に、第2種を上層側にしてフラック
ス充填率12%で供給した。 実験No. 2…基本処方F−1を分割パターン1(弱磁性
原料粉:非等配合比)により、第1種と第2種に分割比
率 第1種:第2種=40:60 で分割したフラック
ス(第1種:非造粒、第2種:非造粒)を使用した。1
種を下層側に、第2種を上層側にしてフラックス充填率
11%で供給した。 実験No. 3…基本処方F−2を分割パターン1(弱磁性
原料粉:等配合比…請求項2対応)により、第1種と第
2種に分割比率 第1種:第2種=60:40で分割し
たフラックス(第1種:造粒、第2種:造粒)を使用し
た。第1種を下層側に、第2種を上層側にしてフラック
ス充填率15%で供給した。 実験No. 4…基本処方F−2を分割パターン2により、
第1種と第2種に分割比率 第1種:第2種=50:5
0 で分割したフラックス(第1種:造粒、第2種:非
造粒)を使用した。第1種を下層側に、第2種を上層側
にしてフラックス充填率15%で供給した。 実験No. 5…基本処方F−3を分割パターン1(弱磁性
原料粉:等配合比…請求項2対応)により、第1種と第
2種に分割比率 第1種:第2種=40:60で分割し
たフラックス(第1種:造粒、第2種:造粒)を使用し
た。第1種を下層側に、第2種を上層側にしてフラック
ス充填率17%で供給した。 実験No. 6…基本処方F−3を分割パターン3により、
第1種と第2種に分割比率 第1種:第2種=50:5
0 で分割したフラックス(第1種:造粒、第2種:造
粒)を使用した。第1種を下層側に、第2種を上層側に
してフラックス充填率17%で供給した。 実験No. 7…基本処方F−4を分割パターン1(弱磁性
原料粉:等配合比…請求項2対応)により、第1種と第
2種に分割比率 第1種:第2種=50:50で分割し
たフラックス(第1種:造粒、第2種:造粒)を使用し
た。第1種を下層側に、第2種を上層側にしてフラック
ス充填率20%で供給した。 実験No. 8…基本処方F−4を分割パターン1(弱磁性
原料粉:等配合比…請求項2対応)により、第1種と第
2種に分割比率 第1種:第2種=60:40に分割
し、さらに第1種を下層側上層用と下層側下層用に鉄粉
量(鉄粉量:下層側上層用<下層側下層用)を異ならせ
て分割比率 下層側上層用:下層側下層用=1:1 で
分割したフラックス(第1種:造粒、第2種:非造粒)
を使用した。第1種を下層側に、第2種を上層側にして
フラックス充填率20%で供給した。この例のように下
層側に供給する第1種分割処方フラックスをさらに分割
してより下層に位置するフラックスほど鉄粉量を多く配
合させる処置は、基本処方フラックスが比較的多くの鉄
粉量を配合する場合に適用して効果がある。 実験No. 9…基本処方F−2を分割パターン1(弱磁性
原料粉:等配合比…請求項2対応)により、第1種と第
2種に分割比率 第1種:第2種=40:60に分割
し、さらに第2種を上層用と下層側下層用に分割比率
上層用:下層側下層用=2:1 で分割したフラックス
(第1種:造粒、第2種:造粒)を使用した。第1種を
下層側上層に、第2種を上層側と下層側下層にしてフラ
ックス充填率17%で供給した。この例のように第2種
分割処方フラックスをさらに分割して最下層にも配する
処置は、基本処方フラックスを構成する溶接性能剤とし
ての各原料粉を管内全体に分散させる上でより一層の効
果が望める。
In Table 4, Experiment Nos. 1 to 9 are experimental examples of the present invention. Experiment No. 1 ... The basic formulation F-1 was divided into the first and second types by the division pattern 1 (weak magnetic raw material powder: equal mixing ratio ... corresponding to claim 2). First type: Second type = 50 A flux (first type: granulation, second type: granulation) divided by 50 was used. The first type was supplied to the lower layer side and the second type was supplied to the upper layer side at a flux filling rate of 12%. Experiment No. 2 ... Dividing basic formulation F-1 into 1st type and 2nd type by division pattern 1 (weak magnetic raw material powder: unequal mixture ratio) 1st type: 2nd type = 40:60 Was used (first type: non-granulated, second type: non-granulated). 1
The seeds were supplied to the lower layer side and the second species to the upper layer side at a flux filling rate of 11%. Experiment No. 3 ... Dividing the basic formulation F-2 into 1st type and 2nd type by dividing pattern 1 (weak magnetic raw material powder: equal mixing ratio ... Corresponding to claim 2) 1st type: 2nd type = 60 The flux (first type: granulation, second type: granulation) divided by 40 was used. The first type was supplied to the lower layer side and the second type was supplied to the upper layer side at a flux filling rate of 15%. Experiment No. 4 ... The basic prescription F-2 was divided into two patterns,
Ratio of division into 1st type and 2nd type 1st type: 2nd type = 50: 5
A flux divided by 0 (first type: granulated, second type: non-granulated) was used. The first type was supplied to the lower layer side and the second type was supplied to the upper layer side at a flux filling rate of 15%. Experiment No. 5: Dividing ratio of basic formulation F-3 into 1st type and 2nd type by dividing pattern 1 (weak magnetic raw material powder: equal mixing ratio ... Corresponding to claim 2) 1st type: 2nd type = 40 The flux (first type: granulation, second type: granulation) divided by 60 was used. The first type was supplied to the lower layer side and the second type was supplied to the upper layer side at a flux filling rate of 17%. Experiment No. 6 ... The basic prescription F-3 was divided into patterns 3
Ratio of division into 1st type and 2nd type 1st type: 2nd type = 50: 5
The flux divided by 0 (first type: granulation, second type: granulation) was used. The first type was supplied to the lower layer side and the second type was supplied to the upper layer side at a flux filling rate of 17%. Experiment No. 7: Dividing ratio of basic formulation F-4 into 1st type and 2nd type by dividing pattern 1 (weak magnetic raw material powder: equal mixing ratio ... Corresponding to claim 2) 1st type: 2nd type = 50 A flux (first type: granulation, second type: granulation) divided by 50 was used. The first type was supplied to the lower layer side and the second type was supplied to the upper layer side at a flux filling rate of 20%. Experiment No. 8: The basic formulation F-4 was divided into the first type and the second type by the division pattern 1 (weakly magnetic raw material powder: equal mixing ratio ... corresponding to claim 2). First type: Second type = 60 : The first type is divided into 40 parts, and the first type is divided into different amounts of iron powder (iron powder amount: for lower layer upper layer <for lower layer lower layer) for lower layer upper layer and lower layer side lower layer: For lower layer upper layer: Lower layer side Lower layer = 1: 1 divided flux (1st type: granulated, 2nd type: non-granulated)
It was used. The first type was supplied to the lower layer side and the second type was supplied to the upper layer side at a flux filling rate of 20%. As in this example, the first-class split prescription flux supplied to the lower layer side is further divided to mix more iron powder in the flux located in the lower layer. It is effective when applied when mixed. Experiment No. 9: Dividing ratio of basic formulation F-2 into 1st type and 2nd type by dividing pattern 1 (weak magnetic raw material powder: equal mixing ratio ... Corresponding to claim 2) 1st type: 2nd type = 40 : 60, and the second type is divided into upper and lower layers.
For upper layer: for lower layer side For lower layer = 2: 1 divided flux (first type: granulation, second type: granulation) was used. The first type was supplied as an upper layer on the lower layer side and the second type was supplied as an upper layer side and a lower layer on the lower layer side at a flux filling rate of 17%. As in this example, the treatment of further dividing the second type split prescription flux and arranging it in the lowermost layer is more effective in dispersing each raw material powder as a welding performance agent that constitutes the basic prescription flux throughout the pipe. The effect can be expected.

【0031】これらの実験例では、上層側に供給した第
2種分割処方フラックス(弱磁性原料粉)が下層側に供
給した第1種分割処方フラックス(強磁性原料粉(鉄
粉)+弱磁性原料粉)を遮蔽し、上層の重量圧により抑
える。そのため下層側の第1種分割処方フラックス粒子
が管内に生じた磁場によって舞い上がり管エッジ面に磁
着することがなく、この磁着に起因する管外皮の割れは
発生しなかった。また鉄粉Xを弱磁性原料粉A、B、
C、D、E、F、Gとともに混合し分散させた状態で供
給していることから、加熱処理により鉄粉が焼結するこ
とがなく、この焼結に起因する断線の発生はなかった。
またこの溶接用フラックス入りワイヤを用いて溶接を行
ったところ、良好な溶接作業性が実現できた。
In these experimental examples, the second-class split prescription flux (weak magnetic raw material powder) supplied to the upper layer side is the first-type split prescription flux (ferromagnetic raw material powder (iron powder) + weak magnetic) supplied to the lower layer side. The raw material powder) is shielded, and the weight pressure of the upper layer suppresses it. Therefore, the first-class split prescription flux particles on the lower layer side did not soar up due to the magnetic field generated in the tube and magnetically adhered to the edge surface of the tube, and cracking of the tube skin due to this magnetic adhesion did not occur. Further, the iron powder X is replaced by the weak magnetic raw material powders A, B,
Since the iron powder was mixed with C, D, E, F, and G and supplied in a dispersed state, the iron powder did not sinter due to the heat treatment, and the disconnection due to the sintering did not occur.
When welding was performed using this flux-cored wire for welding, good welding workability was realized.

【0032】これに対して、実験No. 10〜13は比較
例であり、それぞれ基本処方フラックス(強磁性原料粉
(鉄粉)+弱磁性原料粉)F−1、F−2、F−3、F
−4を1層充填した。これらの実験例では、管エッジに
面するフラックス表層部に磁性粒子(鉄粉あるいは鉄粉
を含有する造粒粒子)が存在するため、この磁性粒子が
管内に生じた磁場の影響を直接的に受けて舞い上がり管
エッジ面に磁着した結果、管外皮に割れが発生し製品歩
留りを下げた。
On the other hand, Experiment Nos. 10 to 13 are comparative examples, and the basic prescription flux (ferromagnetic raw material powder (iron powder) + weak magnetic raw material powder) F-1, F-2, F-3, respectively. , F
-4 was packed in one layer. In these experimental examples, since magnetic particles (iron powder or granulated particles containing iron powder) are present in the flux surface layer portion facing the tube edge, the magnetic particles directly affect the influence of the magnetic field generated in the tube. As a result, the edge of the pipe was magnetically adhered and magnetically adhered to the pipe, and as a result, cracks were generated in the pipe skin, reducing the product yield.

【0033】また表示しないが、これら実験例の他に基
本処方フラックス(強磁性原料粉(鉄粉)+弱磁性原料
粉)F−1(鉄粉配合率:10%)を強磁性原料粉(鉄
粉)と弱磁性原料粉とに分離した2種類のフラックスを
準備し、強磁性原料粉(鉄粉)を下層、強磁性原料粉
A、B、C、D、E、F、Gを上層になるように供給す
る比較例も実験した。この実験例では、上層の強磁性原
料粉層がその重量圧により下層の鉄粉層を抑えるので、
磁性粒子が管エッジ面に磁着することに起因する管外皮
の割れは発生しなかった。しかし鉄粉を下層に単独供給
していることから、加熱処理によって鉄粉が焼結して塊
状になり、それ以降の管縮径時(とくに仕上げ伸線時)
に断線が頻発し製品歩留りを下げた。
Although not shown, in addition to these experimental examples, a basic prescription flux (ferromagnetic raw material powder (iron powder) + weak magnetic raw material powder) F-1 (iron powder mixing ratio: 10%) was used as a ferromagnetic raw material powder ( Iron powder) and weak magnetic raw material powder are separated into two types of flux, and ferromagnetic raw material powder (iron powder) is the lower layer, and ferromagnetic raw material powders A, B, C, D, E, F and G are the upper layers. A comparative example was also experimented to be supplied so that In this experimental example, the upper ferromagnetic raw material powder layer suppresses the lower iron powder layer by its weight pressure,
No cracking of the tube skin due to magnetic particles magnetically attached to the tube edge surface occurred. However, since iron powder is separately supplied to the lower layer, the iron powder sinters into a lump by heat treatment, and when the diameter of the pipe is reduced thereafter (especially during finish wire drawing).
Frequent wire breakages caused a drop in product yield.

【0034】[0034]

【発明の効果】この発明によれば、強磁性原料粉と弱磁
性原料粉とから構成される基本処方を強磁性原料粉と弱
磁性原料粉を配合した分割処方粉粒体(第1種分割処
方)と強磁性原料粉を含有しない弱磁性原料粉だけから
なる分割処方粉粒体(第2種分割処方)の複数グループ
に分け、管状体内の下層側に第1種分割処方粉粒体を供
給し、上層側に第2種分割処方粉粒体を供給するので、
磁場の影響を受けやすい上層側に位置する粉粒体の磁気
感受性が低減され、かつ下層側に位置する強磁性原料粉
の磁場による舞い上がりを上層側の第2種分割処方粉粒
体の遮蔽による重量圧によって抑制できる。従って強磁
性成分である鉄粉を配合した粉粒体を管状体内に供給す
る場合でも高周波溶接時に磁極化した管状体のエッジ面
に粉粒体粒子が磁着することがなくなり、磁性粒子がエ
ッジ面に磁着することに起因する管の割れは実質的に解
消される。また管状体内の下層側に強磁性原料粉と弱磁
性原料粉を混合した状態、つまり強磁性原料粉を分散さ
せて供給しているので、粉粒体を充填した管を縮径する
途中で管外皮の応力除去焼鈍、あるいは管内粉粒体の脱
水素熱処理を施した場合にも、強磁性材料(鉄粉等)同
志が焼結して塊状となることがないので、その後の縮径
時において管外皮に局部的な薄肉化現象が生じることに
よる断線の発生を回避できる。
According to the present invention, a basic prescription composed of a ferromagnetic raw material powder and a weak magnetic raw material powder is blended with a ferromagnetic raw material powder and a weak magnetic raw material powder to form a divided prescription powder (type 1 division). Prescription) and divided prescription powders consisting of only weak magnetic raw material powders that do not contain ferromagnetic raw material powders (second type divisional prescription) are divided into multiple groups, and the first type divided prescription powders are placed on the lower side of the tubular body. Supply, and the second-class divided prescription powder and granules are supplied to the upper layer side,
The magnetic susceptibility of the granular material located on the upper layer side, which is easily affected by the magnetic field, is reduced, and the rising of the ferromagnetic raw material powder located on the lower layer side due to the magnetic field is prevented by the shielding of the second-class split prescription granular material on the upper layer side. It can be suppressed by the weight pressure. Therefore, even when supplying a granular material containing iron powder, which is a ferromagnetic component, to the tubular body, the granular particle is not magnetically attached to the edge surface of the tubular body that is magnetically poled during high frequency welding, and the magnetic particle is Cracks in the tube due to magnetic attachment to the surface are substantially eliminated. In addition, since the ferromagnetic raw material powder and the weak magnetic raw material powder are mixed in the lower layer side of the tubular body, that is, the ferromagnetic raw material powder is dispersed and supplied, the tube filled with the powder or granular material is reduced in diameter while being reduced. Even when stress-relieving annealing of the outer skin or dehydrogenation heat treatment of powder particles in the tube is performed, the ferromagnetic materials (iron powder, etc.) do not sinter and become agglomerates. It is possible to avoid the occurrence of disconnection due to the local thinning phenomenon occurring on the tube skin.

【0035】また粉粒体充填管が溶接用フラックス入り
ワイヤの場合には、管状体内の上層側のみでなく下層側
にも溶接性能剤としての弱磁性原料粉(スラグ生成剤、
アーク安定剤、脱酸剤・合金剤)を供給して管内全体に
性能剤が行き渡るようにし、しかも溶接調整剤としての
強磁性原料粉(鉄粉等)を下層側に集中的に供給する。
このようにして製造された溶接用フラックス入りワイヤ
を溶接に供すると充填フラックスの通電性が向上し、フ
ラックス突出長の短縮化、溶着速度の向上等が図れるこ
とから良好な溶接作業性を期待し得る。
When the powder-filled tube is a flux-cored wire for welding, a weak magnetic raw material powder (slag-forming agent, as a welding performance agent, not only on the upper layer side of the tubular body but also on the lower layer side thereof, is used.
Arc stabilizer, deoxidizer / alloying agent) are supplied so that the performance agent is spread throughout the pipe, and the ferromagnetic raw material powder (iron powder etc.) as a welding modifier is intensively supplied to the lower layer side.
When the flux-cored wire for welding manufactured in this manner is used for welding, the conductivity of the filling flux is improved, the flux protrusion length is shortened, and the welding speed is improved. obtain.

【0036】この結果、製品歩留りの向上を図ることが
でき、しかも品質良好な粉粒体充填管を得ることができ
る。
As a result, the product yield can be improved, and a powder-filled tube with good quality can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】基本処方フラックスと第1種、第2種分割処方
フラックスの関係を示す説明図である。
FIG. 1 is an explanatory diagram showing a relationship between a basic prescription flux and a first type and a second type divided prescription flux.

【図2】弱磁性原料粉同志を等配合比にして分割する場
合の説明図である。
FIG. 2 is an explanatory diagram of a case where weak magnetic raw material powders are divided at equal mixing ratios.

【図3】この発明の粉粒体充填管を製造するための装置
例を示すもので、溶接用フラックス入りワイヤの製造装
置の主要部の構成図である。
FIG. 3 shows an example of an apparatus for manufacturing the powder / particle filling tube of the present invention, and is a configuration diagram of a main part of a welding flux-cored wire manufacturing apparatus.

【図4】図3のIV−IV線断面図であり、フラックス供給
位置における管状体の断面図を示す。
FIG. 4 is a sectional view taken along the line IV-IV of FIG. 3, showing a sectional view of the tubular body at a flux supply position.

【図5】図3のV−V線断面図であり、ワークコイル位
置における管状体の断面図を示す。
5 is a sectional view taken along line VV of FIG. 3, showing a sectional view of the tubular body at a work coil position.

【符号の説明】[Explanation of symbols]

1 オープン管(管状体) 2 開口エッジ面 3 成形ロール群 41 フラックス供給装置(下層用) 42 フラックス供給装置(上層用) 5 サイドロール 6 フィンパスロール 7 シームガイドロール 8 高周波溶接装置 9 ワークコイル 10 スクイズロール 11 溶接された管 12 電源 15 圧延ロール群 F 基本処方フラックス F1 第1種分割処方フラックス F2 第2種分割処方フラックス 1 Open Pipe (Tubular Body) 2 Open Edge Surface 3 Forming Roll Group 41 Flux Supply Device (For Lower Layer) 42 Flux Supply Device (For Upper Layer) 5 Side Roll 6 Fin Pass Roll 7 Seam Guide Roll 8 High Frequency Welding Device 9 Work Coil 10 Squeeze roll 11 Welded tube 12 Power supply 15 Rolling roll group F Basic prescription flux F1 Type 1 split prescription flux F2 Type 2 split prescription flux

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋本 晴次 東京都中央区築地三丁目5番4号 日鐵溶 接工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Haruji Hashimoto 3-5-4 Tsukiji, Chuo-ku, Tokyo Inside Nittetsu Welding Industry Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属帯板を管状体に成形する途中で管状
体に粉粒体を供給し、管状体の両エッジ面を高周波溶接
により接合し、粉粒体が充填された溶接管を縮径する粉
粒体充填管の製造方法において、前記粉粒体は強磁性原
料粉と弱磁性原料粉を所定の配合比で構成した粉粒体を
基本処方とし、該基本処方を強磁性原料粉と弱磁性原料
粉を配合した第1種分割処方粉粒体と弱磁性原料粉を配
合した第2種分割処方粉粒体とに少なくとも2分割して
構成した複数の分割処方粉粒体であって、前記第1種分
割処方粉粒体を下層側に、第2種分割処方粉粒体を上層
側にして管状体に供給することを特徴とする粉粒体充填
管の製造方法
1. A powdery or granular material is supplied to the tubular body in the course of forming a metal strip into a tubular body, both edge surfaces of the tubular body are joined by high frequency welding, and a welded tube filled with the granular material is compressed. In the method for producing a powder-filled tube having a diameter, the powder is a basic raw material composed of a ferromagnetic raw material powder and a weak magnetic raw material powder at a predetermined mixing ratio, and the basic prescription is a ferromagnetic raw material powder. And a plurality of divided prescription granules composed by dividing at least two into a first type divided prescription granule containing the weak magnetic raw material powder and a second type divided prescription granule containing the weak magnetic raw material powder. And supplying the first type divided prescription granular material to the lower layer side and the second type divided prescription granular material to the upper layer side to the tubular body.
【請求項2】 前記第1種分割処方粉粒体、第2種分割
処方粉粒体における弱磁性原料粉同志の配合比を基本処
方粉粒体における弱磁性原料粉同志の配合比とした請求
項1記載の粉粒体充填管の製造方法
2. The compounding ratio of the weak magnetic raw material powders in the first type divided prescription powder and the second type divided prescription powders is defined as the mixing ratio of the weak magnetic raw material powders in the basic prescription powder. Item 1. A method for manufacturing a powder-filled tube according to item 1.
JP20336993A 1993-08-17 1993-08-17 Manufacturing method of powder filled tube Expired - Fee Related JP3197399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20336993A JP3197399B2 (en) 1993-08-17 1993-08-17 Manufacturing method of powder filled tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20336993A JP3197399B2 (en) 1993-08-17 1993-08-17 Manufacturing method of powder filled tube

Publications (2)

Publication Number Publication Date
JPH0751891A true JPH0751891A (en) 1995-02-28
JP3197399B2 JP3197399B2 (en) 2001-08-13

Family

ID=16472894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20336993A Expired - Fee Related JP3197399B2 (en) 1993-08-17 1993-08-17 Manufacturing method of powder filled tube

Country Status (1)

Country Link
JP (1) JP3197399B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103753055A (en) * 2013-12-20 2014-04-30 中国船舶重工集团公司第七二五研究所 Method for fabricating seamless tube welding wire containing rutile cored powders by mild-carbon steel strip
CN116422726A (en) * 2023-04-25 2023-07-14 上海萨新东台热传输材料有限公司 High-strength corrosion-resistant aluminum alloy pipeline and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103753055A (en) * 2013-12-20 2014-04-30 中国船舶重工集团公司第七二五研究所 Method for fabricating seamless tube welding wire containing rutile cored powders by mild-carbon steel strip
CN116422726A (en) * 2023-04-25 2023-07-14 上海萨新东台热传输材料有限公司 High-strength corrosion-resistant aluminum alloy pipeline and preparation method thereof
CN116422726B (en) * 2023-04-25 2024-01-02 上海萨新东台热传输材料有限公司 High-strength corrosion-resistant aluminum alloy pipeline and preparation method thereof

Also Published As

Publication number Publication date
JP3197399B2 (en) 2001-08-13

Similar Documents

Publication Publication Date Title
US5474736A (en) Methods for manufacturing tubes filled with powdery and granular substances
JPH08290296A (en) Manufacture of flux cored seamless wire for welding
JP3197399B2 (en) Manufacturing method of powder filled tube
JP3199929B2 (en) Manufacturing method of powder filled tube
JPH05394A (en) Production of granular substance packed pipe
JP4680082B2 (en) Flux-cored wire for gas shielded arc welding
JP2563623B2 (en) Method for manufacturing powder-filled wire
JP2732936B2 (en) Manufacturing method of powder filled tube
JP3241485B2 (en) Manufacturing method of flux cored wire for welding
JPH06246484A (en) Production of powder and granular material packed pipe
JPH10156584A (en) Manufacture of flux-cored wire for welding
JP3231440B2 (en) Manufacturing method of flux cored wire for welding
JPH08281479A (en) Production of flux cored wire for welding
JPH06106384A (en) Production of powder and granular material packed pipe
JPS61212500A (en) Production of flux cored wire for welding stainless steel
JPS58184099A (en) Production of composite welding wire rod
JPH11179590A (en) Flux-cored wire for gas shield arc welding
JPH0645080B2 (en) Method for manufacturing wire containing metal powder flux
JPH11226781A (en) Manufacture of flux cored wire for welding
JPH06126486A (en) Manufacture of filling tube for granular body
JP3717644B2 (en) Flux-cored wire for gas shielded arc welding
JP4672563B2 (en) Iron-based Mn-B alloy powder for flux cored wire
JP2792802B2 (en) Manufacturing method of powder filled tube
JP3652499B2 (en) Seamless flux-cored wire for gas shielded arc welding
JPH0462838B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees