JPH08281479A - Production of flux cored wire for welding - Google Patents

Production of flux cored wire for welding

Info

Publication number
JPH08281479A
JPH08281479A JP8501895A JP8501895A JPH08281479A JP H08281479 A JPH08281479 A JP H08281479A JP 8501895 A JP8501895 A JP 8501895A JP 8501895 A JP8501895 A JP 8501895A JP H08281479 A JPH08281479 A JP H08281479A
Authority
JP
Japan
Prior art keywords
flux
prescription
welding
raw material
tubular body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8501895A
Other languages
Japanese (ja)
Inventor
Rikiya Takayama
力也 高山
Masao Kamata
政男 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP8501895A priority Critical patent/JPH08281479A/en
Publication of JPH08281479A publication Critical patent/JPH08281479A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE: To obtain a flux cored wire for welding which has high productivity without disconnection even if high-speed drawing is executed in the stage of a small diameter. CONSTITUTION: A flux composed of ferromagnetic raw material powder and weakly magnetic raw material powder at a specific compounding ratio is used as the basic prescription for the flux in this process for producing the flux cored wire for welding by supplying the flux to a tubular body during the course of forming metallic band steel to the tubular shape and joining the butt parts of the tubular body by high-frequency welding, then reducing the diameter. The flux is the plural divided prescription fluxes formed by at least bisecting this basic prescription to the first kind divided prescription flux 5 compounded with the weakly magnetic raw material powder and the second kind divided prescription flux 6 compounded with the ferromagnetic raw material powder. The first kind divided prescription flux 5 is supplied to the upper layer side of the tubular body 3 and the second kind divided prescription flux 6 to the lower layer side of the tubular body 3. At least the second kind divided prescription flux 6 is pellets. In addition, iron oxide in the form of superfine powder of a grain size of <=1.0μm is incorporated into the second kind divided prescription flux 6 at 0.2 to 2.0% of the total weight of the filled flux.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、船舶や鉄骨、橋梁等の
溶接構造物に広く使用されている溶接用フラックス入り
ワイヤの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a flux-cored wire for welding, which is widely used in welded structures such as ships, steel frames and bridges.

【0002】[0002]

【従来の技術】近年、各種溶接構造物の施工にフラック
ス入りワイヤを用いるガスシールドアーク溶接の普及が
めざましい。これは鋼製外皮内に充填されたフラックス
の作用により、アークが安定しスパッタが少なく、立
向、上向、横向等の溶接姿勢においてもメタルが垂れず
溶接しやすく、ビード外観も良好であること、さらにワ
イヤの溶融速度が速く高能率な溶接ができることによ
る。
2. Description of the Related Art In recent years, gas shielded arc welding using a flux-cored wire for the construction of various welded structures has been remarkably popular. This is because of the effect of the flux filled in the steel outer shell, the arc is stable, there is little spatter, the metal does not sag even in the vertical, upward, horizontal, etc. welding positions, and it is easy to weld and the bead appearance is good. This is because the melting speed of the wire is high and highly efficient welding can be performed.

【0003】最近では、フラックス入りワイヤの普及に
ともない、製造方法についても生産性の向上のための提
案が種々なされている。例えば、特開昭60−2347
95号公報には、次のような製造方法が提案されてい
る。まず、帯鋼を所要の幅でスリッティングし、スリッ
ト後の帯鋼を成形ロールによりU字形からO字形に漸次
成形する。この成形途中でU字形帯鋼の長手方向に沿っ
た開口からフィーダによりフラックスを帯鋼谷部に供給
する。ついでO字形に成形すると同時に、開口の相対す
るエッジ面を溶接により接合し、引き続いて縮径する。
さらに必要に応じて焼鈍したのちフラックスが充填され
た管を所定のワイヤ径まで伸線後、巻き取って製品とす
る。
Recently, with the spread of flux-cored wires, various proposals have been made to improve the productivity of the manufacturing method. For example, JP-A-60-2347
Japanese Patent Laid-Open No. 95 proposes the following manufacturing method. First, the strip steel is slitted with a required width, and the strip steel after slit is gradually formed from a U-shape to an O-shape by a forming roll. During this forming, the flux is supplied from the opening along the longitudinal direction of the U-shaped strip steel to the strip steel valley portion by the feeder. Then, at the same time as forming the O-shape, the opposite edge surfaces of the opening are joined by welding, and subsequently the diameter is reduced.
Further, after annealing if necessary, the tube filled with the flux is drawn to a predetermined wire diameter and then wound up to obtain a product.

【0004】上記エッジ面の溶接法として、高周波誘導
溶接法、高周波抵抗溶接法等の高周波溶接が広く用いら
れている。これらの溶接法は、いずれもほぼO字形に成
形したところで、高周波電流により発生するジュール熱
で開口のエッジ面を溶融温度まで加熱し、相対するエッ
ジ面を一対のスクイズロールにより圧接する。
As the welding method for the edge surface, high frequency welding such as high frequency induction welding method and high frequency resistance welding method is widely used. In all of these welding methods, when formed into a substantially O-shape, the edge surface of the opening is heated to the melting temperature by Joule heat generated by a high frequency current, and the opposing edge surfaces are pressed against each other by a pair of squeeze rolls.

【0005】ところで、金属粉を多量に含有するフラッ
クスを充填し溶接した管を圧延、伸線等により縮径する
際に、外皮部に割れが発生することがある。この割れの
原因としては次のように考えられている。溶接時に管状
体の開口エッジ面にフラックス粒子の一部が吸着する。
即ち、溶接位置では溶接電流によって発生した磁場によ
り管状体の開口エッジ部は磁極となる。従ってフラック
ス粒子のうちの強磁性成分に伴われてフラックス粒子の
一部が開口エッジ部に吸着する。これら開口エッジ部に
吸着したフラックス粒子は、接合溶接部の介在物となり
溶接欠陥となる。そして、この溶接欠陥により縮径時に
外皮部に割れが発生し、その後の縮径に際し断線誘発の
原因となり生産性を低下させる。さらに、縮径時に外皮
部に割れが発生した場合、断線しなかったとしても割れ
はそのまま製品即ち溶接用フラックス入りワイヤに持ち
込まれ、溶接作業性を劣化させる。
By the way, when the pipe filled with the flux containing a large amount of metal powder and welded is rolled or reduced in diameter by wire drawing or the like, cracks may occur in the outer skin portion. The cause of this cracking is considered as follows. During welding, some of the flux particles are adsorbed on the opening edge surface of the tubular body.
That is, at the welding position, the opening edge of the tubular body becomes a magnetic pole due to the magnetic field generated by the welding current. Therefore, a part of the flux particles is adsorbed to the opening edge portion along with the ferromagnetic component of the flux particles. The flux particles adsorbed on these opening edge portions become inclusions in the welded joints and cause welding defects. Then, due to this welding defect, a crack is generated in the outer skin portion at the time of the diameter reduction, causing a wire breakage at the time of the subsequent diameter reduction, and lowering the productivity. Further, if a crack is generated in the outer skin portion when the diameter is reduced, the crack is directly carried to the product, that is, the flux-cored wire for welding even if the wire is not broken, and the welding workability is deteriorated.

【0006】このような問題に対して特開昭60−23
4792号公報に上層は非磁性材料のみ、下層は強磁性
材料のみ充填することにより下層の強磁性材料の粉体が
舞い上がって開口エッジ部に到らないようにした提案が
ある。
To solve such a problem, Japanese Patent Laid-Open No. 60-23
Japanese Patent No. 4792 proposes that the upper layer is filled with only a non-magnetic material and the lower layer is filled with only a ferromagnetic material so that the powder of the ferromagnetic material in the lower layer does not fly up to reach the opening edge portion.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記提
案にあるようなフラックスを2層に分割して充填した場
合、外皮部の割れが防止できたとしても細径段階の高速
伸線においては、しばしば断線が問題となる。
However, when the flux as proposed above is divided into two layers and filled, even if cracking of the outer skin can be prevented, it is often the case in high-speed wire drawing in the small diameter stage. The disconnection becomes a problem.

【0008】そこで、本発明は細径段階で高速伸線を行
った場合においても、断線がなく生産性の高い溶接用フ
ラックス入りワイヤの製造方法を提供することを目的と
する。
Therefore, it is an object of the present invention to provide a method for manufacturing a flux-cored wire for welding which is free from disconnection and has high productivity even when high-speed wire drawing is performed in a small diameter stage.

【0009】[0009]

【課題を解決するための手段】即ち、本発明の要旨は、
金属帯鋼を管状体に成形する途中で管状体にフラックス
を供給し、管状体の突合せ部を高周波溶接により接合し
た後縮径する溶接用フラックス入りワイヤの製造方法に
おいて、前記フラックスは強磁性原料粉と弱磁性原料粉
を所定の配合比で構成したフラックスを基本処方とし、
該基本処方を弱磁性原料粉を配合した第1種分割処方フ
ラックスと、強磁性原料粉を配合した第2種分割処方フ
ラックスとに少なくとも2分割して構成した複数の分割
処方フラックスであって、第2種分割処方フラックスを
管状体の下層側に、第1種分割処方フラックスを管状体
の上層側に供給し、少なくとも第2種分割処方フラック
スは造粒品であり、かつ、第2種分割処方フラックスに
粒径が1.0μm以下の超微粉末状の酸化鉄を充填フラ
ックス全重量に対し0.2〜2.0%含有させることを
特徴とする溶接用フラックス入りワイヤの製造方法にあ
る。
That is, the gist of the present invention is as follows.
In the method of manufacturing a flux-cored wire for welding, which comprises supplying a flux to a tubular body in the course of forming a metal strip into a tubular body, joining the abutting portions of the tubular body by high-frequency welding, and then reducing the diameter, the flux is a ferromagnetic raw material. The basic prescription is a flux composed of powder and weak magnetic raw material powder in a predetermined mixing ratio,
A plurality of divided prescription fluxes which are constituted by dividing the basic prescription into at least two types: a first type divided prescription flux mixed with a weak magnetic raw material powder and a second type divided prescription flux mixed with a ferromagnetic raw material powder, The second-type split prescription flux is supplied to the lower layer side of the tubular body, and the first-type split prescription flux is supplied to the upper layer side of the tubular body, and at least the second-type split prescription flux is a granulated product, and the second type split A method for producing a flux-cored wire for welding, characterized in that the prescription flux contains 0.2 to 2.0% of ultrafine powdery iron oxide having a particle size of 1.0 μm or less based on the total weight of the filling flux. .

【0010】[0010]

【作用】以下に本発明を詳細に説明する。本発明者ら
は、前記2層充填方式により製造したフラックス入りワ
イヤの断線発生原因について調査した。図2に細径段階
の高速伸線で発生した断線部近傍のワイヤ長手方向断面
の観察結果を模式的に示す。断線部近傍の外皮部には断
面積が小さくなっている部分(図中矢印)、即ち外皮肉
厚が薄い部分があり、フラックス部6には塊状になった
フラックス4が認められた。この調査結果から細径段階
で発生する断線の原因は、伸線加工の進行により下層側
に充填された金属粉が伸線加工による縮径にともなって
加圧成形され塊状となり、外皮部にかみ込む。その結
果、その後の縮径に際し外皮部に局部的な薄肉化が生じ
て断線を誘発する。金属粉が加圧成形によって塊状とな
るのは、粉末粒子どうしがお互いに結合する力を持って
いるからであり、この粒子間の変形界面で局部的に酸化
膜が破られ金属原子間どうしの結合が生じるためであ
る。
The present invention will be described in detail below. The present inventors investigated the cause of wire breakage of the flux-cored wire manufactured by the two-layer filling method. FIG. 2 schematically shows an observation result of a cross section in the longitudinal direction of the wire in the vicinity of a disconnection portion generated by high-speed wire drawing in a small diameter stage. In the outer skin portion near the disconnection portion, there was a portion with a small cross-sectional area (arrow in the figure), that is, a portion with a thin outer skin thickness, and in the flux portion 6, lumped flux 4 was observed. From the results of this investigation, the cause of the wire breakage that occurs in the small diameter stage is that the metal powder filled in the lower layer due to the progress of wire drawing is pressure-molded as the diameter is reduced by wire drawing and becomes a lump, and it bites in the outer skin. Put in. As a result, when the diameter is reduced thereafter, the outer skin portion is locally thinned to cause a wire breakage. The reason why the metal powder becomes agglomerate by pressure molding is that the powder particles have a force to bond with each other, and the oxide film is locally broken at the deformation interface between the particles, and the metal atoms between the metal atoms are broken. This is because binding occurs.

【0011】本発明者らは、細径段階の断線防止対策と
して、金属粉どうしが加圧成形によって結合しにくく
すること、即ち塊状になりにくくすること、金属粉が
塊状となっても伸線加工の進行により容易にその結合が
解けることが必要であるとの結論に達した。
As a measure for preventing wire breakage in the small diameter stage, the present inventors have made it difficult for metal powders to be bonded together by pressure molding, that is, to prevent them from becoming lumps, and even if metal powders become lumps, wire drawing It is concluded that it is necessary that the bond can be easily released due to the progress of processing.

【0012】以上の観点から種々検討した結果、前記構
成により所期の目的を達成したものである。以下に、本
発明の限定理由を述べる。通常、管状体内に供給される
フラックスは、フラックス入りワイヤの使用目的に合わ
せて各種の原料粉が選択され、そのままの状態即ち非造
粒或いは造粒して使用されるが、本発明では少なくとも
第2種分割処方フラックスは造粒品でなければならな
い。造粒フラックスを充填することは、本発明が特徴と
する超微粉末状の酸化鉄による伸線性改善効果を十分に
発揮させるためである。また、造粒したフラックスを充
填すれば粒径、比重が異なる各種原料粉末のままの配合
フラックスを充填するよりも成分偏析が少ない。
As a result of various examinations from the above viewpoints, the intended purpose was achieved by the above-mentioned constitution. The reasons for limiting the present invention will be described below. Usually, as the flux supplied into the tubular body, various raw material powders are selected according to the purpose of use of the flux-cored wire and used as it is, that is, non-granulated or granulated. The two-part split prescription flux must be a granulated product. The filling with the granulation flux is to fully exhibit the wire drawability improving effect of the ultrafine powdery iron oxide, which is a feature of the present invention. Further, when the granulated flux is filled, the component segregation is less than when the raw material powder having different particle diameters and specific gravities is blended as it is.

【0013】溶接用フラックス入りワイヤに使用される
フラックスは、 ・スラグ形成剤としてルチールサンド、マグネシアクリ
ンカー等 ・アーク安定剤としてチタン酸カリ、珪酸ソーダ等 ・脱酸剤、合金剤としてFe−Si、Fe−Si−M
n、Al−Mg等 の弱磁性原料粉が配合され、さらに、溶着速度の向上、
フラックス充填率の調整、溶接作業性のための鉄粉等の
強磁性原料粉が配合される。通常、造粒する場合にはす
べての原料粉が含有され、また、非造粒の場合はすべて
の原料粉がそれぞれ単一粉として配合される。従って造
粒する場合は鉄粉、鉄合金等の強磁性原料粉が他の弱磁
性原料粉と共にフラックス粒子を構成し、また非造粒の
場合は鉄粉、鉄合金等の強磁性原料粉がそのままの状態
で配合されている。即ち、造粒、非造粒フラックスのい
ずれの場合にも高周波溶接時に磁極化した開口エッジ面
にフラックス粒子が磁着する危険性は十分存在する。こ
のように磁場の影響を受けやすいというフラックス粒子
自身の特質から、基本処方を強磁性原料粉と弱磁性原料
粉とに分割し、管状体内の下層側に第2種分割処方とし
て強磁性原料粉を供給し、上層側に第1種分割処方とし
て弱磁性原料粉を供給する。これにより磁場の影響を受
けやすい上層側に位置するフラックスの磁気感受性を低
減させると共に、下層側に位置する強磁性原料粉の磁場
による舞上がりを上層側の第1種分割処方フラックスの
遮蔽により抑制する。
The flux used for the flux-cored wire for welding includes: -rutile sand, magnesia clinker, etc. as a slag forming agent-potassium titanate, sodium silicate, etc. as an arc stabilizer-Fe-Si, Fe as a deoxidizing agent and an alloying agent -Si-M
n, Al-Mg and other weak magnetic raw material powders are blended to further improve the welding speed,
Ferromagnetic material powder such as iron powder is mixed for adjusting the flux filling rate and welding workability. Normally, all the raw material powders are contained in the case of granulation, and all the raw material powders are mixed as a single powder in the case of non-granulation. Therefore, when granulating, iron powder, ferromagnetic material powder such as iron alloy constitutes flux particles together with other weak magnetic material powder, and when non-granulating, iron material, ferromagnetic material powder such as iron alloy, etc. It is blended as it is. That is, there is a sufficient risk that the flux particles will be magnetically attached to the opening edge surface which is poled at the time of high-frequency welding in both cases of granulated and non-granulated flux. Due to the nature of the flux particles themselves that are easily affected by the magnetic field, the basic prescription is divided into a ferromagnetic raw material powder and a weak magnetic raw material powder, and the ferromagnetic raw material powder as the second type divided prescription is provided on the lower side of the tubular body. Is supplied, and the weak magnetic raw material powder is supplied to the upper layer side as a first type divided prescription. This reduces the magnetic susceptibility of the flux located on the upper layer side, which is easily affected by the magnetic field, and suppresses the soaring of the ferromagnetic raw material powder located on the lower layer side due to the magnetic field by shielding the type 1 split prescription flux on the upper layer side. .

【0014】図3はフラックスを供給した直後の状態
で、下層側には強磁性原料粉を配合した第2種分割処方
フラックス6、上層側には弱磁性原料粉を配合した第1
種分割処方フラックス5がほぼ層状に供給されている。
従って強磁性原料粉である鉄粉を比較的多く配合したフ
ラックスを管状体内に供給する場合でも、高周波溶接時
に磁極化した管状体の開口エッジ面にフラックス粒子が
磁着することがない。
FIG. 3 shows a state immediately after the flux is supplied, in which the lower layer side is the second type divided prescription flux 6 containing the ferromagnetic raw material powder, and the upper layer side is the first mixture containing the weak magnetic raw material powder.
The seed division prescription flux 5 is supplied in a substantially layered manner.
Therefore, even when a flux containing a relatively large amount of iron powder, which is a ferromagnetic raw material powder, is supplied to the tubular body, the flux particles do not become magnetically attached to the opening edge surface of the tubular body that is magnetically poled during high frequency welding.

【0015】図1は下層側に充填した第2種分割処方の
造粒フラックス表面に超微粉末状の酸化鉄が付着した状
態を模式的に示した図である。造粒フラックス粒子1の
表面には超微粉末状の酸化鉄2が散在し、或いは超微粉
末状の酸化鉄が表面全体を薄く覆っているものもある。
造粒フラックスであればこのように超微粉末状の酸化鉄
を均一に分布させやすい。
FIG. 1 is a diagram schematically showing a state in which ultrafine powdery iron oxide is adhered to the surface of the granulated flux of the second type divided formulation filled in the lower layer side. In some cases, the ultrafine powdery iron oxide 2 is scattered on the surface of the granulated flux particles 1, or the ultrafine powdery iron oxide covers the entire surface thinly.
In the case of the granulation flux, it is easy to uniformly distribute the ultrafine powdery iron oxide.

【0016】この造粒フラックス表面に付着した超微粉
末状の酸化鉄の作用によって、金属粉どうしの結合が生
じにくくなる。また、超微粉末状の酸化鉄が金属粉と金
属粉との間に存在することにより金属粉どうしの結合力
を小さくできる。
Due to the action of the ultrafine powdery iron oxide adhering to the surface of the granulation flux, the binding of the metal powders is less likely to occur. Further, since the ultrafine powdery iron oxide exists between the metal powders, the binding force between the metal powders can be reduced.

【0017】なお、本発明では超微粉末状の酸化鉄の粒
径を1.0μm以下に限定した。その理由は微粉であれ
ばあるほど造粒フラックス表面に付着しやすく、かつ少
量でもって金属粉の塊状化に起因する断線の防止に効果
的に作用する。粒径が1.0μmよりも粗粒の場合は、
造粒フラックス表面に付着しにくく、またフラックスを
供給する前に離脱しやすくなり、前記効果が十分に発揮
できない。超微粉末状の酸化鉄の含有量については、充
填フラックス全重量に対し0.2%未満では上記効果が
得られず、2.0%を超える添加は溶接性能に悪影響を
及ぼす。
In the present invention, the particle size of the ultrafine powdery iron oxide is limited to 1.0 μm or less. The reason is that the finer the powder, the easier it is to adhere to the surface of the granulating flux, and even a small amount effectively prevents the disconnection due to the agglomeration of the metal powder. If the particle size is coarser than 1.0 μm,
It is difficult to adhere to the surface of the granulated flux, and it becomes easy to separate before the flux is supplied, so that the above effects cannot be sufficiently exhibited. Regarding the content of ultrafine powdery iron oxide, if the content is less than 0.2% with respect to the total weight of the filling flux, the above effect cannot be obtained, and if it exceeds 2.0%, the welding performance is adversely affected.

【0018】超微粉末状の酸化鉄を造粒フラックスの表
面に付着させる方法としては、第2種分割処方フラック
スと混合するだけでよいが、或いは湿式造粒後、半乾燥
状態の第2種分割処方フラックスと混合して付着させて
もよい。
As a method for adhering the ultrafine powdery iron oxide to the surface of the granulation flux, it is sufficient to mix it with the second type divided prescription flux, or after wet granulation, the second type in a semi-dried state. It may be mixed with the divided prescription flux and attached.

【0019】[0019]

【実施例】以下に実施例により本発明の効果をさらに具
体的に示す。板厚2.0 mm 、幅75.0 mm の帯鋼
(SPHC、C=0.05%)をU字形に成形する段階
で表1に示す基本処方となるように下層側に表3に示す
第2種分割処方フラックスを、上層側に表2に示す第1
種分割処方フラックスを供給してフラックス充填管(充
填率15.5%)とし、引き続き圧延及び伸線加工によ
り縮径(最終線速1100 m/min)してフラックス入り
ワイヤを試作した(ワイヤ径1.2 mm )。シーム溶接
は高周波誘導溶接で行い、縮径段階で応力除去のための
中間焼鈍を行った。
EXAMPLES The effects of the present invention will be more specifically described below with reference to examples. Shown in Table 3 on the lower layer side so that the basic prescription shown in Table 1 is obtained at the stage of forming a U-shaped strip steel (SPHC, C = 0.05%) with a plate thickness of 2.0 mm and a width of 75.0 mm. The first-class split prescription flux shown in Table 2 is shown on the upper layer side.
A flux-filled tube (filling rate 15.5%) was supplied by supplying the seed-divided prescription flux, followed by rolling and drawing to reduce the diameter (final linear velocity 1100 m / min) to make a flux-cored wire as a prototype (wire diameter 1.2 mm). Seam welding was performed by high frequency induction welding, and intermediate annealing for stress relief was performed at the diameter reduction stage.

【0020】超微粉末状の酸化鉄は、予め造粒して乾燥
(105℃)した下層側の第2種分割処方フラックスと
超微粉末状の酸化鉄の両者を表4に示す割合で混合機に
投入して混合させた。
The ultra-fine powdery iron oxide was prepared by mixing both the second-class split prescription flux on the lower layer side which had been granulated and dried (105 ° C.) and the ultra-fine powdery iron oxide in the ratio shown in Table 4. It was put into a machine and mixed.

【0021】各試作ワイヤについて、270 A−26
V、CO2 ガス流量20 l/min、ワイヤ突出し長さ25
mm の溶接条件で溶接作業性試験(板厚12 mm 、T字
すみ肉立向上進溶接)を行った。
For each prototype wire, 270 A-26
V, CO 2 gas flow rate 20 l / min, wire protrusion length 25
A welding workability test (plate thickness 12 mm, T-shaped fillet improvement welding) was performed under welding conditions of mm.

【0022】表4に試作ワイヤの断線発生状況及び溶接
試験結果をまとめて示す。試験No.1〜4は本発明に
よるもので、高速伸線においても断線がなく溶接作業性
も良好であった。試験No.5は超微粉末状の酸化鉄を
含有させない場合で、断線が多発したので溶接について
は中止した。試験No.6は超微粉末状の酸化鉄の粒径
が大きすぎる場合、試験No.7は超微粉末状の酸化鉄
の含有量が少なすぎる場合で、それぞれ断線が発生し
た。試験No.8は超微粉末状の酸化鉄の含有量が多す
ぎる場合で、断線は発生しないものの溶接作業性が劣化
した。
Table 4 collectively shows the occurrence of wire breakage of the trial wire and the results of the welding test. Test No. Nos. 1 to 4 were according to the present invention, and there was no disconnection even in high-speed wire drawing, and welding workability was good. Test No. No. 5 was a case in which no ultrafine powdery iron oxide was contained, and because wire breakage occurred frequently, welding was stopped. Test No. When the particle size of the ultrafine powdery iron oxide is too large, the test No. 6 was used. No. 7 was a case where the content of the ultrafine powdery iron oxide was too small, and disconnection occurred in each case. Test No. No. 8 was a case where the content of ultrafine powdery iron oxide was too large, and although wire breakage did not occur, welding workability deteriorated.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】[0027]

【発明の効果】以上のように本発明によれば、溶接フラ
ックス入りワイヤの製造において強磁性材料の粉体の舞
い上がりによる外皮部の割れを防止し、さらに高速伸線
で製造する場合に問題となる断線を防止し、生産性の高
い溶接用フラックス入りワイヤの製造方法を提供するこ
とができる。
As described above, according to the present invention, in the production of a welding flux-cored wire, it is possible to prevent the cracking of the outer skin portion due to the rising of the powder of the ferromagnetic material, and to cause a problem in the case of the high-speed wire drawing. It is possible to provide a method for manufacturing a flux-cored wire for welding which has high productivity and which is prevented from being broken.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による超微粉末状の酸化鉄の付着状態を
示す模式図である。
FIG. 1 is a schematic view showing an adhered state of ultrafine powdery iron oxide according to the present invention.

【図2】断線発生部近傍のフラックス入りワイヤの長手
方向の断面形状である。
FIG. 2 is a cross-sectional view in the longitudinal direction of the flux-cored wire in the vicinity of the disconnection occurrence portion.

【図3】フラックス入りワイヤの横断面形状である。FIG. 3 is a cross-sectional shape of a flux-cored wire.

【符号の説明】[Explanation of symbols]

1 造粒フラックス 2 超微粉末状の酸化鉄 3 金属外皮 4 塊状のフラックス 5 第1種分割処方フラックス 6 第2種分割処方フラックス 1 Granulation Flux 2 Ultrafine Powdered Iron Oxide 3 Metal Skin 4 Massive Flux 5 Type 1 Split Prescription Flux 6 Type 2 Split Prescription Flux

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属帯鋼を管状体に成形する途中で管状
体にフラックスを供給し、管状体の突き合せ部を高周波
溶接により接合した後縮径する溶接用フラックス入りワ
イヤの製造方法において、前記フラックスは強磁性原料
粉と弱磁性原料粉を所定の配合比で構成したフラックス
を基本処方とし、該基本処方を弱磁性原料粉を配合した
第1種分割処方フラックスと、強磁性原料粉を配合した
第2種分割処方フラックスとに少なくとも2分割して構
成した複数の分割処方フラックスであって、第1種分割
処方フラックスを管状体の上層側に、第2種分割処方フ
ラックスを管状体の下層側に供給し、少なくとも第2種
分割処方フラックスは造粒品であり、かつ、第2種分割
処方フラックスに粒径が1.0μm以下の超微粉末状の
酸化鉄を充填フラックス全重量に対し0.2〜2.0%
含有させることを特徴とする溶接用フラックス入りワイ
ヤの製造方法。
1. A method for manufacturing a flux-cored wire for welding, wherein flux is supplied to a tubular body during forming of a metal strip into a tubular body, the abutting portions of the tubular body are joined by high frequency welding, and then the diameter is reduced. The flux has a basic prescription of a flux composed of a ferromagnetic raw material powder and a weak magnetic raw material powder in a predetermined mixing ratio, and the basic prescription comprises a first-class divided prescription flux containing a weak magnetic raw material powder and a ferromagnetic raw material powder. A plurality of divided prescription fluxes that are configured by dividing the compounded second type divided prescription flux into at least two, wherein the first type divided prescription flux is on the upper layer side of the tubular body, and the second type divided prescription flux of the tubular body is It is supplied to the lower layer side, and at least the second type divided prescription flux is a granulated product, and the second type divided prescription flux is filled with ultra-fine powdery iron oxide having a particle size of 1.0 μm or less. Scan the total weight for the 0.2 to 2.0%
A method of manufacturing a flux-cored wire for welding, characterized by containing it.
JP8501895A 1995-04-11 1995-04-11 Production of flux cored wire for welding Pending JPH08281479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8501895A JPH08281479A (en) 1995-04-11 1995-04-11 Production of flux cored wire for welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8501895A JPH08281479A (en) 1995-04-11 1995-04-11 Production of flux cored wire for welding

Publications (1)

Publication Number Publication Date
JPH08281479A true JPH08281479A (en) 1996-10-29

Family

ID=13847002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8501895A Pending JPH08281479A (en) 1995-04-11 1995-04-11 Production of flux cored wire for welding

Country Status (1)

Country Link
JP (1) JPH08281479A (en)

Similar Documents

Publication Publication Date Title
EP0489167B1 (en) Method of manufacturing tube filled with powder and granular material
KR0173799B1 (en) Method for manufacturing tubes filled with powdery and granular substances
JPH08290296A (en) Manufacture of flux cored seamless wire for welding
JPH08281479A (en) Production of flux cored wire for welding
JP4680082B2 (en) Flux-cored wire for gas shielded arc welding
JP2563623B2 (en) Method for manufacturing powder-filled wire
JP3197399B2 (en) Manufacturing method of powder filled tube
JP3199929B2 (en) Manufacturing method of powder filled tube
JP3481476B2 (en) Flux-cored wire for gas shielded arc welding and method for producing the same
JPH05394A (en) Production of granular substance packed pipe
JPS61212500A (en) Production of flux cored wire for welding stainless steel
JP3231440B2 (en) Manufacturing method of flux cored wire for welding
JP3652499B2 (en) Seamless flux-cored wire for gas shielded arc welding
JPH06246484A (en) Production of powder and granular material packed pipe
JPH10156584A (en) Manufacture of flux-cored wire for welding
JPH0623587A (en) Production of powder and granular material-packed tube
JPH08290295A (en) Manufacture of flux core wire for welding
JP2732936B2 (en) Manufacturing method of powder filled tube
JP4672563B2 (en) Iron-based Mn-B alloy powder for flux cored wire
JP3717644B2 (en) Flux-cored wire for gas shielded arc welding
JPH08290294A (en) Flux cored wire for gas shielded arc welding
JPH06312293A (en) Manufacture of tube for filling granular material
JPH06106384A (en) Production of powder and granular material packed pipe
JPH0645080B2 (en) Method for manufacturing wire containing metal powder flux
JP3243586B2 (en) Flux-cored wire for gas shielded arc welding