JPH0751553A - Cellulose acetate membrane with improved heat resistance - Google Patents

Cellulose acetate membrane with improved heat resistance

Info

Publication number
JPH0751553A
JPH0751553A JP20085193A JP20085193A JPH0751553A JP H0751553 A JPH0751553 A JP H0751553A JP 20085193 A JP20085193 A JP 20085193A JP 20085193 A JP20085193 A JP 20085193A JP H0751553 A JPH0751553 A JP H0751553A
Authority
JP
Japan
Prior art keywords
cellulose
water permeability
cellulose triacetate
cellulose acetate
sieving coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20085193A
Other languages
Japanese (ja)
Inventor
Kazutake Okamoto
和丈 岡本
Toru Uenishi
徹 上西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP20085193A priority Critical patent/JPH0751553A/en
Priority to US08/272,397 priority patent/US5624561A/en
Priority to EP94111598A priority patent/EP0636403A3/en
Priority to CA002129089A priority patent/CA2129089A1/en
Publication of JPH0751553A publication Critical patent/JPH0751553A/en
Priority to US08/730,599 priority patent/US5783124A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a cellulose acetate membrane with improved heat resistance by blending cellulose triacetate and cellulose diacetate. CONSTITUTION:The cellulose acetate membrane is made from a mixture in which cellulose triacetate and cellulose diacetate are blended in a specified ratio. Sterilization with a high pressure steam is applicable to the hollow fibers made from this mixture when they are used for clarifying blood; water permeability and a screening coefficient of myoglobin are also improved by the sterilization.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐熱性の向上した分離
膜、特に高圧蒸気菌可能なセルロースアセテート膜に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separation membrane having improved heat resistance, and more particularly to a cellulose acetate membrane capable of high-pressure steam bacteria.

【0002】[0002]

【従来の技術】親水性、疎水性のバランスに優れたセル
ロースアセテートは、ガス分離膜、逆浸透膜、限外濾過
膜、精密濾過膜などの工業用膜のみならず血液浄化膜と
して人工腎臓などに広く用いられている。しかしなが
ら、例えば、血液浄化用中空糸膜としてセルローストリ
アセテート、セルロースジアセテート膜を用いる場合、
高圧蒸気滅菌(例えば120℃、20分)を行うとそれ
ぞれ結晶化及び配向結晶化により膜構造が変化し、透水
性能や溶質の透過性能が著しく低下してしまう。
2. Description of the Related Art Cellulose acetate, which has an excellent balance of hydrophilicity and hydrophobicity, is used not only for industrial membranes such as gas separation membranes, reverse osmosis membranes, ultrafiltration membranes and microfiltration membranes, but also artificial kidneys as blood purification membranes. Widely used in. However, for example, when using cellulose triacetate, cellulose diacetate membrane as a blood purification hollow fiber membrane,
When high-pressure steam sterilization (for example, 120 ° C., 20 minutes) is performed, the membrane structure is changed due to crystallization and oriented crystallization, respectively, and water permeability and solute permeability are significantly reduced.

【0003】[0003]

【発明が解決しようとする課題】本発明は、セルロース
アセテート膜に高圧蒸気滅菌にも耐え得る熱的安定性を
付与することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a cellulose acetate membrane with thermal stability that can withstand high pressure steam sterilization.

【0004】[0004]

【課題を解決するための手段】前記従来技術の問題点を
解決するために鋭意検討した結果本発明にいたった。即
ち本発明はセルローストリアセテートとセルロースジア
セテートとの混合体であって、示差熱分析によるセルロ
ースジアセテートの融解ピークを実質的に有さず、かつ
実質的にセルローストリアセテートの融解ピークを有す
る、熱的に安定性の向上したセルロースアセテート膜及
びセルローストリアセテート(CTA)とセルロースジ
アセテート(CA)との混合体であって、示差熱分析に
よるセルロースジアセテートの融解ピークを実質的に有
さず、かつ実質的にセルローストリアセテートの融解ピ
ークを有する、熱的に安定性の向上したセルロースアセ
テート膜で、高圧蒸気処理前後の透水性比(透水性AC
後)/(透水性AC前)が1.1以上、ミオグロビンの
篩い係数比(篩い係数AC後)/(篩い係数AC前)が
1.1以上である、耐熱性の向上したセルロースアセテ
ート膜である。
Means for Solving the Problems As a result of intensive studies for solving the problems of the prior art, the present invention has been achieved. That is, the present invention is a mixture of cellulose triacetate and cellulose diacetate, substantially does not have a melting peak of cellulose diacetate by differential thermal analysis, and substantially has a melting peak of cellulose triacetate, thermal A cellulose acetate membrane having improved stability and a mixture of cellulose triacetate (CTA) and cellulose diacetate (CA), which has substantially no melting peak of cellulose diacetate by differential thermal analysis, and A cellulose acetate membrane having a thermal melting point of cellulose triacetate and having improved thermal stability. The water permeability ratio before and after high-pressure steam treatment (water permeability AC
After) / (before water permeability AC) is 1.1 or more, and the sieving coefficient ratio of myoglobin (after sieving coefficient AC) / (before sieving coefficient AC) is 1.1 or more, which is a cellulose acetate membrane with improved heat resistance. is there.

【0005】本発明者でいうセルロースアセテートとは
酢化度約60〜62%のセルローストリアセテート及び
酢化度約54〜56%のセルロースジアセテートの混合
体を意味する。酢化度は次の式で求められる。 酢化度(%)=(アセチル基酢酸換算の質量/セルロー
スアセテート全体の質量)×100
The term "cellulose acetate" as used by the present inventor means a mixture of cellulose triacetate having an acetylation degree of about 60 to 62% and cellulose diacetate having an acetylation degree of about 54 to 56%. The acetylation degree is calculated by the following formula. Acetylation degree (%) = (mass in terms of acetyl group acetic acid / mass of cellulose acetate) × 100

【0006】従来のセルローストリアセテート及びセル
ロースジアセテート膜は湿潤状態ではガラス転移温度が
それぞれ110〜120℃、90〜100℃と高圧蒸気
滅菌条件より低い温度にある。そのため、セルロースト
リアセテート膜、セルロースジアセテート膜にそれぞれ
高圧蒸気滅菌を行うと、湿潤状態でのガラス転移温度付
近での熱処理に相当するため、結晶化及び配向結晶化が
起こる。その結果、膜構造が変化し透水性能、透過性能
が著しく低下してしまう。すなわち、セルローストリア
セテート中空糸膜は結晶化により、径方向、糸長方向に
収縮が起こり、セルロースジアセテート中空糸膜は配向
結晶化により径方向の収縮、糸長方向に著しい伸長が起
こり膜性能が著しく低下してしまう。
The conventional cellulose triacetate and cellulose diacetate membranes have glass transition temperatures of 110 to 120 ° C. and 90 to 100 ° C., respectively, which are lower than those under high pressure steam sterilization conditions in a wet state. Therefore, when high-pressure steam sterilization is performed on each of the cellulose triacetate film and the cellulose diacetate film, crystallization and oriented crystallization occur because they correspond to heat treatment near the glass transition temperature in a wet state. As a result, the membrane structure is changed and the water permeability and the permeability are significantly reduced. That is, the cellulose triacetate hollow fiber membrane is contracted in the radial direction and the yarn length direction due to crystallization, and the cellulose diacetate hollow fiber membrane is contracted in the radial direction due to the oriented crystallization and remarkably elongated in the yarn length direction, resulting in membrane performance. It will drop significantly.

【0007】そこでセルローストリアセテートとセルロ
ースジアセテートの相溶性に着目し、これらの相反する
性質を利用して両者を適切な比でブレンドして、ミクロ
相分離形成をおこなうことを見いだし、高圧蒸気滅菌後
のセルローストリアセテート膜の透水性、溶質透過性の
保持効果につながることを見い出した。
Therefore, paying attention to the compatibility of cellulose triacetate and cellulose diacetate, it was found that the two properties are blended at an appropriate ratio by utilizing their contradictory properties, and microphase separation formation is carried out. It was found that the cellulose triacetate membrane has a water permeability and solute permeability retention effect.

【0008】そして、セルローストリアセテート/セル
ロースジアセテート比が95/5〜50/50で、高圧
蒸気滅菌後に透水性及びミオグロビンの篩い係数が処理
前と比較して1.1倍以上に増加し、高圧蒸気滅菌によ
って性能を向上させうることをみいだした。セルロース
ジアセテートの混合比が5%以下であると効果はみられ
ず、また50%を超えると再び透水性及びたんぱく(ミ
オグロビン)の篩い係数は低下する。
When the ratio of cellulose triacetate / cellulose diacetate is 95/5 to 50/50, the water permeability and the sieving coefficient of myoglobin after the high pressure steam sterilization increase 1.1 times or more as compared with those before the treatment. It has been found that performance can be improved by steam sterilization. If the mixing ratio of cellulose diacetate is 5% or less, no effect is observed, and if it exceeds 50%, the water permeability and the sieving coefficient of protein (myoglobin) decrease again.

【0009】ここでいう透水性、篩い係数は以下のよう
に定義される。 透水性=V/(A・P・T) ここで V:透水量(m1) A:膜面積(m2 ) P:圧力(mmHg) T:時間(hr) 篩い係数=2Cf/(Ci+Co) ここで Cf:濾液中の蛋白濃度 Ci:濾過前の蛋白濃度 Co:濾過後の蛋白濃度
The water permeability and the sieving coefficient here are defined as follows. Water permeability = V / (A · P · T) where V: Water permeability (m1) A: Membrane area (m 2 ) P: Pressure (mmHg) T: Time (hr) Sieving coefficient = 2Cf / (Ci + Co) where Cf: protein concentration in filtrate Ci: protein concentration before filtration Co: protein concentration after filtration

【0010】セルローストリアセテート、セルロースジ
アセテート及びこれらの混合物からなる中空糸膜を高圧
蒸気滅菌処理したものについてX線回折を測定したとこ
ろ、全てのものについてCTAII型結晶構造をとってお
り、X線回折からは各々を区別することは困難である。
しかしながら、各セルロースアセテート中空糸膜を凍結
粉砕物を混合したものの示差熱分析結果は、それらのピ
ークの重ね合わせとして観測されるに過ぎないが、それ
ぞれを予め混合して製膜したものは、セルロースジアセ
テートの混合比が増加するにつれて、セルローストリア
セテートの冷結晶化ピークが高温側にシフトし、セルロ
ーストリアセテートの融解ピークはその位置を変えず、
またセルロースジアセテートの融解ピークは消失し、熱
特性が改善される結果を得た。
X-ray diffraction measurements were performed on hollow fiber membranes composed of cellulose triacetate, cellulose diacetate and mixtures thereof, which had been subjected to high-pressure steam sterilization. As a result, all had a CTA II type crystal structure. It is difficult to distinguish each from.
However, the differential thermal analysis result of each cellulose acetate hollow fiber membrane mixed with a freeze-pulverized product is only observed as a superposition of those peaks, but the one prepared by preliminarily mixing each is cellulose As the mixing ratio of diacetate increases, the cold crystallization peak of cellulose triacetate shifts to the high temperature side, the melting peak of cellulose triacetate does not change its position,
The melting peak of cellulose diacetate disappeared, and the thermal characteristics were improved.

【0011】耐熱性を付与せしめるために必要である本
発明の膜は、セルローストリアセテート自体の特性をさ
らに向上せしめたものである。セルローストリアセテー
トとセルロースジアセテートの混合物よりなる膜はセル
ローストリアセテートを主骨格とした構造をとり、セル
ロースジアセテートを添加することによりその結晶化を
抑制し、セルローストリアセテートとセルロースジアセ
テートの混合比95/5〜50/50で、結晶化および
配向結晶化の相互作用を調節することにより、透水性お
よび篩い係数を大きく向上せしめる。
The membrane of the present invention, which is necessary to impart heat resistance, further improves the characteristics of cellulose triacetate itself. A film composed of a mixture of cellulose triacetate and cellulose diacetate has a structure having cellulose triacetate as a main skeleton, and the addition of cellulose diacetate suppresses its crystallization, and the mixing ratio of cellulose triacetate and cellulose diacetate is 95/5. At -50/50, the permeability and sieving coefficient are greatly improved by controlling the interaction of crystallization and oriented crystallization.

【0012】本発明ていうセルロースアセテートの混合
物はセルローストリアセテートとセルロースジアセテー
トが相溶していることが必要である。そのためにセルロ
ーストリアセテートとセルロースジアセテートを溶媒に
いったん溶解させてから成形加工することが望ましい。
中空糸膜に成形加工を行う場合、セルローストリアセテ
ートとセルロースジアセテートとを10〜40重量%の
間の濃度になるように、非溶媒を添加した沸点150℃
以上の非極性溶媒に溶解し、ドープとしたものを二重管
ノズルに通して上記溶媒と非溶媒の水溶液からなる凝固
浴中に押し出し、製膜する。溶媒/非溶媒の混合比は5
0/50〜90/10が適切である。ノズルから凝固浴
へのドープの押し出しは、凝固浴中に直接押し出す湿式
紡糸法、ノズルと凝固浴表面の間にエアーギャップを設
けて、ノズルから一旦空気中にドープを押し出し凝固浴
へ導くエアーギャップ紡糸法いずれの方法でも応用可能
である。
The mixture of cellulose acetate referred to in the present invention requires that cellulose triacetate and cellulose diacetate are compatible with each other. Therefore, it is desirable that the cellulose triacetate and the cellulose diacetate are once dissolved in a solvent and then molded.
When the hollow fiber membrane is molded, a boiling point of 150 ° C. is obtained by adding a non-solvent so that the concentration of cellulose triacetate and cellulose diacetate is between 10 and 40% by weight.
The dope dissolved in the above non-polar solvent is passed through a double tube nozzle and extruded into a coagulation bath consisting of an aqueous solution of the above solvent and a non-solvent to form a film. Mixing ratio of solvent / non-solvent is 5
0/50 to 90/10 is suitable. Extrusion of the dope from the nozzle to the coagulation bath is carried out by a wet spinning method in which the dope is extruded directly into the coagulation bath, an air gap is provided between the nozzle and the surface of the coagulation bath, and the dope is extruded from the nozzle into the air to the coagulation bath. Any spinning method can be applied.

【0013】また、ドープをノズルから吐出する際、中
空糸内部に流動パラフィンの如き液体を共存させ紡糸す
ることも可能であるが、本発明では中空内部に不活性ガ
スを適正流量流しながら紡糸製膜することが望ましい。
Further, when the dope is discharged from the nozzle, it is possible to spin a liquid such as liquid paraffin inside the hollow fiber, but in the present invention, spinning is performed while an inert gas is flown into the hollow fiber at an appropriate flow rate. Membrane is desirable.

【0014】溶媒としては非プロトン性極性溶媒を用い
るのが望ましくN−メチルピロリドン、ジメチルホルム
アミド、ジメチルアセトアミド、ジメチルスルホキシド
等が、非溶媒としてはエチレングリコール、トリエチレ
ングリコール、ポリエチレングリコール、グリセリン、
ポリプロピレングリコール等の多価アルコールやメタノ
ール、エタノール等のアルコール類が使用できる。さら
にこの中空糸は凝固浴、水洗浴を経て親水化浴にて親水
化される。親水化剤としてグリセリン、ポリエチレング
リコール等の多価アルコールの他、メタノール、エタノ
ール等のアルコール類が使用できる。その後、中空糸膜
は乾燥工程を経て巻取られる。
It is preferable to use an aprotic polar solvent as the solvent, and N-methylpyrrolidone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, etc. are used as the solvent, and ethylene glycol, triethylene glycol, polyethylene glycol, glycerin,
Polyhydric alcohols such as polypropylene glycol and alcohols such as methanol and ethanol can be used. Further, this hollow fiber is hydrophilized in a hydrophilization bath through a coagulation bath and a washing bath. As the hydrophilizing agent, polyhydric alcohols such as glycerin and polyethylene glycol, and alcohols such as methanol and ethanol can be used. Then, the hollow fiber membrane is wound through a drying process.

【0015】本発明の耐熱性の向上したセルロースアセ
テート混合物は血液浄化用膜、淡水化用逆浸透膜などの
中空糸膜のみならずフイルム等の成形加工にも使用でき
る。以下実施例、比較例により本発明の詳細を説明す
る。
The cellulose acetate mixture of the present invention having improved heat resistance can be used not only for hollow fiber membranes such as blood purification membranes and desalination reverse osmosis membranes, but also for forming films and the like. The present invention will be described in detail below with reference to Examples and Comparative Examples.

【0016】[0016]

【実施例】【Example】

実施例1 酸化度60.8%のセルローストリアセテート/酢化度
55.0%のセルロースジアセテートを重量比8/2、
ポリマー濃度19%、N−メチルピロリドン64%、エ
チレングリコール16%を混合しドープとした。これを
二重環ノズルを用いて、内液に不活性ガスを用いてN−
メチルピロリドン32%、トリエチレングリコール8%
水溶液からなる凝固液に吐出し、水洗浴、グリセリン浴
を経て中空糸膜を得た。吐出温度、凝固浴温度はそれぞ
れ120℃、35℃であった。得られた中空糸膜は外径
約250μm、膜厚約20μmの真円をなしていた。こ
の中空糸膜約5cm、100本束ねたものをイソプロピ
ルアルコール/シクロヘキサン混合溶媒100/0、7
5/25、50/50、25/75、0/100で氷冷
下、溶媒置換し、一夜減圧乾燥したものを液体窒素凍結
粉砕した。これをDSC測定用のアルミニウムパンに約
10mgつめ、パーキンエルマー社製 DSC−7を
用いて窒素雰囲気下、20℃/minの昇温速度で30
〜350℃の温度範囲で示差熱分析を行った。結果を表
1及び図1に示す。透析性能を評価するにあたっては以
下の手順でおこなった。この中空糸膜を120本、25
cmの長さに束ね、アクリルパイプにウレタン接着して
テスト用ミニモジュールを作成した。このミニモジュー
ルに121℃、20分のオートクレーブ処理を行なっ
た。透水性は前記ミニモジュールを用いて、血液側に3
7℃に保った純水を流し、Klein らの方法に従い、流れ
を止めた後に150mmHgの圧力をかけ、ミニモジュ
ールに接続したビュレットの純水の減少量と時間を測定
してその透水量を測定した。ミオグロビンの篩い係数に
ついてはミオグロビン水溶液を37℃に保ったボックス
中、100mmHgの圧力をかけ、20ml/分で前記
ミニモジュールの血液側に流した。出・入り口、および
濾液中のミオグロビン濃度を測定し、篩い係数を求め
た。高圧蒸気滅菌前後の透水性、ミオグロビンの篩い係
数の結果を表2に示す。表2によると、高圧蒸気滅菌後
の透水性、ミオグロビンの篩い係数が向上することがわ
かる。
Example 1 Cellulose triacetate having an oxidation degree of 60.8% / cellulose diacetate having an acetylation degree of 55.0% were used in a weight ratio of 8/2,
A dope was prepared by mixing a polymer concentration of 19%, N-methylpyrrolidone 64% and ethylene glycol 16%. Using a double ring nozzle, N-
Methylpyrrolidone 32%, Triethylene glycol 8%
The mixture was discharged into a coagulating liquid composed of an aqueous solution, and a hollow fiber membrane was obtained through a washing bath and a glycerin bath. The discharge temperature and the coagulation bath temperature were 120 ° C and 35 ° C, respectively. The obtained hollow fiber membrane was a perfect circle having an outer diameter of about 250 μm and a film thickness of about 20 μm. Approximately 5 cm of this hollow fiber membrane, bundled with 100, isopropyl alcohol / cyclohexane mixed solvent 100/0, 7
The solution was subjected to solvent substitution under ice cooling at 5/25, 50/50, 25/75, 0/100, and dried under reduced pressure overnight. About 10 mg of this was packed in an aluminum pan for DSC measurement, and a Perkin Elmer DSC-7 was used under a nitrogen atmosphere at a temperature rising rate of 20 ° C./min for 30 times.
Differential thermal analysis was performed in the temperature range of ˜350 ° C. The results are shown in Table 1 and FIG. The following procedure was used to evaluate the dialysis performance. 120 hollow fiber membranes, 25
The test pieces were bundled in a length of cm and bonded to an acrylic pipe with urethane to prepare a mini module for testing. This mini-module was autoclaved at 121 ° C. for 20 minutes. The water permeability is 3 on the blood side using the mini module.
Flow pure water kept at 7 ° C, stop the flow, and apply a pressure of 150 mmHg according to the method of Klein et al. did. Regarding the sieving coefficient of myoglobin, a pressure of 100 mmHg was applied to the myoglobin aqueous solution kept in a box kept at 37 ° C., and 20 ml / min was applied to the blood side of the mini-module. The sieving coefficient was determined by measuring the myoglobin concentration in the outlet / inlet and the filtrate. Table 2 shows the results of the water permeability before and after high-pressure steam sterilization and the sieving coefficient of myoglobin. Table 2 shows that the water permeability after sterilization under high pressure and the sieving coefficient of myoglobin are improved.

【0017】実施例2 実施例1と同じセルローストリアセテート/セルロース
ジアセテートを重量比7/3として実施例1と同じ条件
で中空糸膜を製造、示差熱分析を行った。結果を表1及
び図1に示す。高圧蒸気滅菌前後の透水性、ミオグロビ
ンの篩い係数の結果を表2に示す。表2によると、高圧
蒸気滅菌後の透水性、ミオグロビンの篩い係数が向上す
ることがわかる。
Example 2 A hollow fiber membrane was produced under the same conditions as in Example 1 with the same cellulose triacetate / cellulose diacetate as in Example 1 in a weight ratio of 7/3, and differential thermal analysis was performed. The results are shown in Table 1 and FIG. Table 2 shows the results of the water permeability before and after high-pressure steam sterilization and the sieving coefficient of myoglobin. Table 2 shows that the water permeability after sterilization under high pressure and the sieving coefficient of myoglobin are improved.

【0018】実施例3 実施例1と同じセルローストリアセテート/セルロース
ジアセテートを重量比6/4として実施例1と同じ条件
で中空糸膜を製造、示差熱分析を行った。結果を表1及
び図1に示す。高圧蒸気滅菌前後の透水性、ミオグロビ
ンの篩い係数の結果を表2に示す。表2によると、高圧
蒸気滅菌後の透水性、ミオグロビンの篩い係数が向上す
ることがわかる。
Example 3 A hollow fiber membrane was produced under the same conditions as in Example 1 with the same cellulose triacetate / cellulose diacetate as in Example 1 in a weight ratio of 6/4, and differential thermal analysis was conducted. The results are shown in Table 1 and FIG. Table 2 shows the results of the water permeability before and after high-pressure steam sterilization and the sieving coefficient of myoglobin. Table 2 shows that the water permeability after sterilization under high pressure and the sieving coefficient of myoglobin are improved.

【0019】実施例4 実施例1と同じセルローストリアセテート/セルロース
ジアセテートを重量比5/5として実施例1と同じ条件
で中空糸膜を製造、示差熱分析を行った。結果を表1及
び図1に示す。高圧蒸気滅菌前後の透水性、ミオグロビ
ンの篩い係数の結果を表2に示す。表2によると、高圧
蒸気滅菌後の透水性、ミオグロビンの篩い係数が向上す
ることがわかる。
Example 4 A hollow fiber membrane was produced under the same conditions as in Example 1 with the same cellulose triacetate / cellulose diacetate as in Example 1 in a weight ratio of 5/5, and differential thermal analysis was conducted. The results are shown in Table 1 and FIG. Table 2 shows the results of the water permeability before and after high-pressure steam sterilization and the sieving coefficient of myoglobin. Table 2 shows that the water permeability after sterilization under high pressure and the sieving coefficient of myoglobin are improved.

【0020】比較例1 実施例1と同じセルローストリアセテート/セルロース
ジアセテートを重量比95/5として実施例1と同じ条
件で中空糸膜を製造、示差熱分析を行った。それぞれの
高圧蒸気滅菌前後の透水性、ミオグロビンの篩い係数の
結果を表2に示す。表2によると、透水性およびミオグ
ロビンの篩い係数は初期性能に比べて高圧蒸気滅菌後の
性能は著しく低下し、実用に供し得ない。
Comparative Example 1 A hollow fiber membrane was produced under the same conditions as in Example 1 with the same cellulose triacetate / cellulose diacetate as in Example 1 in a weight ratio of 95/5, and differential thermal analysis was conducted. Table 2 shows the results of the water permeability before and after high-pressure steam sterilization and the sieving coefficient of myoglobin. According to Table 2, the water permeability and the sieving coefficient of myoglobin markedly deteriorate the performance after high-pressure steam sterilization as compared with the initial performance, and cannot be put to practical use.

【0021】比較例2 セルローストリアセテート膜について単独で示差熱分析
を行った。結果を表1及び図1に示す。高圧蒸気滅菌前
後の透水性、ミオグロビンの篩い係数の結果を表2に示
す。表2によると、透水性およびミオグロビンの篩い係
数は初期性能に比べて高圧蒸気滅菌後の性能は著しく低
下し、実用に供し得ない。
Comparative Example 2 The differential thermal analysis was carried out on the cellulose triacetate membrane alone. The results are shown in Table 1 and FIG. Table 2 shows the results of the water permeability before and after high-pressure steam sterilization and the sieving coefficient of myoglobin. According to Table 2, the water permeability and the sieving coefficient of myoglobin markedly deteriorate the performance after high-pressure steam sterilization as compared with the initial performance, and cannot be put to practical use.

【0022】比較例3 セルロースジアセテート膜について単独で示差熱分析を
行った。結果を表1及び図1に示す。高圧蒸気滅菌前後
の透水性、ミオグロビンの篩い係数の結果を表2に示
す。表2によると、透水性およびミオグロビンの篩い係
数は初期性能に比べて高圧蒸気滅菌後の性能は著しく低
下し、実用に供し得ない。
Comparative Example 3 The differential thermal analysis was carried out on the cellulose diacetate membrane alone. The results are shown in Table 1 and FIG. Table 2 shows the results of the water permeability before and after high-pressure steam sterilization and the sieving coefficient of myoglobin. According to Table 2, the water permeability and the sieving coefficient of myoglobin markedly deteriorate the performance after high-pressure steam sterilization as compared with the initial performance, and cannot be put to practical use.

【0023】比較例4 セルローストリアセテート/セルロースジアセテート膜
を重量比 1/1で混合したものについて示差熱分析を
行った。単に混合しただけでは示差熱分析ではそれぞれ
のピークの重ね合せとして観測される。結果を表1及び
図1に示す。
Comparative Example 4 Differential thermal analysis was carried out on a mixture of cellulose triacetate / cellulose diacetate membranes at a weight ratio of 1/1. When they are simply mixed, they are observed as a superposition of peaks in the differential thermal analysis. The results are shown in Table 1 and FIG.

【0024】[0024]

【発明の効果】セルローストリアセテートとセルロース
ジアセテートとを適切な比率で混合することで、高圧蒸
気滅菌によるそれぞれの結晶化、配向結晶化を調節する
ことにより、高圧蒸気滅菌後の透水性、ミオグロビンの
篩い係数を高めることが可能な、セルロースアセテート
膜を提供することが出来る。
[Effects of the Invention] By mixing cellulose triacetate and cellulose diacetate in an appropriate ratio to control the respective crystallization and oriented crystallization by high-pressure steam sterilization, water permeability after high-pressure steam sterilization and myoglobin A cellulose acetate membrane capable of increasing the sieving coefficient can be provided.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of drawings]

【図1】図1はセルロースアセテート膜の示差熱分析結
果を示すチャートである。
FIG. 1 is a chart showing the results of differential thermal analysis of a cellulose acetate film.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セルローストリアセテートとセルロース
ジアセテートとの混合体であって、示差熱分析によるセ
ルロースジアセテートの融解ピークを実質的に有さず、
かつ実質的にセルローストリアセテートの融解ピークを
有する、熱的に安定性の向上したセルロースアセテート
膜。
1. A mixture of cellulose triacetate and cellulose diacetate, which has substantially no melting peak of cellulose diacetate by differential thermal analysis,
A cellulose acetate film having substantially the melting peak of cellulose triacetate and improved thermal stability.
【請求項2】 セルローストリアセテート(CTA)と
セルロースジアセテート(CA)との混合体であって、
示差熱分析によるセルロースジアセテートの融解ピーク
を実質的に有さず、かつ実質的にセルローストリアセテ
ートの融解ピークを有する、熱的に安定性の向上したセ
ルロースアセテート膜で、高圧蒸気処理(AC)前後の
透水性比(透水性AC後)/(透水性AC前)が1.1
以上、ミオグロビンの篩い係数比(篩い係数AC後)/
(篩い係数AC前)が1.1以上である、耐熱性の向上
したセルロースアセテート膜。
2. A mixture of cellulose triacetate (CTA) and cellulose diacetate (CA),
A cellulose acetate membrane having substantially no melting peak of cellulose diacetate by differential thermal analysis and substantially having a melting peak of cellulose triacetate, which has improved thermal stability, before and after high-pressure steam treatment (AC). Permeability ratio (after water permeability AC) / (before water permeability AC) is 1.1
Above, the sieving coefficient ratio of myoglobin (after sieving coefficient AC) /
A cellulose acetate film having improved heat resistance (before sieving coefficient AC) of 1.1 or more.
JP20085193A 1993-07-28 1993-08-12 Cellulose acetate membrane with improved heat resistance Pending JPH0751553A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP20085193A JPH0751553A (en) 1993-08-12 1993-08-12 Cellulose acetate membrane with improved heat resistance
US08/272,397 US5624561A (en) 1993-07-28 1994-07-26 Cellulose acetate hemodialysis membrane
EP94111598A EP0636403A3 (en) 1993-07-28 1994-07-26 Cellulose acetate hemodialysis membrane.
CA002129089A CA2129089A1 (en) 1993-07-28 1994-07-28 Cellulose acetate hemodialysis membrane
US08/730,599 US5783124A (en) 1993-07-28 1996-10-15 Cellulose acetate hemodialysis membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20085193A JPH0751553A (en) 1993-08-12 1993-08-12 Cellulose acetate membrane with improved heat resistance

Publications (1)

Publication Number Publication Date
JPH0751553A true JPH0751553A (en) 1995-02-28

Family

ID=16431281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20085193A Pending JPH0751553A (en) 1993-07-28 1993-08-12 Cellulose acetate membrane with improved heat resistance

Country Status (1)

Country Link
JP (1) JPH0751553A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013125681A1 (en) * 2012-02-24 2015-07-30 東洋紡株式会社 Hollow fiber type semipermeable membrane, manufacturing method and module thereof, and water treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013125681A1 (en) * 2012-02-24 2015-07-30 東洋紡株式会社 Hollow fiber type semipermeable membrane, manufacturing method and module thereof, and water treatment method

Similar Documents

Publication Publication Date Title
US5013339A (en) Compositions useful for making microporous polyvinylidene fluoride membranes, and process
AU693362B2 (en) Synthetic separation diaphragm
JP4940576B2 (en) Hollow fiber membrane and blood purifier
WO2016117565A1 (en) Porous hollow fiber filtration membrane
CA2202969C (en) Selectively permeable hollow fiber membrane and process for producing same
EP0012630B1 (en) Process for producing a cellulose acetate-type permselective membrane, permselective membrane thus produced, and use of such membrane in artificial kidney
US6017474A (en) Highly permeable polyethersulfone hollow fiber membranes for gas separation
JP6770807B2 (en) Hollow fiber membrane
US5624561A (en) Cellulose acetate hemodialysis membrane
US4886631A (en) Cellulose ester hollow fiber membrane for plasma separation
JP3427658B2 (en) Cellulose hollow fiber membrane and method for producing the same
JPH0751553A (en) Cellulose acetate membrane with improved heat resistance
EP0824960A1 (en) Hollow-fiber membrane of polysulfone polymer and process for the production thereof
US5849189A (en) Hollow fiber blood purifying membrane and process for its production
JPH0120245B2 (en)
CN1094380C (en) Material of artificial kidney for hemodialysis and its preparing process
JP3424807B2 (en) Hollow fiber membrane
JPH05228208A (en) Cellulose acetate base blood purifying hollow thread membrane and its manufacture
JP2646562B2 (en) Method for producing permselective composite hollow fiber membrane
JPS6411322B2 (en)
JP2011020071A (en) Method for manufacturing polysulfone-based hollow fiber membrane
JP2000107577A (en) Production of permselective hollow fiber membranes
JPS61185305A (en) Preparation of cellulose acetate hollow yarn
JP3464000B1 (en) Manufacturing method of high performance hollow fiber microfiltration membrane
JPH07106303B2 (en) Hollow fiber type plasma separation membrane and method for producing the same