JPH0751442B2 - Method for producing high-purity hydrogen - Google Patents

Method for producing high-purity hydrogen

Info

Publication number
JPH0751442B2
JPH0751442B2 JP61101978A JP10197886A JPH0751442B2 JP H0751442 B2 JPH0751442 B2 JP H0751442B2 JP 61101978 A JP61101978 A JP 61101978A JP 10197886 A JP10197886 A JP 10197886A JP H0751442 B2 JPH0751442 B2 JP H0751442B2
Authority
JP
Japan
Prior art keywords
gas
methanol
water
carbon dioxide
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61101978A
Other languages
Japanese (ja)
Other versions
JPS62260702A (en
Inventor
彰 石和田
敦雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP61101978A priority Critical patent/JPH0751442B2/en
Publication of JPS62260702A publication Critical patent/JPS62260702A/en
Publication of JPH0751442B2 publication Critical patent/JPH0751442B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はメタノールの水蒸気改質による高純度水素の製
造方法に関し,更に詳しくはメタノールと水を接触反応
させて得られた粗水素ガスから安価に効率良く高純度の
水素を製造する方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing high-purity hydrogen by steam reforming of methanol, and more specifically, it is inexpensive from crude hydrogen gas obtained by catalytically reacting methanol and water. The present invention relates to a method for efficiently producing high-purity hydrogen.

水素ガスは各種有機化合物の水素化,石油精製,脱硫な
どに多く使われ,更に冶金工業,半導体工業などの分野
でも使用され,その需要は年々伸び,また高純度のもの
が要求されている。
Hydrogen gas is often used for hydrogenation of various organic compounds, petroleum refining, desulfurization, etc. Further, it is also used in the fields of metallurgical industry, semiconductor industry, etc. The demand for hydrogen gas is increasing year by year and high purity is required.

メタノールの水蒸気改質による水素製造法は従来の天然
ガス,ナフサ,液化石油ガスの水蒸気改質に比較し,反
応温度が低く,脱硫が不要であるなど数々の利点を有
し,また,輸送の容易な安価なメタノールを原料とする
ので最近注目されている。
Compared with conventional steam reforming of natural gas, naphtha, and liquefied petroleum gas, the hydrogen production method by steam reforming of methanol has many advantages such as low reaction temperature and no desulfurization. Recently, it has attracted much attention because it uses inexpensive methanol as a raw material.

(従来の技術) メタノールの水蒸気改質による水素の製造法は水/メタ
ノールの混合液を蒸発・過熱し,触媒の存在下,5〜40Kg
/cm2G,250〜300℃にて水蒸気改質反応を行い,水素,炭
酸ガス及び微量の一酸化炭素を含有する粗水素ガスと
し,原料液との熱交換及び冷却により余剰の水分及び未
反応メタノールを凝縮液として分離した後,吸着分離装
置にて炭酸ガス,一酸化炭素,同伴水分などを吸着除去
することにより、99.999%以上の高純度水素とするのが
一般である。
(Prior Art) A method of producing hydrogen by steam reforming of methanol involves evaporating and heating a water / methanol mixture, and in the presence of a catalyst, 5 to 40 kg
/ cm 2 G, steam reforming reaction at 250-300 ℃ is carried out to obtain crude hydrogen gas containing hydrogen, carbon dioxide and a trace amount of carbon monoxide. After separating reaction methanol as a condensate, carbon dioxide, carbon monoxide, entrained water and the like are adsorbed and removed by an adsorption separation device to obtain high purity hydrogen of 99.999% or more.

この吸着分離装置はモレキュラーシーブ,活性炭などの
分子吸着量が物質により,また圧力により異なることを
利用してガス分離を行う装置で,一般にPSA装置と呼ば
れる。改質反応と同等の圧力で炭酸ガスなどを吸着した
吸着剤は,減圧により脱着し,更にこれらの脱着された
不純物を系外に放出するため,高純度水素ガスの一部を
使用して吸着層の掃気を行う。
This adsorption / separation device is a device that performs gas separation by utilizing the fact that the amount of adsorbed molecules such as molecular sieves and activated carbon differs depending on the substance and pressure, and is generally called the PSA device. The adsorbent that adsorbed carbon dioxide at a pressure equivalent to that of the reforming reaction is desorbed by depressurization, and these desorbed impurities are released to the outside of the system. Perform scavenging of layers.

(発明が解決しようとする問題点) この水素製造装置において,改質反応後に冷却・分離さ
れた粗水素ガス中には,その温度における蒸気圧に相当
するメタノール分が残留する。プロセス補給水でこの粗
水素ガスを吸収・洗浄することにより,このメタノール
分が補給水で吸収され回収されると共にPSA装置の設計
が容易となる。しかしながら,このプロセスでは微量の
酸素及び窒素がPSA装置入口の粗水素ガス中に含有す
る。PSA装置の吸着剤に対する不純物の平衡吸着量は,
炭酸ガスが最も大きく,一酸化炭素,窒素,酸素の順に
小さくなる。このため,PSA装置より取り出される高純度
水素ガスには微量の酸素が残存し易く,また窒素は吸着
除去できるが平衡吸着量が小さいためPSA装置の運転中
の僅かな変動に対しても高純度水素ガス中に混入し易
く,これを防ぐには水素回収率を低下させるか,或いは
吸着剤の充填量を増やす必要があることが本プロセスの
難点であった。
(Problems to be Solved by the Invention) In this hydrogen production device, in the crude hydrogen gas cooled and separated after the reforming reaction, a methanol content corresponding to the vapor pressure at that temperature remains. By absorbing and cleaning this crude hydrogen gas with process make-up water, this methanol content is absorbed and recovered by the make-up water, and the PSA device design becomes easy. However, in this process, trace amounts of oxygen and nitrogen are contained in the crude hydrogen gas at the PSA equipment inlet. The equilibrium adsorption amount of impurities to the adsorbent of the PSA device is
Carbon dioxide is the largest, followed by carbon monoxide, nitrogen, and oxygen in that order. For this reason, a trace amount of oxygen is likely to remain in the high-purity hydrogen gas taken out from the PSA device, and nitrogen can be adsorbed and removed, but the equilibrium adsorption amount is small, so that high-purity hydrogen gas can be obtained even with slight fluctuations during operation of the PSA device. It was easily mixed in hydrogen gas, and in order to prevent this, it was necessary to reduce the hydrogen recovery rate or increase the adsorbent filling amount, which was a problem of this process.

(問題点を解決するための手段) 本発明者は前記プロセスにおける微量の酸素及び窒素の
混入はメタノール及び補給水中に溶存する酸素及び窒素
によるものであり,予めこれらのガスを除去しておけば
粗水素ガス中に酸素及び窒素が含まれず,その結果高純
度の水素が安定してられること,また予めメタノール及
び補給水をPSA掃気ガスと向流接触させることによって
溶存酸素及び窒素を除去することができることを見出し
た。
(Means for Solving Problems) The present inventor has known that the mixing of a trace amount of oxygen and nitrogen in the above process is due to oxygen and nitrogen dissolved in methanol and makeup water, and if these gases are removed in advance. Oxygen and nitrogen are not contained in crude hydrogen gas, and as a result, high-purity hydrogen is stabilized, and dissolved oxygen and nitrogen are removed by previously contacting methanol and make-up water with PSA scavenging gas countercurrently. I found that I can do it.

即ち本発明は,メタノールと水を接触反応させて水素,
炭酸ガス及び微量の一酸化炭素を含有する粗水素ガスと
し,これを冷却して余剰の水と未反応メタノールを凝縮
分離し,残ガスを水で洗浄しメタノール蒸気を除去した
のち,吸着分離装置に導き炭酸ガス等の不純ガスを吸着
除去し高純度水素ガスを得る方法において,予め原料メ
タノール及び補給水を吸着分離装置の掃気ガスとの向流
接触により脱気することを特徴とする高純度水素の製造
方法である。
That is, in the present invention, hydrogen is produced by catalytically reacting methanol and water.
Crude hydrogen gas containing carbon dioxide and a trace amount of carbon monoxide is cooled, the excess water and unreacted methanol are condensed and separated, and the residual gas is washed with water to remove methanol vapor, and then an adsorption separation device In the method for obtaining high-purity hydrogen gas by adsorbing and removing impure gases such as carbon dioxide, high-purity methanol characterized by previously degassing the raw material methanol and make-up water by countercurrent contact with the scavenging gas of the adsorption separator. It is a method of producing hydrogen.

またPSA装置の掃気ガスには,一般に水素,炭酸ガス,
一酸化炭素,窒素等を含み,改質工程の燃料に使用され
るが,本発明によれば,窒素量が著しく減少するため,P
SA装置入口または掃気ガス中の炭酸ガスを吸収除去する
ことにより,掃気ガスを原料系に戻しても窒素の蓄積を
生じることなしに,循環使用でき,水素の収率を著しく
向上する。これにより系外に放出されるガス量が減少し
水素を有効に利用されると共に,得られる高純度水素ガ
スの純度が極めて高くなる。
In addition, scavenging gas for PSA equipment is generally hydrogen, carbon dioxide,
It contains carbon monoxide, nitrogen, etc. and is used as a fuel in the reforming process. However, according to the present invention, the amount of nitrogen is remarkably reduced, so P
By absorbing and removing the carbon dioxide gas in the SA device inlet or the scavenging gas, even if the scavenging gas is returned to the raw material system, it can be circulated without nitrogen accumulation and the hydrogen yield is significantly improved. As a result, the amount of gas released to the outside of the system is reduced, hydrogen is effectively used, and the purity of the high-purity hydrogen gas obtained is extremely high.

即ち本発明は,前記発明において,予め原料メタノール
及び補給水を吸着分離装置の掃気ガスの一部との向流接
触により脱気すると共に,メタノール蒸気を洗浄除去し
たのちの粗水素ガスを炭酸ガス吸収装置に導き,炭酸ガ
スを吸収除去したのち吸着分離装置に導き,且つ吸着分
離装置の掃気ガスの残部を接触反応の原料として循環使
用することを特徴とする高純度水素の製造方法,および
予め原料メタノール及び補給水を吸着分離装置の掃気ガ
スの一部との向流接触により脱気すると共に,吸着分離
装置の掃気ガスの残部を炭酸ガス吸収装置に導き,炭酸
ガスを吸収分離した後,これを接触反応の原料として循
環使用することを特徴とする高純度水素の製造方法が包
含される。
That is, in the present invention, in the above-mentioned invention, the raw methanol and the makeup water are previously degassed by countercurrent contact with a part of the scavenging gas of the adsorption / separation device, and the crude hydrogen gas after washing and removing the methanol vapor is converted into carbon dioxide gas. A method for producing high-purity hydrogen, which is characterized in that the carbon dioxide gas is introduced into an absorption device, absorbed and removed, and then introduced into an adsorption separation device, and the remaining scavenging gas of the adsorption separation device is circulated and used as a raw material for the catalytic reaction. After degassing the raw material methanol and make-up water by countercurrent contact with a part of the scavenging gas of the adsorption / separation device, and guiding the rest of the scavenging gas of the adsorption / separation device to the carbon dioxide absorption device to absorb and separate the carbon dioxide gas, A method for producing high-purity hydrogen, which is characterized in that this is recycled as a raw material for a catalytic reaction, is included.

本発明における水とメタノールの接触反応は,銅,鉛,
クロム,アルミニュウムを含有する触媒が好適に使用さ
れ,反応温度150〜400℃,圧力1〜50Kg/cm2G,メタノー
ル1モルに対して水1〜20モルの混合蒸気をSV50〜5000
0 1/Hで通過して行う。この改質反応により,水素,炭
酸ガスの他,微量の一酸化炭素等が生成され,粗水素ガ
スとなる。
The catalytic reaction between water and methanol in the present invention is
A catalyst containing chromium and aluminum is preferably used, a reaction temperature of 150 to 400 ° C., a pressure of 1 to 50 Kg / cm 2 G, and a mixed vapor of 1 to 20 mol of water per 1 mol of methanol SV50 to 5000
Pass by 0 1 / H. By this reforming reaction, in addition to hydrogen and carbon dioxide gas, a trace amount of carbon monoxide and the like is produced, and becomes crude hydrogen gas.

反応ガスの冷却は,一般に原料液の予熱及び冷却水ない
し空冷により行い,50℃以下とする。残ガスの洗浄には
ラッシヒリング,ボールリングなどの充填物を使用し,
前記脱気水との向流接触により,メタノール分を100PPM
以下とする。
Cooling of the reaction gas is generally performed by preheating the raw material liquid and cooling water or air cooling, and is kept at 50 ° C or lower. For cleaning residual gas, use packing materials such as Raschig rings and ball rings.
By countercurrent contact with the degassed water, methanol content of 100PPM
Below.

PSA装置は吸着剤としてモレキュラーシーブ,ゼオライ
ト,活性炭などの混合物を使用し,改質圧と同等の圧
力,50℃以下の温度で炭酸ガス,微量の一酸化炭素,メ
タン,メタノール,窒素などを吸着する。この吸着剤の
再生時に掃気されるガスは圧力0.1〜1.0Kg/cm2Gであ
り,掃気に使用された水素を30〜50vol%含有し,その
発生量は高純度水素量の50〜80%となる。
The PSA device uses a mixture of molecular sieve, zeolite, activated carbon, etc. as an adsorbent, and adsorbs carbon dioxide, a trace amount of carbon monoxide, methane, methanol, nitrogen, etc. at a pressure equal to the reforming pressure and at a temperature of 50 ° C or less. To do. The gas scavenged during regeneration of this adsorbent had a pressure of 0.1 to 1.0 Kg / cm 2 G and contained 30 to 50 vol% of the hydrogen used for scavenging, and the generated amount was 50 to 80% of the high-purity hydrogen amount. Becomes

メタノール及び補給水の脱気はラッシヒリング,ポール
リングなどの充填物を用い,常温,常圧でこの掃気ガス
との向流接触により行なう。補給水の脱気に使用後の掃
気ガスは改質工程の燃料に使用する。
Degassing of methanol and make-up water is performed by countercurrent contact with this scavenging gas at room temperature and pressure using a packing such as Raschig rings and pole rings. The scavenging gas used after degassing the makeup water is used as fuel in the reforming process.

PSA装置入口粗水素ガスまたは掃気ガス中の炭酸ガス除
去は,通常のモノエタノールアミン,熱炭酸カリなどの
アルカリ溶液による化学吸収法または低温メタノールに
よる物理吸収法(レクチゾール法)等が用いられ,吸収
液は減圧・加熱により再生し循環使用する。
For removal of carbon dioxide in the crude hydrogen gas or scavenging gas at the PSA inlet, a chemical absorption method using an alkaline solution such as ordinary monoethanolamine or hot potassium carbonate or a physical absorption method using low-temperature methanol (rectisol method) is used. The liquid is regenerated by depressurizing and heating and is recycled.

PSA装置入口粗水素ガスの炭酸ガス除去を行った場合,
粗水素ガス中の不純物が少量であるため,PSA掃気ガス中
の水素濃度が80〜90%となる。PSA掃気ガス発生量の0.1
〜10%,好ましくは0.2〜5%に相当する掃気ガスをメ
タノール及び補給水の脱気に使用し,残りのガスを圧縮
機により改質工程の圧力以上に昇圧して原料系に循環使
用する。
When carbon dioxide is removed from the crude hydrogen gas at the PSA device inlet,
Due to the small amount of impurities in the crude hydrogen gas, the hydrogen concentration in the PSA scavenging gas is 80-90%. PSA scavenging gas generation rate 0.1
~ 10%, preferably 0.2 ~ 5% of the scavenging gas is used for deaeration of methanol and makeup water, and the remaining gas is circulated in the raw material system after being pressurized to a pressure higher than that of the reforming process by a compressor. .

PSA掃気ガスは,メタノール放散塔と補給水放散塔を直
列に導くことができるし,また並列に導くこともでき
る。直列に導く場合には,メタノール放散塔出口ガスに
同伴するメタノールが補給水により吸収されるため,メ
タノールの損失が無く有利である。
PSA scavenging gas can be introduced either in series or in parallel with the methanol stripping tower and the makeup water stripping tower. In the case of introducing in series, the methanol that accompanies the outlet gas of the methanol stripping tower is absorbed by the makeup water, which is advantageous because there is no loss of methanol.

次に,図面により本発明を説明する。Next, the present invention will be described with reference to the drawings.

第1図は本発明により,メタノール及び補給水を吸着分
離装置の掃気ガスで脱気する場合のフローを示す。原料
メタノールはメタノール供給ライン11により供給され,
メタノール放散塔4に導かれ,PSA装置の掃気ガス21によ
って脱気された後,水洗塔2から取り出される原料水
(凝縮液+脱気水)と合流し,原料予熱器8及び蒸発過
熱器7を経て改質反応器1に入り,触媒存在下水蒸気改
質され粗水素ガスとなる。改質反応器よりの粗水素ガス
は原料予熱器8及び冷却器9で冷却され,余分の水と未
反応メタノールが凝縮する。冷却ガスは粗水素ガスライ
ン16により水洗塔2に入り,脱気水供給ライン14より供
給される脱気水によって凝縮液中のメタノール蒸気圧に
相当するメタノール蒸気が吸収・洗浄される。凝縮液は
吸収・洗浄に使用された脱気水と混合され,凝縮液取出
しライン15から原料水として供給され再使用される。
FIG. 1 shows a flow of degassing methanol and make-up water with a scavenging gas of an adsorption separation device according to the present invention. The raw material methanol is supplied by the methanol supply line 11,
After being guided to the methanol stripping tower 4 and degassed by the scavenging gas 21 of the PSA device, it joins with the raw material water (condensate + degassed water) taken out from the water washing tower 2, and the raw material preheater 8 and the evaporation superheater 7 After entering the reforming reactor 1, it undergoes steam reforming in the presence of a catalyst to become crude hydrogen gas. The crude hydrogen gas from the reforming reactor is cooled by the raw material preheater 8 and the cooler 9, and excess water and unreacted methanol are condensed. The cooling gas enters the water washing tower 2 through the crude hydrogen gas line 16, and the degassed water supplied through the degassed water supply line 14 absorbs and cleans the methanol vapor corresponding to the methanol vapor pressure in the condensate. The condensate is mixed with the degassed water used for absorption / washing, supplied from the condensate extraction line 15 as raw water, and reused.

吸収塔2を出た粗水素ガスは粗水素ガスライン17によっ
てPSA装置3に送気され,炭酸ガスなどの不純物が吸着
除去され,高純度水素ガスライン19から99.999%以上の
高純度水素ガスとして取り出される。一方炭酸ガス等の
不純物は減圧によりPSA掃気ガスとして取り出され,PSA
掃気ガスライン21によっててメタノール放散塔4に導か
れ,メタノール供給ライン11よりのメタノールと向流接
触し溶存酸素及び窒素を放散した後,補給水放散塔5に
供給され,補給水中の溶存酸素及び窒素を放散し,オフ
ガスライン23によって改質工程の燃料に使用される。補
給水供給ライン12よりの補給水は放散塔5で散後,脱気
水供給ライン14より水洗塔2に入る。またPSA掃気ガス
はメタノール放散塔4及び補給水散塔5に並列に導くこ
ともできる。
The crude hydrogen gas exiting the absorption tower 2 is sent to the PSA device 3 by the crude hydrogen gas line 17 to adsorb and remove impurities such as carbon dioxide gas, and as a high purity hydrogen gas of 99.999% or more from the high purity hydrogen gas line 19 Taken out. On the other hand, impurities such as carbon dioxide are taken out as PSA scavenging gas by depressurization.
It is guided to the methanol stripping tower 4 by the scavenging gas line 21, countercurrently contacts with methanol from the methanol supply line 11 to diffuse dissolved oxygen and nitrogen, and then is supplied to the makeup water stripping tower 5 to dissolve dissolved oxygen and nitrogen in the makeup water. It releases nitrogen and is used by the offgas line 23 as fuel in the reforming process. Make-up water from the make-up water supply line 12 is dispersed in the diffusion tower 5 and then enters the washing tower 2 from the degassed water supply line 14. The PSA scavenging gas can also be introduced in parallel to the methanol diffusion tower 4 and the makeup water dispersion tower 5.

第2図は本発明により,PSA装置入口の粗水素ガス中の炭
酸ガスを除去し,PSA掃気ガスを原料として循環使用する
場合のフローを示す。吸収塔2から取り出された粗水素
ガスは,炭酸ガス除去装置6に導かれ,含有する炭酸ガ
スが殆ど除去された後,PSA装置3に導かれ,残存する少
量の不純物が除去され,99.999%以上の高純度水素とし
て19より取り出される。PSA掃気ライン21よりの掃気ガ
スの一部はメタノール放散塔4及び補給水散塔5に導か
れる。他の大部分のガスは,PSA掃気ガス圧縮機10に導か
れ、原料系の圧力以上に昇圧され,蒸発・過熱器7を出
た混合ガスと合流して循環使用される。
FIG. 2 shows a flow when the carbon dioxide gas in the crude hydrogen gas at the inlet of the PSA device is removed and the PSA scavenging gas is circulated and used as a raw material according to the present invention. The crude hydrogen gas taken out from the absorption tower 2 is introduced into a carbon dioxide gas removing device 6 to remove almost all the contained carbon dioxide gas, and then to a PSA device 3 to remove a small amount of remaining impurities, and 99.999% The above high-purity hydrogen is extracted from 19. Part of the scavenging gas from the PSA scavenging line 21 is guided to the methanol stripping tower 4 and the makeup water sprinkling tower 5. Most of the other gases are introduced into the PSA scavenging gas compressor 10, are pressurized to a pressure higher than the pressure of the raw material system, and are combined with the mixed gas leaving the evaporator / superheater 7 for circulation and use.

第3図は本発明により,PSA掃気ガス中の炭酸ガスを除去
し,これを循環使用する場合のフローを示す。PSA掃気
ライン21よりの掃気ガスの一部はメタノール放散塔4及
び補給水放散塔5に導かれる。他の大部分のガスは,PSA
掃気ガス圧縮機10に導かれ,原料系の圧力以上に昇圧
後,炭酸ガス除去装置6に導かれ,含有する炭酸ガスが
殆ど除去され,蒸発・過熱器7を出た混合ガスと合流し
て循環使用される。
FIG. 3 shows a flow when carbon dioxide gas in the PSA scavenging gas is removed and is circulated according to the present invention. Part of the scavenging gas from the PSA scavenging line 21 is guided to the methanol stripping tower 4 and the makeup water stripping tower 5. Most other gases are PSA
After being introduced into the scavenging gas compressor 10 and having a pressure higher than the pressure of the raw material system, it is introduced into the carbon dioxide gas removing device 6 where most of the carbon dioxide gas contained therein is removed and merges with the mixed gas leaving the evaporator / superheater 7. Used in circulation.

(実施例) 本発明によりPSA掃気ガスによりメタノール及び補給水
を脱気した場合,PSA装置入口ガス中の炭酸ガスを除去し
循環使用した場合と,メタノール及び補給水の脱気を実
施しない場合の酸素及び窒素濃度を比較し,第1表に示
した。各例の操作条件は次の通りである。
(Example) According to the present invention, when degassing methanol and make-up water by PSA scavenging gas, when carbon dioxide gas in PSA device inlet gas is removed and circulated, and when degassing of methanol and make-up water is not performed The oxygen and nitrogen concentrations are compared and shown in Table 1. The operating conditions of each example are as follows.

実施例1 第1図において,メタノール12.2Kg/H,補給水6.6Kg/H反
応器入口水/メタノールモル比2.0とし270℃,15Kg/cm
2G,混合蒸気のSV1800 1/Hにて水蒸気改質を行い,得ら
れる粗水素ガス33.7Nm3/Hを補給水6.6Kg/Hで洗浄し,モ
レキュラーシーブ及び活性炭からなる吸着剤のPSA装置
にて精製を行い,99.999%以上の高純度水素20Nm3/Hを得
た。メタノール及び補給水の脱気には,PSA掃気ガス発生
量13.7Nm3/Hの1%に相当する0.14Nm3/Hを使用した。
Example 1 In FIG. 1, methanol 12.2 Kg / H, makeup water 6.6 Kg / H reactor inlet water / methanol molar ratio 2.0 and 270 ° C., 15 Kg / cm
2 G, subjected to steam reforming at SV1800 1 / H of the vapor mixture, the crude hydrogen gas 33.7 nm 3 / H obtained is washed with makeup water 6.6 kg / H, PSA apparatus of adsorbent comprised of a molecular sieve and activated carbon The high-purity hydrogen of over 99.999% was obtained at 20 Nm 3 / H. For degassing methanol and make-up water, 0.14 Nm 3 / H, which corresponds to 1% of the PSA scavenging gas generation rate of 13.7 Nm 3 / H, was used.

実施例2 第2図のフローにおいてPSA装置よりの掃気ガス発生量
の1%をメタノール及び補給水の脱気に使用し,残りの
ガスを16Kg/cm2Gに昇圧し改質反応器に循環使用した。
改質工程及び洗浄工程の操作条件は実施例1と同一条件
とし,高純度水素発生量25.5Nm3/H,,PSA掃気ガス循環量
13.56Nm3/H,メタノール及び補給水の放散塔に使用したP
SA掃気ガス量0.14Nm3/Hであった。
Example 2 In the flow of FIG. 2, 1% of the amount of scavenging gas generated from the PSA device was used for degassing methanol and makeup water, and the remaining gas was pressurized to 16 kg / cm 2 G and circulated to the reforming reactor. used.
The operating conditions of the reforming process and the cleaning process were the same as in Example 1, and the high-purity hydrogen generation rate was 25.5 Nm 3 / H, and the PSA scavenging gas circulation rate was
13.56 Nm 3 / H, P used in the diffusion tower of methanol and makeup water
The amount of SA scavenging gas was 0.14 Nm 3 / H.

比較例1 メタノール及び補給水を脱気せず,実施例1と同一条件
で高純度水素装置を運転した。
Comparative Example 1 A high-purity hydrogen device was operated under the same conditions as in Example 1 without degassing methanol and makeup water.

(効果) 実施例に示した如く本発明により,PSA掃気ガスによって
予めメタノール及び補給水中の溶存酸素及び窒素を除去
することにより,PSA装置入口粗水素ガス中酸素及び窒素
濃度が著しく低下し,高純度水素の純度が向上する。
(Effect) As shown in the examples, according to the present invention, the oxygen and nitrogen concentrations in the crude hydrogen gas at the PSA device inlet are remarkably lowered and the high concentration is eliminated by removing the dissolved oxygen and nitrogen in the methanol and the makeup water in advance by the PSA scavenging gas. Purity The purity of hydrogen is improved.

また,これによりPSA装置の運転が安定し,水素回収率
の向上,或いはPSA装置での吸着剤の減が計られ,高純
度水素ののコストを低減できる。
This also stabilizes the operation of the PSA unit, improves the hydrogen recovery rate, or reduces the amount of adsorbent in the PSA unit, which can reduce the cost of high-purity hydrogen.

更に本発明によりPSA装置の供給粗水素ガス又は掃気ガ
ス中の炭酸ガス除去を行うとによって,掃気ガスを原料
系に戻しても窒素の蓄積を生ぜず,循環使用することが
でき,水素の収率が著しく向上できる。これにより系外
に放出されるガス量が減少し水素を有効に利用されると
共に,得られる高純度水素ガスの純度が極て高くなる。
Further, by removing carbon dioxide gas in the crude hydrogen gas or scavenging gas supplied to the PSA apparatus according to the present invention, nitrogen does not accumulate even when the scavenging gas is returned to the raw material system, and the scavenging gas can be circulated and used, and hydrogen can be collected. The rate can be significantly improved. As a result, the amount of gas released to the outside of the system is reduced, hydrogen is effectively used, and the purity of the high-purity hydrogen gas obtained is extremely high.

【図面の簡単な説明】[Brief description of drawings]

第1図に本発明におけるメタノール及び補給水をPSA装
置の掃気ガスで脱気する場合のフロー,第2図にPSA装
置入口の粗水素ガス中の炭酸ガスを除去し,PSA掃気ガス
を原料として循環使用する場合のフロー,第3図にPSA
掃気ガス中の炭酸ガスを除去し,これを循環使用する場
合のフローを示す。
FIG. 1 is a flow chart of degassing methanol and make-up water in the present invention with a scavenging gas of a PSA apparatus, and FIG. Flow for cyclic use, PSA in Fig. 3
The flow when carbon dioxide gas in the scavenging gas is removed and it is reused is shown.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】メタノールと水を接触反応させて水素,炭
酸ガス及び微量の一酸化炭素を含有する粗水素ガスと
し,これを冷却して余剰の水と未反応メタノールを凝縮
分離し,残ガスを水で洗浄しメタノール蒸気を除去した
のち,吸着分離装置に導き炭酸ガス等の不純ガスを吸着
除去し高純度水素ガスを得る方法において,予め原料メ
タノール及び補給水を吸着分離装置の掃気ガスとの向流
接触により脱気することを特徴とする高純度水素の製造
方法
1. A crude hydrogen gas containing hydrogen, carbon dioxide gas and a trace amount of carbon monoxide by catalytically reacting methanol and water, cooled to condense and separate excess water and unreacted methanol to obtain a residual gas. In order to obtain high-purity hydrogen gas by adsorbing and removing impure gases such as carbon dioxide gas after adsorbing and washing methanol with water to remove methanol vapor, the raw material methanol and make-up water are used as scavenging gas for the adsorption and separation device in advance. Of high-purity hydrogen, characterized by degassing by countercurrent contact of hydrogen
【請求項2】メタノールと水を接触反応させて水素,炭
酸ガス及び微量の一酸化炭素を含有する粗水素ガスと
し,これを冷却して余剰の水と未反応メタノールを凝縮
分離し,残ガスを水で洗浄しメタノール蒸気を除去した
のち,吸着分離装置に導き炭酸ガス等の不純ガスを吸着
除去し高純度水素ガスを得る方法において,予め原料メ
タノール及び補給水を吸着分離装置の掃気ガスの一部と
の向流接触により脱気すると共に,メタノール蒸気を洗
浄除去したのち粗水素ガスを炭酸ガス吸収装置に導き,
炭酸ガスを吸収除去したのち吸着分離装置に導き,且つ
吸着分離装置の掃気ガスの残部を接触反応の原料として
循環使用することを特徴とする高純度水素の製造方法
2. A crude hydrogen gas containing hydrogen, carbon dioxide gas and a trace amount of carbon monoxide by catalytically reacting methanol and water, and cooling this to condense and separate excess water and unreacted methanol to obtain a residual gas. In order to obtain high-purity hydrogen gas by adsorbing and removing impure gases such as carbon dioxide gas after adsorbing and removing methanol vapor by washing the methanol with water, the raw material methanol and make-up water are preliminarily added to the scavenging gas of the adsorption separator. While degassing by countercurrent contact with a part, washing and removing methanol vapor, the crude hydrogen gas is led to the carbon dioxide absorption device,
A method for producing high-purity hydrogen, characterized in that after absorbing and removing carbon dioxide gas, it is led to an adsorption separation device, and the remaining scavenging gas of the adsorption separation device is circulated and used as a raw material for the catalytic reaction
【請求項3】メタノールと水を接触反応させて水素,炭
酸ガス及び微量の一酸化炭素を含有する粗水素ガスと
し,これを冷却して余剰の水と未反応メタノールを凝縮
分離し,残ガスを水で洗浄しメタノール蒸気を除去した
のち,吸着分離装置に導き炭酸ガス等の不純ガスを吸着
除去し高純度水素ガスを得る方法において,予め原料メ
タノール及び補給水を吸着分離装置の掃気ガスの一部と
の向流接触により脱気すると共に,吸着分離装置の掃気
ガスの残部を炭酸ガス吸収装置に導き,炭酸ガスを吸収
分離した後,これを接触反応の原料として循環使用する
ことを特徴とする高純度水素の製造方法
3. A crude hydrogen gas containing hydrogen, carbon dioxide gas and a trace amount of carbon monoxide by catalytically reacting methanol and water, cooled to condense and separate excess water and unreacted methanol to obtain a residual gas. In order to obtain high-purity hydrogen gas by adsorbing and removing impure gases such as carbon dioxide gas after adsorbing and removing methanol vapor by washing the methanol with water, the raw material methanol and make-up water are preliminarily added to the scavenging gas of the adsorption separator. It is characterized by degassing by countercurrent contact with a part and guiding the rest of the scavenging gas of the adsorption separation device to a carbon dioxide gas absorption device to absorb and separate the carbon dioxide gas, and then recycle this as a raw material for the catalytic reaction. High-purity hydrogen production method
JP61101978A 1986-05-06 1986-05-06 Method for producing high-purity hydrogen Expired - Lifetime JPH0751442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61101978A JPH0751442B2 (en) 1986-05-06 1986-05-06 Method for producing high-purity hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61101978A JPH0751442B2 (en) 1986-05-06 1986-05-06 Method for producing high-purity hydrogen

Publications (2)

Publication Number Publication Date
JPS62260702A JPS62260702A (en) 1987-11-13
JPH0751442B2 true JPH0751442B2 (en) 1995-06-05

Family

ID=14314946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61101978A Expired - Lifetime JPH0751442B2 (en) 1986-05-06 1986-05-06 Method for producing high-purity hydrogen

Country Status (1)

Country Link
JP (1) JPH0751442B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4744971B2 (en) * 2005-07-29 2011-08-10 株式会社東芝 Low quality waste heat recovery system
US7699907B2 (en) * 2005-08-17 2010-04-20 Air Liquide Process & Construction, Inc. Apparatus and methods for gas separation
CN114592199A (en) * 2022-03-03 2022-06-07 上海丹通新材料有限公司 System for preparing high-purity hydrogen by adopting pressure swing adsorption
CN115057412A (en) * 2022-06-13 2022-09-16 新疆天业汇合新材料有限公司 Removing CO and CO by methanol synthesis reaction 2 Method for improving hydrogen purity

Also Published As

Publication number Publication date
JPS62260702A (en) 1987-11-13

Similar Documents

Publication Publication Date Title
KR940006239B1 (en) Integrated processes for the production of carbon monoxide
US9090839B2 (en) Method and apparatus for adjustably treating a sour gas
US4861351A (en) Production of hydrogen and carbon monoxide
EP0579290B2 (en) Separation of gas mixtures including hydrogen
US20120027656A1 (en) Method and Apparatus for Treating a Sour Gas
WO2010135094A1 (en) Processes for the recovery of high purity hydrogen and high purity carbon dioxide
JPH04227017A (en) Manufactur of carbon dioxide including recovery of nitrogen and argon by-product
CA2055520A1 (en) Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification
EP0959979A1 (en) Gas absorption
US4572829A (en) Ammonia synthesis gas purification
CN101850209B (en) Vent gas treatment method and treatment device
US4001386A (en) Process for H2 S removal employing a regenerable polyalkanolamine adsorbent
US4043770A (en) Absorption-adsorption system for purifying cryogenic gases
JP6889644B2 (en) Oxygen isotope substitution method and oxygen isotope substitution device
WO2021130530A1 (en) Regeneration schemes for a two-stage adsorption process for claus tail gas treatment
JPS6197124A (en) Collection of carbon dioxide
JPH0751442B2 (en) Method for producing high-purity hydrogen
JPH03242302A (en) Production of hydrogen and carbon monoxide
JPH0751441B2 (en) Method for producing high-purity hydrogen
CN201701861U (en) Purge gas treatment device
JPH0463993B2 (en)
JP4724418B2 (en) System unit for removing carbon dioxide from methanol
JP2507296B2 (en) Method for producing hydrogen reforming methanol
JPS58190801A (en) Method for recovering high purity hydrogen from coke oven gas
JP3256811B2 (en) Method for purifying krypton and xenon

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term