JPH075054A - Power detection method and apparatus - Google Patents

Power detection method and apparatus

Info

Publication number
JPH075054A
JPH075054A JP14630993A JP14630993A JPH075054A JP H075054 A JPH075054 A JP H075054A JP 14630993 A JP14630993 A JP 14630993A JP 14630993 A JP14630993 A JP 14630993A JP H075054 A JPH075054 A JP H075054A
Authority
JP
Japan
Prior art keywords
light
optical fiber
amount
optical
prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14630993A
Other languages
Japanese (ja)
Inventor
Toshihiko Sakai
俊彦 酒井
Kazue Hashimoto
和重 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14630993A priority Critical patent/JPH075054A/en
Publication of JPH075054A publication Critical patent/JPH075054A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve a highly accurate detection by a method wherein light from a light source is introduced to an optical fiber on the projection side and emitted light of which optical path is curved through a prism, is condensed to detect a quantity of light and a quantity of light value varying with a holding force, is compared with a reference value. CONSTITUTION:Light from a light source 7 is condensed by a lens 6 and introduced through an optical fiber 1a to reach the tip part thereof. The light enters a prism 3a from the end of the optical fiber 1a at the tip thereof, and projected into the air after being curved by 90 deg.. A part of the light projected becomes the incident light 10 into an optical fiber 1b on the photodetecting side and curved by 90 deg. by a prism 3b to enter the tip part of the optical fiber 1b. When work 5 is gripped and a certain magnitude of force F works between finger parts 4a and 4b, a deviation is caused in a direction between the prisms 3a and 3b fastened on the finger parts 4a and 4b. Only a part alone of the emitted light 9 becomes incident light 10 corresponding to the deviation and enters the optical fiber 1b on the photodetecting side to be detected with a photodetecting sensor 8 as a small quantity of light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被組付け部上の所定の
位置に、部品を搭載し固定する等の場合に、該部品を把
持する際の力検出方法およびその装置に係わり、特に、
一辺が0.5mmから5mm程度までの微小部品に対し
て、把持力を高精度に検出し、かつ制御するのに好適な
力検出方法およびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a force detecting method and apparatus for gripping a component when the component is mounted and fixed at a predetermined position on an assembly part, and more particularly to a device for detecting the force. ,
The present invention relates to a force detection method and apparatus suitable for highly accurately detecting and controlling a gripping force with respect to a minute component whose one side is about 0.5 mm to 5 mm.

【0002】[0002]

【従来の技術】従来、把持機構部における把持反力など
の力検出には、一般に歪ゲージが用いられてきた。他
方、電磁ノイズによる影響などを受けずにより高精度な
力検出を行うものとして、特公平4ー20240号公報
「光ファイバ形センサ」に示されているように、力の作
用を受ける側の光ファイバと、基準信号を発生する光フ
ァイバとの2本の光ファイバにより干渉計を構成し、検
出すべき力の大きさに応じて干渉縞が移動する量を検出
し、それを処理する方式が提案されている。
2. Description of the Related Art Conventionally, a strain gauge has been generally used to detect a force such as a gripping reaction force in a gripping mechanism portion. On the other hand, as described in Japanese Patent Publication No. 4-20240 "Optical fiber type sensor" for performing highly accurate force detection without being affected by electromagnetic noise, light on the side to which force is applied is detected. An interferometer is composed of two optical fibers, which are a fiber and an optical fiber that generates a reference signal. The method of detecting the amount of movement of the interference fringes according to the magnitude of the force to be detected and processing it is a method. Proposed.

【0003】[0003]

【発明が解決しようとする課題】上記従来の歪ゲージに
よる力検出技術は、抵抗線の長さ変化に応じた抵抗値変
化を電気的に検出するものであり、感度の面からある程
度の抵抗線長を必要とするため、小形の検出素子が構成
できないという欠点があった。
The above-mentioned conventional force detection technique using a strain gauge is to electrically detect a change in resistance value in accordance with a change in length of the resistance wire, and the resistance wire has a certain degree of sensitivity. Since it requires a long length, there is a drawback that a small-sized detection element cannot be constructed.

【0004】また、上記従来の光の干渉作用に基づく力
検出技術は、力の作用を受けて伝送状態が変化したファ
イバ内伝搬光を、干渉作用を発生させる位置にまで取り
出すために、力の作用を受ける部位に敷設した光ファイ
バを引き回して戻してくる必要があるが、この際、上記
光ファイバをループ状にする曲率半径が、伝送効率の面
からさほど小さくすることが出来ないという構成上の問
題点を有する。このため、上記の方法と同様に、微細部
位に実装可能な小形検出素子に形成することができない
という問題点を有していた。
Further, in the conventional force detection technique based on the interference action of light, in order to take out the light propagated in the fiber whose transmission state is changed by the action of force to the position where the interference action is generated, It is necessary to pull back the optical fiber laid on the affected portion and return it, but at this time, the radius of curvature for making the optical fiber into a loop cannot be reduced so much in terms of transmission efficiency. Has the problem of. Therefore, similar to the above method, there is a problem in that it cannot be formed into a small-sized detection element that can be mounted on a fine portion.

【0005】本発明は、上記従来技術の問題点に鑑み、
特に、微小部品を把持した際の把持力を、精度よく検出
し、かつ制御することができる力検出方法およびその装
置を提供することを第1の目的とする。
The present invention has been made in view of the above problems of the prior art.
In particular, it is a first object of the present invention to provide a force detection method and device capable of accurately detecting and controlling the gripping force when gripping a minute component.

【0006】そして、本発明の第2の目的は、上記把持
された微小部品に発生している応力を直接検出可能な、
微小部位に実装可能な超小形の力検出素子からなる力検
出装置を提供することにある。
A second object of the present invention is to be able to directly detect the stress occurring in the gripped minute component,
An object of the present invention is to provide a force detection device including an ultra-small force detection element that can be mounted on a minute portion.

【0007】また、本発明の第3の目的は、前記の如く
力検出装置を超小形化した場合でも、微小把持部品に発
生している応力を高感度で検出可能な力検出方法を提供
することにある。
A third object of the present invention is to provide a force detecting method capable of detecting with high sensitivity the stress generated in a minute gripping component even when the force detecting device is made extremely small as described above. Especially.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明の力検出方法は、ワークを把持する一対のフ
ィンガー部に、投光側の光ファイバ,受光側の光ファイ
バ,および該各光ファイバの端部に接着された一対のプ
リズムをそれぞれ相対させて固着実装し、光源から出射
された光を集光して前記投光側の光ファイバに導き、該
光ファイバの先端に達した光を該先端部に接着した前記
プリズムを介して光路を90度曲げて出射し、該出射光
を前記プリズムと相対する前記プリズムを介してさらに
光路を90度曲げて出射して前記受光側の光ファイバに
入射し、該光ファイバの他端より出射された光を集光し
その光量を受光センサに導いて検出し、ワークを把持す
る把持力に応じて前記フィンガー部間の開閉量とともに
変化する前記光量値を、予め記憶された基準の光量値と
制御回路を介して比較処理し、前記ワークを把持する把
持力を検出し、かつ制御可能に構成したものである。
In order to achieve the above object, the force detecting method of the present invention comprises a pair of finger portions for holding a work, an optical fiber on the light emitting side, an optical fiber on the light receiving side, and the respective optical fibers. A pair of prisms adhered to the end of the optical fiber are made to face each other and fixedly mounted, and the light emitted from the light source is collected and guided to the optical fiber on the projecting side, and reaches the tip of the optical fiber. The light is bent by 90 degrees and emitted through the prism bonded to the tip portion, and the emitted light is further bent by 90 degrees through the prism facing the prism and is emitted to the light receiving side. The light that enters the optical fiber and is emitted from the other end of the optical fiber is collected, and the amount of light is guided to a light receiving sensor to be detected, and changes with the opening and closing amount between the finger parts according to the gripping force for gripping the workpiece. The light intensity value to be , In which comparison processing through the light quantity value and the control circuit of the pre-stored reference, it detects a gripping force for gripping the workpiece, and was capable of controlling.

【0009】そして、前記受光センサにて検出される光
量を、前記相対する光ファイバ間の光軸のずれに伴い減
少する入射光の光量にするとよい。
Then, the amount of light detected by the light receiving sensor may be set to be the amount of incident light which decreases with the shift of the optical axis between the optical fibers facing each other.

【0010】一方、本発明の力検出装置は、先端部にワ
ークを把持可能に開閉可能な一対のフィンガー部と、該
フィンガー部の両側部に固着実装された相対する投光側
および受光側の各光ファイバと、光源から出射された光
を集光して前記投光側の光ファイバに導く光学系と、前
記投光側の光ファイバの先端に接着され該先端に達した
光の光路を90度曲げて出射するプリズムと、該プリズ
ムからの出射光をさらに光路を90度曲げて前記受光側
の光ファイバに入射する前記プリズムと一対のプリズム
と、前記受光側の光ファイバの他端より出射された光を
集光する光学系を介して、ワークを把持する把持力に応
じて前記フィンガー部間の開閉量とともに変化する光量
を検出する受光センサとから構成される力検出素子と、
前記フィンガー部間を所定の開閉量に制御可能に開閉さ
せるアクチュエータと、前記受光センサの検出光量と該
アクチュエータによる前記フィンガー部間の開閉量に対
応する基準の光量とを比較処理する制御回路と、を備え
る構成にしたものである。
On the other hand, the force detecting device of the present invention has a pair of finger portions which can open and close so as to grasp the work at the tip portion, and the light emitting side and the light receiving side which are fixedly mounted on both sides of the finger portions. Each optical fiber, an optical system that collects the light emitted from the light source and guides the light to the optical fiber on the light projecting side, and an optical path of the light that reaches the end of the optical fiber on the light projecting side is adhered to the optical fiber. A prism that bends 90 degrees and emits light, a pair of prisms and a prism that makes the light path of the prism further bend the optical path by 90 degrees and enters the optical fiber on the light receiving side, and the other end of the optical fiber on the light receiving side. Through an optical system that collects the emitted light, a force detection element including a light receiving sensor that detects the amount of light that changes with the opening / closing amount between the finger portions according to the gripping force that grips the work,
An actuator that opens and closes the finger portions so as to be controllable to a predetermined opening and closing amount, and a control circuit that compares the detected light amount of the light receiving sensor and a reference light amount corresponding to the opening and closing amount between the finger portions by the actuator, It is configured to include.

【0011】そして、前記フィンガー部を、先端部の一
対のアーム部と、該アーム部に一体的に連設された二又
状のベースとからなる構成とし、該ベースの二又状のつ
け根部に、該ベースとともに前記アーム部の開閉を容易
にする切欠きを設ける構成にするとよい。
Further, the finger portion is constituted by a pair of arm portions at a tip portion and a bifurcated base integrally connected to the arm portions, and a bifurcated root portion of the base. In addition, it is preferable to provide a notch that facilitates opening and closing of the arm portion together with the base.

【0012】また、前記プリズムを、ミラーとし、該ミ
ラーを設けた前記各光ファイバが、互いの光軸を一致さ
せて相対配置される構成にするとよい。
The prism may be a mirror, and the optical fibers provided with the mirror may be arranged relative to each other with their optical axes aligned.

【0013】また、前記アクチュエータを、ピエゾ素子
にすることが望ましい。
Further, it is desirable that the actuator is a piezo element.

【0014】さらに、前記力検出素子およびアクチュエ
ータを、ハンドベースに装着して把持力制御形の微小ハ
ンドを形成するとよい。
Further, the force detecting element and the actuator may be mounted on a hand base to form a gripping force control type micro hand.

【0015】[0015]

【作用】上記構成としたことにより、光ファイバ内を伝
搬している光は、常に一定の光量を保っており、光ファ
イバおよびこれに接着されたプリズムから出射されて、
例えば、空気中に伝搬された光は、直進の法則に従って
相対するプリズムおよび光ファイバへと向かう。このと
きの相対する光ファイバへの入射結合効率は、相対する
光送受部位間の微小変形量に応じて変化して行く。この
ため、ワークを把持した場合における入射させられた光
の量を受光センサにより光量として検出し、予め検出さ
れているワークを把持していない全く変形が無い場合か
らワークを把持して所定の変形量が発生している場合ま
での基準の光量と比較処理することにより、前記光送受
部の微小変形量が精度よく検出され、同時に変形量の制
御が可能となる。該光送受部位間の微小変形量と該部の
応力値とは相関関係(通常は正の相関関係)があるの
で、予めこの関係を求めておくことにより、任意の検出
光量時における応力値より、ワークの把持力を精度良く
検出し、かつ制御することが可能となる。
With the above structure, the light propagating in the optical fiber always maintains a constant amount of light, and is emitted from the optical fiber and the prism adhered thereto,
For example, the light propagated in the air goes to the prism and the optical fiber which face each other according to the law of straight traveling. The incidence coupling efficiency to the opposing optical fiber at this time changes according to the minute deformation amount between the opposing light transmitting and receiving parts. Therefore, the amount of incident light when a work is gripped is detected by the light receiving sensor as the amount of light, and if there is no deformation detected in advance that the work is not gripped, the work is gripped and the predetermined deformation is performed. By performing comparison processing with the reference light amount up to when the amount is generated, the minute deformation amount of the light transmitting / receiving unit can be accurately detected, and at the same time, the deformation amount can be controlled. Since there is a correlation (usually a positive correlation) between the minute deformation amount between the light transmitting and receiving parts and the stress value of the part, it is possible to obtain this relationship from the stress value at any detected light amount by obtaining this relationship in advance. It is possible to accurately detect and control the gripping force of the work.

【0016】また、把持力検出装置は、光ファイバをは
じめ、いずれも微小寸法からなる各構成により形成可能
になるため、該装置全体を微小寸法に形成することが可
能になる。そして、フィンガー部に作用する変形量に対
応した応力の検出が、光の伝送効率による検出原理を用
いているため、電磁ノイズによるS/N比の低下なども
防止して、高精度かつ高感度の応力検出を可能にする。
Further, since the gripping force detecting device can be formed by each structure having a minute size including the optical fiber, the entire device can be formed in a minute size. The detection of the stress corresponding to the amount of deformation acting on the finger portion uses the detection principle based on the light transmission efficiency, so that it is possible to prevent the S / N ratio from being lowered due to electromagnetic noise and to achieve high precision and high sensitivity. Enables the stress detection of.

【0017】[0017]

【実施例】以下、本発明の1実施例を図1ないし図5を
参照して説明する。図1は本発明の力検出方法の原理説
明図、図2は図1のA部拡大斜視図、図3は受光光量の
変化を模式的に示す図、図4は本発明の力検出装置の具
体例で、把持力制御形の微小ハンドの斜視図、図5は図
4の制御回路の構成を示すブロック図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is an explanatory view of the principle of the force detecting method of the present invention, FIG. 2 is an enlarged perspective view of an A portion of FIG. 1, FIG. 3 is a diagram schematically showing a change in the amount of received light, and FIG. 4 is a force detecting device of the present invention. As a specific example, a perspective view of a gripping force control type micro hand, and FIG. 5 is a block diagram showing the configuration of the control circuit of FIG.

【0018】図1において、1aは投光側の光ファイ
バ、1bは光ファイバ1aと相対配置されている受光側
の光ファイバ、2a,2bは光ファイバ1a,1bを保
護し、かつ保持する部材(窓)で、テフロンチューブや
ステンレス材のパイプ等が用いられる。3a,3bは一
対の相対しているプリズムで、光ファイバ1a,1bの
一端(先端)側に配置されている。4a,4bは部品把
持用の一対のフィンガー部で、フィンガー部4a,4b
にはその両側部に沿って光ファイバ1a,1b,窓2
a,2b,プリズム3a,3bが、図2に示すように接
着剤(もしくはハンダ)11を介してそれぞれ固着実装
されている。5はフィンガー部4a,4bの先端部に把
持される対象部品(以下、ワークという)、6は光ファ
イバ1a,1bの他端側に配置されたレンズ、7は光
源、8は受光センサ、点線で示す9は出射光、10はプ
リズム3a,3b間の斜線で示す部分で、出射光9のう
ちの結合部分であり、ここでは入射光とよぶ。上記した
各構成により力検出素子を形成している。
In FIG. 1, 1a is an optical fiber on the light-projecting side, 1b is an optical fiber on the light-receiving side which is arranged relative to the optical fiber 1a, and 2a and 2b are members for protecting and holding the optical fibers 1a and 1b. In the (window), a Teflon tube or a stainless steel pipe is used. Reference numerals 3a and 3b are a pair of prisms facing each other, and are arranged on one end (tip) side of the optical fibers 1a and 1b. Reference numerals 4a and 4b denote a pair of finger portions for gripping the components, and the finger portions 4a and 4b.
The optical fibers 1a and 1b and the window 2 along both sides thereof.
As shown in FIG. 2, a and 2b and prisms 3a and 3b are fixedly mounted via an adhesive (or solder) 11 respectively. Reference numeral 5 is a target component (hereinafter, referred to as a work) to be gripped by the tips of the finger portions 4a and 4b, 6 is a lens arranged on the other end side of the optical fibers 1a and 1b, 7 is a light source, 8 is a light receiving sensor, and a dotted line. Indicated by 9 is outgoing light, and 10 is a hatched portion between the prisms 3a and 3b, which is a combined portion of the outgoing light 9, and is referred to as incident light here. A force detection element is formed by each of the above configurations.

【0019】なお、図1(a)は、ワーク5を把持する
直前、即ち把持力F=0の状態を示す図、図1(b)
は、把持力F(>0)で把持している状態を示す図であ
る。
FIG. 1 (a) is a diagram showing a state immediately before gripping the work 5, that is, a state where the gripping force F = 0, FIG. 1 (b).
[Fig. 4] is a diagram showing a state of gripping with a gripping force F (> 0).

【0020】つぎに、図1に従って動作原理を説明す
る。光源7からでた光は、レンズ6により集光されて光
ファイバ1a内に導き入れられる。この光は周知の光フ
ァイバの原理に従って芯線内を全反射しながら先端部に
到達する。到達した光は先端部で光ファイバ1a端から
プリズム3aへと入射し、プリズム3aによりその光路
が90°曲げられた後、空気中へ投光される。投光され
た光は一部が受光側の光ファイバ1bへの入射光10と
なってプリズム3bにより光路が90°曲げられ、受光
側の光ファイバ1bの先端部に入射する。該入射した光
は光ファイバ1b内で前記と同様に芯線内を全反射しな
がら他端側に到達し、光ファイバ1b端より出射してレ
ンズ6で集光され、受光センサ8により光量として検出
される。
Next, the operation principle will be described with reference to FIG. The light emitted from the light source 7 is condensed by the lens 6 and guided into the optical fiber 1a. This light reaches the tip portion while totally reflecting inside the core wire according to the well-known principle of an optical fiber. The arriving light is incident on the prism 3a from the end of the optical fiber 1a at the tip, the optical path is bent 90 ° by the prism 3a, and then the light is projected into the air. A part of the projected light becomes incident light 10 on the optical fiber 1b on the light receiving side, and the prism 3b bends the optical path by 90 ° and enters the tip end of the optical fiber 1b on the light receiving side. The incident light reaches the other end while totally reflecting the inside of the core wire in the optical fiber 1b in the same manner as described above, is emitted from the end of the optical fiber 1b, is condensed by the lens 6, and is detected as a light quantity by the light receiving sensor 8. To be done.

【0021】ここで、図1(a)に示すように把持力F
が作用していない場合、フィンガー部4a,4bには変
形がなく、従って投光側の光ファイバ1aと受光側の光
ファイバ1bとの間の光学的結合は最も強く、出射光9
のうちのほとんどの光量が入射光10となって受光側の
光ファイバ1bへ入射される。一方、図1(b)に示す
ように、ワーク5を把持してフィンガー部4a,4b間
にある大きさの把持力Fが作用している場合は、作用し
ている把持力Fに応じてフィンガー部4a,4bが変形
し、該変形量に応じてフィンガー部4a,4bに固着さ
れているプリズム3a,3b間の方向にずれが発生す
る。このため光学的結合は前記ずれに応じて弱くなり、
出射光9のうちの一部分のみが入射光10となって受光
側の光ファイバ1bへ入射し、レンズ6を介して受光セ
ンサ8に小さな光量として検出される。なお、出射光9
および入射光10は平行光束であることが好ましく、そ
のため、各光を収束するコリメートレンズを使用するこ
とが望ましい。
Here, as shown in FIG. 1A, the gripping force F
Is not acting, the finger portions 4a and 4b are not deformed, so that the optical coupling between the optical fiber 1a on the light projecting side and the optical fiber 1b on the light receiving side is the strongest, and the outgoing light 9
Almost all of the light amount becomes incident light 10 and is incident on the optical fiber 1b on the light receiving side. On the other hand, as shown in FIG. 1B, when the work 5 is gripped and a gripping force F having a certain amount between the finger portions 4a and 4b is applied, the gripping force F is applied according to the applied gripping force F. The finger portions 4a and 4b are deformed, and a displacement occurs in the direction between the prisms 3a and 3b fixed to the finger portions 4a and 4b according to the deformation amount. Therefore, the optical coupling becomes weaker according to the deviation,
Only part of the emitted light 9 becomes incident light 10 and enters the light receiving side optical fiber 1b, and is detected as a small amount of light by the light receiving sensor 8 via the lens 6. The emitted light 9
The incident light 10 and the incident light 10 are preferably parallel light fluxes, and therefore, it is desirable to use a collimating lens that converges each light.

【0022】前記受光センサ8に検出される光量の変化
を、図3により説明する。ここで、図の横軸は、投光側
の光ファイバ1bの光軸を含む任意の面内で、光軸に垂
直方向に取った空間的距離を表わし、縦軸は該空間的距
離の各位置における出射光9の光強度を表わす。図3
(a)は、ワーク5を把持する直前、即ち把持力F=0
の状態を示す図、図3(b)は、把持力F(>0)で把
持している状態を示す図である。なお、ここでは、光フ
ァイバ1bから出射する光の空間的強度分布は、ほぼガ
ウス分布と仮定して述べるが、特にこの分布形式に限ら
れるものでは無い。図3(a)に示すように、前記フィ
ンガー部4a,4bの変形がなく光ファイバ1a,1b
間に光軸のずれがない状態では、出射光9のうち例えば
図に斜線で示す範囲の光が入射光10となり高い検出光
量が得られる。一方、図3(b)に示すように、前記フ
ィンガー部4a,4bが変形して両者間に光軸のずれが
発生すると、出射光9のうち入射光10となる部分は図
示するように中心がずれ、その結果低い検出光量しか得
られなくなる。この光量低下の割合は、前記フィンガー
部4a,4bの変形量との間で一意的な対応があるの
で、予めその関係、および前記フィンガー部4a,4b
の変形量と該変形量に対応してフィンガー部4a,4b
に発生する応力値との関係を求め、そして較正しておく
ことにより任意の検出光量時における応力値を求めるこ
とが可能になる。
The change in the amount of light detected by the light receiving sensor 8 will be described with reference to FIG. Here, the horizontal axis of the figure represents a spatial distance taken in a direction perpendicular to the optical axis in an arbitrary plane including the optical axis of the optical fiber 1b on the light projecting side, and the vertical axis represents each of the spatial distances. The light intensity of the emitted light 9 at the position is shown. Figure 3
(A) shows immediately before gripping the work 5, that is, the gripping force F = 0.
FIG. 3B is a diagram showing a state of gripping with a gripping force F (> 0). Although the spatial intensity distribution of the light emitted from the optical fiber 1b is assumed to be a Gaussian distribution here, the distribution form is not particularly limited to this. As shown in FIG. 3 (a), the finger portions 4a, 4b are not deformed and the optical fibers 1a, 1b are not deformed.
In the state where there is no deviation of the optical axis between them, for example, the light in the range shown by the diagonal lines in the drawing becomes the incident light 10 and a high detected light amount is obtained. On the other hand, as shown in FIG. 3 (b), when the finger portions 4a and 4b are deformed and the optical axes are displaced from each other, the portion of the emitted light 9 which becomes the incident light 10 is centered as shown in the figure. Deviation, and as a result, only a small amount of detected light can be obtained. Since the ratio of the decrease in the light amount has a unique correspondence with the deformation amount of the finger portions 4a and 4b, the relationship and the finger portions 4a and 4b are previously set.
Deformation amount of the fingers and the finger portions 4a, 4b corresponding to the deformation amount
It is possible to obtain the stress value at an arbitrary amount of detected light by obtaining the relationship with the stress value generated in the above and calibrating it.

【0023】上記図1に示す力検出素子は、いずれも微
小寸法からなる各構成により形成されている。このた
め、該力検出素子全体を微小寸法に形成することが可能
になる。そして、フィンガー部に作用する変形量に対応
した応力の検出が、光の伝送効率による検出原理を用い
ているため、電磁ノイズによるS/N比の低下なども防
止して、高精度かつ高感度の応力検出を可能にするとい
う効果がある。
Each of the force detecting elements shown in FIG. 1 is formed by each structure having a minute size. Therefore, it becomes possible to form the force detection element as a whole in a minute dimension. The detection of the stress corresponding to the amount of deformation acting on the finger portion uses the detection principle based on the light transmission efficiency, so that it is possible to prevent the S / N ratio from being lowered due to electromagnetic noise and to achieve high precision and high sensitivity. This has the effect of enabling the stress detection of.

【0024】次に、図4において、12は光ファイバ1
a,1bとレンズ6を介して光源7又は受光センサ8と
を光学的に結合するための光結合器、13はフィンガー
部4a,4bと一体的に連設された二又状のベースで、
ベース13の二又状のつけ根部には、ベース13ととも
にフィンガー部4a,4bの先端部に設けられた一対の
アーム部の開閉(変形)を容易に可能にするための切欠
き13aが設けられている。14はベース13を開閉さ
せるためのアクチュエータであるピエゾ素子、15はハ
ンドベースである。図中、図1と同符号のものは同じも
のを示しており、上記各構成により把持力制御形の微小
ハンドを形成している。ここで、光ファイバ1a,1b
はその径が約1mm、プリズム3a,3bの寸法は約1
mm角と小さく、また、同図に示すように光ファイバ1
a,1bは、ループ状にすることなくベース13および
フィンガー部4a,4bに搭載されるため、光ファイバ
1a,1bおよびプリズム3a,3b等は、一辺が1m
m程度の微小な角断面を有するフィンガー部であっても
搭載が可能である。
Next, in FIG. 4, 12 is an optical fiber 1.
a, 1b is an optical coupler for optically coupling the light source 7 or the light receiving sensor 8 via the lens 6, and 13 is a bifurcated base integrally formed with the finger portions 4a, 4b.
A notch 13a is provided at the bifurcated root of the base 13 so as to easily open and close (deform) a pair of arms provided at the tips of the fingers 4a and 4b together with the base 13. ing. Reference numeral 14 is a piezo element which is an actuator for opening and closing the base 13, and 15 is a hand base. In the figure, those having the same reference numerals as those in FIG. 1 indicate the same things, and the gripping force control type micro hand is formed by the above respective configurations. Here, the optical fibers 1a and 1b
Has a diameter of about 1 mm, and the prisms 3a and 3b have a size of about 1
As small as mm square, and as shown in the figure, the optical fiber 1
Since a and 1b are mounted on the base 13 and the finger portions 4a and 4b without forming a loop, the optical fibers 1a and 1b and the prisms 3a and 3b, etc., have a side of 1 m.
Even a finger portion having a minute angular cross section of about m can be mounted.

【0025】つぎに、図4に示す微小ハンドの作用につ
いて説明する。フィンガー部4a,4b間にワーク5を
把持する前の状態では、ピエゾ素子14は最も伸長した
状態にあり、切欠き13aの作用によりフィンガー部4
a,4b間の開閉量は最大量に制御されている。微小ハ
ンドは図示しない公知の手段によりワーク5を把持可能
な位置に移動され、把持動作に移る。把持動作が開始さ
れると同時に、ピエゾ素子14に対する印加電圧が変化
させられ、ピエゾ素子14の長さが予めプログラムされ
たスピードで短縮させられる。そして同時に、切欠き1
3aの作用によりフィンガー部4a,4b間の開閉量も
減少して行く。この開閉量の減少に応じて、投光側およ
び受光側の両光ファイバ1a,1b間の距離が短縮する
ため、該両者間の光の結合効率が上昇し、受光センサ8
により検出している光量は次第に増加して行く。
Next, the operation of the minute hand shown in FIG. 4 will be described. In the state before the work 5 is gripped between the finger portions 4a and 4b, the piezo element 14 is in the most extended state, and the action of the notch 13a causes the finger portion 4 to move.
The opening / closing amount between a and 4b is controlled to the maximum amount. The minute hand is moved to a position where the work 5 can be gripped by a known means (not shown), and the gripping operation is started. Simultaneously with the start of the gripping operation, the applied voltage to the piezo element 14 is changed, and the length of the piezo element 14 is shortened at a preprogrammed speed. And at the same time, notch 1
Due to the action of 3a, the opening / closing amount between the finger portions 4a and 4b also decreases. In accordance with the decrease in the opening / closing amount, the distance between the optical fibers 1a and 1b on the light projecting side and the light receiving side is shortened, so that the light coupling efficiency between the two is increased and the light receiving sensor 8
The amount of light detected by is gradually increasing.

【0026】上記状態からワーク5を把持してフィンガ
ー部4a,4bが変形を始めると、前記図1にて説明し
た原理に従って相対するプリズム3a,3b間の角度が
変化し、該プリズム3a,3bに接続されているい投光
側および受光側の光ファイバ1a,1b間に光軸のずれ
が発生する。このため光の結合効率が減少し、受光セン
サ8が検出する光量が、ピエゾ素子14の制御信号から
予定される光量値と比較して低い値になる。この予定値
と実際値との間の比較を制御回路を介して行うことによ
り、フィンガー部4a,4bの変形量が検出でき、それ
をもとにフィンガー部4a,4bが受けている応力値を
検出することができる。
When the work 5 is gripped from the above state and the finger portions 4a and 4b start to be deformed, the angle between the prisms 3a and 3b facing each other changes according to the principle explained in FIG. 1, and the prisms 3a and 3b change. There is a deviation of the optical axis between the optical fibers 1a and 1b on the light emitting side and the light receiving side which are connected to each other. Therefore, the light coupling efficiency decreases, and the light amount detected by the light receiving sensor 8 becomes a lower value than the light amount value expected from the control signal of the piezo element 14. By comparing the expected value and the actual value via the control circuit, the deformation amount of the finger portions 4a, 4b can be detected, and the stress value received by the finger portions 4a, 4b can be detected based on the deformation amount. Can be detected.

【0027】図5に示す制御回路により上記処理を自動
的に行わせることができる。ここで10は検出信号であ
る入射光、16は光量比較回路、17はピエゾ電圧−開
閉量変換回路、18は開閉量−光量変換回路である。
又、Vpzは図示しない制御装置がピエゾ素子に出力して
いる電圧、Wはフィンガー部の開閉量、Ir は検出され
た光量信号、Ir0 (Ir´)はフィンガー部の開閉量から
予想される光量信号であり、把持力Fがない場合の光量
という意味での無負荷光量、F´は制御回路により求め
られた応力値で、把持力検出信号として出力される。ピ
エゾ電圧−開閉量変換回路17では、ピエゾ電圧Vpzよ
りフィンガー部の開閉量を求める。開閉量−光量変換回
路18では、開閉量により定まる光量を、無負荷光量I
r0として出力する。一方、受光センサ8からは実際の把
持力の情報を含んだ光量信号Ir が得られる。無負荷光
量Ir0と光量信号Ir とは光量比較回路16に入力さ
れ、その内部では予め求められている光量比−応力変換
テーブルに従って、入力された光量比Ir0/Ir から応
力値F´が求められ出力される。
The above processing can be automatically performed by the control circuit shown in FIG. Here, 10 is incident light which is a detection signal, 16 is a light quantity comparison circuit, 17 is a piezo voltage-opening / closing quantity conversion circuit, and 18 is an opening / closing quantity-light quantity conversion circuit.
Further, Vpz is a voltage output to the piezo element by a control device (not shown), W is the opening / closing amount of the finger portion, Ir is the detected light amount signal, and Ir 0 (Ir ′) is expected from the opening / closing amount of the finger portion. The light amount signal is a no-load light amount in the sense of the light amount when the gripping force F is absent, and F ′ is a stress value obtained by the control circuit and is output as a gripping force detection signal. The piezo voltage-open / closed amount conversion circuit 17 obtains the open / closed amount of the finger portion from the piezo voltage Vpz. In the opening / closing amount-light amount conversion circuit 18, the light amount determined by the opening / closing amount is calculated as the no-load light amount I.
Output as r 0 . On the other hand, from the light receiving sensor 8, a light amount signal Ir containing information on the actual gripping force is obtained. The no-load light quantity Ir 0 and the light quantity signal Ir are input to the light quantity comparison circuit 16, and the stress value F ′ is calculated from the inputted light quantity ratio Ir 0 / Ir according to the light quantity ratio-stress conversion table previously obtained. It is requested and output.

【0028】以上の方法で求められた応力値F´の値と
望ましい応力値Fref とを基にして、制御装置(図示せ
ず)によりピエゾ素子に印加する電圧を常時修正し、ハ
ンドによるワークへの把持力が望ましい値に制御され
る。この修正動作のアルゴリズムとしては公知の制御
則、たとえば比例制御動作 Vpz = Kp ・ ( Fref ー F´ ) などを適用することもできるが、他の種々の方式を用い
ても良い。
Based on the value of the stress value F'determined by the above method and the desired stress value Fref, the voltage applied to the piezo element is constantly corrected by the controller (not shown), and the workpiece is moved by the hand. The gripping force is controlled to a desired value. A known control law, for example, a proportional control operation Vpz = Kp. (Fref-F ') can be applied as an algorithm for this correction operation, but various other methods may be used.

【0029】以上述べたように本実施例によれば、フィ
ンガー部におけるワークに及ぼす把持力を制御すること
が可能となるため、把持する対象が柔軟性物や脆弱物の
ように微妙な把持力を要求されるものでもハンドリング
が実現でき、自由な組立動作が可能になるという効果が
ある。
As described above, according to the present embodiment, it is possible to control the gripping force exerted on the work at the finger portion, so that the object to be gripped is a delicate gripping force such as a flexible or fragile object. It is possible to realize the handling even in the case of being required, and it is possible to freely perform the assembling operation.

【0030】図6は本発明の組立対象品の一例で、磁気
ディスクの信号読み取り部である磁気ヘッドを示す。こ
こで、21はコアスライダ、22はコアスライダ21の
姿勢を自動修正するためのバネ機能を持つジンバル、2
3はロードアーム、24は配線パターン、25はロード
アーム23に付けられたリフト角、26は折り曲げ部、
27は基材への取付け部、28は端子である。これらの
各部品はますます微小化しており、なかでもコアスライ
ダ21の組立ては、コアスライダ21を把持した際にそ
の表面に傷を付けやすいことや、バネ状のジンバル22
上への姿勢を決めにくいこと等から、従来から時間のか
かる困難な作業の一つであったが、前記図4に示した微
小ハンドを使用することにより容易に組立てを行うこと
ができる。すなわち、前述した方法により把持力を検出
しながらコアスライダ21をフィンガー部にて両側から
挾んで持ち上げ、図示しない移動機構によりジンバル2
2上まで移動した後、バネ状になっているため姿勢が決
めにくいジンバル22上へと接着固定する。このため、
表面に傷を付けることなく、安定した把持により高い精
度で組立てることが可能になる。
FIG. 6 shows an example of a product to be assembled according to the present invention, showing a magnetic head which is a signal reading portion of a magnetic disk. Here, 21 is a core slider, 22 is a gimbal having a spring function for automatically correcting the posture of the core slider 21, 2
3 is a load arm, 24 is a wiring pattern, 25 is a lift angle attached to the load arm 23, 26 is a bent portion,
Reference numeral 27 is a mounting portion to the base material, and 28 is a terminal. These parts are becoming smaller and smaller. Among them, when assembling the core slider 21, it is easy to scratch the surface of the core slider 21 when it is gripped, and the spring-shaped gimbal 22 is used.
Since it is difficult to determine the upward posture, it has been one of the difficult and time-consuming operations in the past. However, the micro hand shown in FIG. 4 can be used for easy assembly. That is, while detecting the gripping force by the above-described method, the core slider 21 is sandwiched and lifted from both sides by the finger portions, and the gimbal 2 is moved by the moving mechanism (not shown).
After moving to the upper position, it is bonded and fixed onto the gimbal 22 whose posture is difficult to determine because it has a spring shape. For this reason,
It is possible to assemble with high accuracy by stable gripping without scratching the surface.

【0031】図7は、前記図4に示す微小ハンドを装着
して図6に示す磁気ヘッドの組立作業を行う自動組立機
の例を示す図である。図において、コアスライダ供給部
35からコアスライダ21を把持し、Xステージ29、
Yステージ30、Zステージ31を動作させて、接着材
塗布部39にてコアスライダ21下面に接着材を塗布し
た後、コアスライダ21を姿勢出しステージ36上に位
置決めされたロードアーム23上まで運び、視覚装置4
0により位置の修正量を算出した後、θステージ32、
XY微動ステージ33により位置修正を行ない、ジンバ
ル22上に接着する。この間微小ハンドは、本発明によ
る力検出原理及び力制御方法によってコアスライダ21
に加わる力を一定に保つように動作するため、組立作業
全般に渡ってコアスライダ21には無理な力が掛らず、
製品の品質を高く保つことが容易になる。このように本
自動組立機によっても、コアスライダ21のような1m
m程度の微細でしかも脆弱な部品であっても、ダメージ
を与えることなく品質の高い組立が実現できるという効
果がある。
FIG. 7 is a diagram showing an example of an automatic assembling machine for mounting the minute hand shown in FIG. 4 and assembling the magnetic head shown in FIG. In the figure, the core slider 21 is gripped from the core slider supply unit 35, and the X stage 29,
The Y stage 30 and the Z stage 31 are operated to apply the adhesive on the lower surface of the core slider 21 by the adhesive application section 39, and then the core slider 21 is carried to the position on the load arm 23 positioned on the stage 36. , Visual device 4
After calculating the position correction amount from 0, the θ stage 32,
The position is corrected by the XY fine movement stage 33 and it is bonded onto the gimbal 22. During this time, the minute hand moves the core slider 21 by the force detection principle and the force control method according to the present invention.
Since it operates so as to keep the force applied to the core constant, an unreasonable force is not applied to the core slider 21 throughout the assembly work,
It is easy to keep the product quality high. In this way, even with this automatic assembly machine, 1 m
Even a fine and fragile part of about m can be assembled with high quality without damage.

【0032】[0032]

【発明の効果】以上説明したように本発明によれば、超
小形の力検出素子及びその素子を使用した微小ハンドを
実現でき、微小部品を把持した際の該微小ハンドのフィ
ンガー部に作用する把持力を検出し、かつ制御すること
が可能になる。そして、この検出は、光の伝送効率によ
る検出原理を用いているため、電磁ノイズによるS/N
比の低下を防止して、高精度かつ高感度に行われる効果
を奏する。
As described above, according to the present invention, it is possible to realize an ultra-small force detecting element and a minute hand using the element, which acts on the finger portion of the minute hand when holding a minute component. It becomes possible to detect and control the gripping force. Since this detection uses the detection principle based on the transmission efficiency of light, S / N due to electromagnetic noise is detected.
It is possible to prevent a decrease in the ratio and achieve an effect of being performed with high accuracy and high sensitivity.

【0033】また、本発明によれば、ワークに及ぼす把
持力が制御可能であるため、柔軟性物や脆弱物のハンド
リングが実現でき、自由な組立動作が可能となるという
効果を奏する。
Further, according to the present invention, since the gripping force exerted on the work can be controlled, it is possible to realize the handling of a flexible object or a fragile object, and it is possible to freely perform an assembling operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の力検出方法の原理説明図である。FIG. 1 is a diagram illustrating the principle of a force detection method of the present invention.

【図2】図1のA部拡大斜視図である。FIG. 2 is an enlarged perspective view of a portion A of FIG.

【図3】受光光量の変化を模式的に示す図である。FIG. 3 is a diagram schematically showing changes in the amount of received light.

【図4】本発明の力検出装置の具体例で、把持力制御形
の微小ハンドの斜視図である。
FIG. 4 is a perspective view of a gripping force control type micro hand, which is a specific example of the force detection device of the present invention.

【図5】図4に示す微小ハンドの制御回路の構成を示す
ブロック図である。
5 is a block diagram showing a configuration of a control circuit of the minute hand shown in FIG.

【図6】本発明の組立対象品の一例を示す図である。FIG. 6 is a diagram showing an example of an assembly target product of the present invention.

【図7】図4に示す微小ハンドを自動組立機に装着した
例を示す図である。
7 is a diagram showing an example in which the micro hand shown in FIG. 4 is mounted on an automatic assembly machine.

【符号の説明】[Explanation of symbols]

1a…投光側の光ファイバ、1b…受光側の光ファイ
バ、2a,2b…部材(窓)、3a,3b…プリズム、
4a,4b…フィンガー部、5…ワーク(対象部品)、
6…レンズ、7…光源、8…受光センサ、9…出射光、
10…入射光、11…接着剤(もしくはハンダ)、12
…光結合器、13…ベース、14…ピエゾ素子、15…
ハンドベース、16…光量比較回路、21…コアスライ
ダ。
1a ... Optical fiber on projecting side, 1b ... Optical fiber on receiving side, 2a, 2b ... Member (window), 3a, 3b ... Prism,
4a, 4b ... finger parts, 5 ... work (target part),
6 ... Lens, 7 ... Light source, 8 ... Light receiving sensor, 9 ... Emitted light,
10 ... Incident light, 11 ... Adhesive (or solder), 12
... Optical coupler, 13 ... Base, 14 ... Piezo element, 15 ...
Hand base, 16 ... Light quantity comparison circuit, 21 ... Core slider.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ワークを把持する一対のフィンガー部
に、投光側の光ファイバ,受光側の光ファイバ,および
該各光ファイバの端部に接着された一対のプリズムをそ
れぞれ相対させて固着実装し、光源から出射された光を
集光して前記投光側の光ファイバに導き、該光ファイバ
の先端に達した光を該先端部に接着した前記プリズムを
介して光路を90度曲げて出射し、該出射光を前記プリ
ズムと相対する前記プリズムを介してさらに光路を90
度曲げて出射して前記受光側の光ファイバに入射し、該
光ファイバの他端より出射された光を集光しその光量を
受光センサに導いて検出し、ワークを把持する把持力に
応じて前記フィンガー部間の開閉量とともに変化する前
記光量値を、予め記憶された基準の光量値と制御回路を
介して比較処理し、前記ワークを把持する把持力を検出
し、かつ制御可能にしたことを特徴とする力検出方法。
1. An optical fiber on the light emitting side, an optical fiber on the light receiving side, and a pair of prisms adhered to the ends of the respective optical fibers are made to face each other and fixedly mounted on a pair of finger portions for holding a work. Then, the light emitted from the light source is condensed and guided to the optical fiber on the light projecting side, and the light reaching the tip of the optical fiber is bent 90 degrees through the prism bonded to the tip. The light is emitted and the optical path is further moved through the prism facing the prism.
The light emitted from the other end of the optical fiber is condensed and guided to the light receiving sensor to detect the amount of light, which is determined by the gripping force for gripping the workpiece. The light amount value that changes with the opening / closing amount between the finger portions is compared with a reference light amount value stored in advance through a control circuit, and the gripping force for gripping the work is detected and made controllable. A force detection method characterized by the above.
【請求項2】 前記受光センサにて検出される光量が、
前記相対する光ファイバ間の光軸のずれに伴い減少する
入射光の光量である請求項1記載の力検出方法。
2. The amount of light detected by the light receiving sensor is
The force detecting method according to claim 1, wherein the amount of incident light decreases with a shift in optical axis between the optical fibers facing each other.
【請求項3】 先端部にワークを把持可能に開閉可能な
一対のフィンガー部と、該フィンガー部の両側部に固着
実装された相対する投光側および受光側の各光ファイバ
と、光源から出射された光を集光して前記投光側の光フ
ァイバに導く光学系と、前記投光側の光ファイバの先端
に接着され該先端に達した光の光路を90度曲げて出射
するプリズムと、該プリズムからの出射光をさらに光路
を90度曲げて前記受光側の光ファイバに入射する前記
プリズムと一対のプリズムと、前記受光側の光ファイバ
の他端より出射された光を集光する光学系を介して、ワ
ークを把持する把持力に応じて前記フィンガー部間の開
閉量とともに変化する光量を検出する受光センサとから
構成される力検出素子と、前記フィンガー部間を所定の
開閉量に制御可能に開閉させるアクチュエータと、前記
受光センサの検出光量と該アクチュエータによる前記フ
ィンガー部間の開閉量に対応する基準の光量とを比較処
理する制御回路と、を備えたことを特徴とする力検出装
置。
3. A pair of finger portions which can open and close a work so as to be able to hold a work at the tip portion, optical fibers on the light emitting side and the light receiving side, which are fixedly mounted on both side portions of the finger portions, and emitted from a light source. An optical system that collects the reflected light and guides it to the optical fiber on the projecting side; and a prism that is adhered to the tip of the optical fiber on the projecting side and bends the optical path of the light reaching the tip by 90 degrees and emits it. , The light emitted from the prism is converged by the prism and a pair of prisms which enter the optical fiber on the light receiving side by bending the optical path further by 90 degrees and the other end of the optical fiber on the light receiving side. Through the optical system, a force detection element composed of a light receiving sensor that detects the amount of light that changes with the opening / closing amount between the finger portions according to the gripping force for holding the work, and the predetermined opening / closing amount between the finger portions. Controllable to A force detection device comprising: an actuator that opens and closes; and a control circuit that performs a comparison process of the amount of light detected by the light receiving sensor and a reference amount of light that corresponds to the amount of opening and closing between the finger portions by the actuator.
【請求項4】 前記フィンガー部が、先端部の一対のア
ーム部と、該アーム部に一体的に連設された二又状のベ
ースとからなり、該ベースの二又状のつけ根部に、該ベ
ースとともに前記アーム部の開閉を容易にする切欠きが
設けられてなる請求項3記載の力検出装置。
4. The finger portion includes a pair of arm portions at a tip portion and a bifurcated base integrally connected to the arm portions, and a bifurcated root portion of the base, The force detection device according to claim 3, wherein a notch that facilitates opening and closing of the arm portion is provided together with the base.
【請求項5】 前記プリズムが、ミラーからなり、該ミ
ラーを設けた前記各光ファイバが、互いの光軸を一致さ
せて相対配置されてなる請求項3記載の力検出装置。
5. The force detection device according to claim 3, wherein the prism is a mirror, and the optical fibers provided with the mirror are arranged relative to each other with their optical axes aligned with each other.
【請求項6】 前記アクチュエータが、ピエゾ素子から
なる請求項3記載の力検出装置。
6. The force detection device according to claim 3, wherein the actuator comprises a piezo element.
【請求項7】 前記力検出素子およびアクチュエータ
が、ハンドベースに装着されて把持力制御形の微小ハン
ドを形成してなる請求項3記載の力検出装置。
7. The force detection device according to claim 3, wherein the force detection element and the actuator are mounted on a hand base to form a gripping force control type micro hand.
JP14630993A 1993-06-17 1993-06-17 Power detection method and apparatus Pending JPH075054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14630993A JPH075054A (en) 1993-06-17 1993-06-17 Power detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14630993A JPH075054A (en) 1993-06-17 1993-06-17 Power detection method and apparatus

Publications (1)

Publication Number Publication Date
JPH075054A true JPH075054A (en) 1995-01-10

Family

ID=15404766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14630993A Pending JPH075054A (en) 1993-06-17 1993-06-17 Power detection method and apparatus

Country Status (1)

Country Link
JP (1) JPH075054A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101509397B1 (en) * 2014-04-30 2015-04-08 성균관대학교산학협력단 Force sensor using optical fiber and cathether using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101509397B1 (en) * 2014-04-30 2015-04-08 성균관대학교산학협력단 Force sensor using optical fiber and cathether using the same

Similar Documents

Publication Publication Date Title
US8245317B2 (en) Atomic force microscope
US5410410A (en) Non-contact type measuring device for measuring three-dimensional shape using optical probe
EP0398085A1 (en) High sensitivity position-sensing method
JPH07501159A (en) Active alignment system for coupling laser to fiber
US5222170A (en) Optical fiber device fabrication
KR20180130519A (en) Optical alignment of optic subassemblies to optoelectronic devices
US6453084B1 (en) System and method for beam-steering using a reference signal feedback
CN100470194C (en) Laser automatic-aligning system
US5324954A (en) Systems for adjusting and evaluating positional relationship between light-receiving element and optical fiber
JPH10123356A (en) Method for measuring position of optical transmission member and method for manufacturing optical device
JPH075054A (en) Power detection method and apparatus
CA2187961A1 (en) Method and apparatus for alignment and bonding
JP5606039B2 (en) Stage device and wavefront aberration measuring device
WO2000029890A1 (en) Laser diode module and its manufacture method
US20030053054A1 (en) Methods, apparatus, computer program products, and systems for ferrule alignment and fabrication of optical signal controllers
US6721058B2 (en) Apparatus for and method of measuring thickness of materials using the focal length of a lensed fiber
US6559951B2 (en) Air refractometer
JP2003194518A (en) Laser distance measuring apparatus
JPH06265416A (en) Force detecting method and its device
JP4784421B2 (en) Laser optical apparatus and method for controlling operation of actuator
Mobarhan et al. Fiber to waveguide alignment algorithm
TWI221648B (en) Method and device for determining the vectorial distance between the capillary and the image recognition system of a wire bonder
JP3317100B2 (en) Optical connector polished surface automatic inspection device and optical connector polished surface inspection method
JP3078134B2 (en) Optical fiber alignment sensor and optical switch device
JP4001796B2 (en) Optical element adjustment method and apparatus, and optical element manufacturing method using the method