JPH0750432A - Light-emitting element and manufacture thereof - Google Patents

Light-emitting element and manufacture thereof

Info

Publication number
JPH0750432A
JPH0750432A JP21512093A JP21512093A JPH0750432A JP H0750432 A JPH0750432 A JP H0750432A JP 21512093 A JP21512093 A JP 21512093A JP 21512093 A JP21512093 A JP 21512093A JP H0750432 A JPH0750432 A JP H0750432A
Authority
JP
Japan
Prior art keywords
substrate
film
fine particles
light
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21512093A
Other languages
Japanese (ja)
Inventor
Masayuki Iijima
正行 飯島
Toshihiro Arai
敏弘 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP21512093A priority Critical patent/JPH0750432A/en
Publication of JPH0750432A publication Critical patent/JPH0750432A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an Si or Ge light-emitting element, which has a high luminous efficiency and high satisfactory can-stability, by a method wherein a substrate formed with a film, in which at least one kind of fine particles out of the Sn and Pb fine particles of a group IVb and the Ar, Sb and Bi fine particles of a group Vb are made of disperse, on its surface is formed into an Si substrate or Ge substrate. CONSTITUTION:At least one kind of fine particles 13 out of dispersed Sn and Pb fine particles of a group IVb and dispersed As, Sb and Bi fine particles of a group Vb directly generate some surface structure, which affects light emission, between a film 12 and an Si substrate 11 or a Ge substrate or via the film 12, which is used as a dispersion medium, and light is emitted in the interface between the film 12 with the fine particles 13 dispersed and the substrate 11 or the Ge substrate by light excitation. Accordingly, the light emission, which has a high luminous efficiency and a satisfactory can-stability, is given. Moreover, a light-emitting element consists of a low-cost material including Si and in addition, the element can be generally manufactured by a sputtering technique without depending upon a high-degree technique, such as an epitaxy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はSi系またはGe系の発
光素子、及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Si-based or Ge-based light emitting device and a method for manufacturing the same.

【0002】[0002]

【従来の技術及びその問題点】発光ダイオードや半導体
レーザに代表される半導体の発光素子は、形状が小さい
こと、低電圧で作動すること、変換効率が高いこと、長
寿命化したことなどの故に、近年各分野において多用さ
れ、その生産量はとみに拡大している。例えば、従来の
半導体レーザはGaAs、InP、InAs、InSn
のような化合物半導体からなっているが、特にGaAs
によるものが最も多く製造されており、その発光原理も
明らかにされている。
2. Description of the Related Art Semiconductor light-emitting devices such as light-emitting diodes and semiconductor lasers are small in size, operate at low voltage, have high conversion efficiency, and have a long life. In recent years, it has been used extensively in each field, and its production volume is expanding rapidly. For example, conventional semiconductor lasers are GaAs, InP, InAs, InSn
It is made of compound semiconductors such as
Are most manufactured, and the principle of light emission has been clarified.

【0003】すなわち、その発光は、GaAsの化合物
半導体を用いたp−n接合ダイオードに二つのエネルギ
帯間のエネルギよりも大きいエネルギを有する光子
(光)や電子ビームが照射され、その照射によって励起
されて生じたp型半導体中の正孔とn型半導体中の電子
とが直接に再結合する時に、二つのエネルギ帯間のエネ
ルギに等しい光子が放出されることによる、とされてい
る。
In other words, the emitted light is excited by a photon (light) or an electron beam having an energy larger than the energy between two energy bands in a pn junction diode using a compound semiconductor of GaAs. It is said that, when holes generated in the p-type semiconductor and electrons generated in the n-type semiconductor are directly recombined with each other, photons equivalent to the energy between the two energy bands are emitted.

【0004】しかし、これら化合物半導体の発光素子の
製造には高価な原料を使用するほか、分子線エピタキシ
(MBE)や有機金属気相エピタキシ(MOVPE)の
ような高度な技術を必要とする。
However, in order to manufacture a light emitting device of these compound semiconductors, expensive raw materials are used, and advanced techniques such as molecular beam epitaxy (MBE) and metalorganic vapor phase epitaxy (MOVPE) are required.

【0005】これに対し、一般的なSiやGeなどの半
導体は間接型とされ、励起された正孔や電子を生じて
も、エネルギの一部をフォノンに変えるので再結合の確
率が低く、殆ど発光しないとされて来た(例えば、“実
用レーザ技術”、94頁、平井紀光著、共立出版
(株)、1987年)。
On the other hand, general semiconductors such as Si and Ge are of indirect type, and even if excited holes or electrons are generated, some of the energy is changed to phonons, so the recombination probability is low, It has been said that it hardly emits light (for example, "Practical Laser Technology", p. 94, Norimitsu Hirai, Kyoritsu Shuppan Co., Ltd., 1987).

【0006】しかし最近になって、SiやGeの極微構
造の材料や極微粒子による室温での可視領域の発光が報
告されるようになった(“表面科学”誌、第14巻、第
2号、1993年3月号に特集されている)。例えば
(a)HF中で結晶Siを陽極酸化して得られるポーラ
スなSi、(b)Siの水素プラズマスパッタや不活性
ガス中での蒸着によるSi微粒子、(c)溶液中合成法
などで形成したポリシランなどのSi系高分子、(d)
SiO2 中に埋め込まれたGe微粒子、であり、赤外領
域であるが室温でエレクトロルミネッセンス発光する
(e)SiGe/Siヘテロ構造を用いたp−n接合ダ
イオード、である。
Recently, however, light emission in the visible region at room temperature has been reported due to ultrafine materials such as Si and Ge and ultrafine particles ("Surface Science", Vol. 14, No. 2). , March 1993 issue). For example, (a) porous Si obtained by anodizing crystalline Si in HF, (b) Si fine particles formed by hydrogen plasma sputtering of Si or vapor deposition in an inert gas, (c) formed by a solution synthesis method, etc. Si-based polymer such as polysilane, (d)
Ge fine particles embedded in SiO 2 and (e) a pn junction diode using a SiGe / Si heterostructure that emits electroluminescence at room temperature in the infrared region.

【0007】これら発光にはSiまたはGeの表面や界
面での極微構造が関与していると考えられてはいるが、
原理は未だ判明していないほか、(a)、(b)はSi
の表面が露出しているためか発光の安定性に乏しく、
(c)、(d)は発光効率が低い。また(e)はヘテロ
構造を得るために高度なエピタキシ技術を必要とする。
このように、Si系やGe系の発光素子に対する期待は
大きいものの、未だ実用に耐えるものは得られていな
い。
It is considered that the microstructure on the surface or interface of Si or Ge is involved in these light emission,
The principle has not been clarified yet, and (a) and (b) are Si
Because the surface of is exposed, the stability of light emission is poor,
The luminous efficiency of (c) and (d) is low. Further, (e) requires an advanced epitaxy technique to obtain a heterostructure.
As described above, although there are great expectations for Si-based and Ge-based light-emitting elements, ones that can withstand practical use have not yet been obtained.

【0008】[0008]

【発明が解決しようとする問題点】本発明は上述の問題
に鑑みてなされたものであり、発光効率が高く、かつ保
存安定性の良好なSi系またはGe系の発光素子、及び
その製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has a high luminous efficiency and a good storage stability, and a Si-based or Ge-based light-emitting device, and a method for manufacturing the same. The purpose is to provide.

【0009】[0009]

【問題点を解決するための手段】以上の目的は、IVb
族のSn、Pb及びVb族のAs、Sb、Biの中の少
なくとも1種の微粒子を分散させた膜を表面に形成させ
たSi基板またはGe基板であることを特徴とする発光
素子、によって達成される。
[Means for Solving Problems] The above-mentioned purpose is IVb
A light emitting device characterized by being a Si substrate or a Ge substrate on the surface of which a film having at least one kind of fine particles selected from the group consisting of Sn, Pb and Vb group As, Sb and Bi is dispersed. To be done.

【0010】また以上の目的は、Si基板またはGe基
板の表面にIVb族のSn、Pb及びVb族のAs、S
b、Biの中の少なくとも1種の微粒子を分散させた膜
をスパッタリングにより形成させることを特徴とする発
光素子の製造方法、によって達成される。
Further, the above object is to provide IVb group Sn, Pb and Vb group As, S on the surface of the Si substrate or the Ge substrate.
and a method of manufacturing a light emitting device, which comprises forming a film in which at least one kind of fine particles of b and Bi are dispersed by sputtering.

【0011】[0011]

【作用】本発明によるSi系またはGe系の発光素子の
発光効率が高く、保存安定性が良好な理由については現
在のところつまびらかでないが、分散させたIVb族の
Sn、Pb及びVb族のAs、Sb、Biの中の少なく
とも1種の微粒子が直接に、または分散媒としての膜を
介し、Si基板またはGe基板との間において、発光に
かかわる何らかの表面構造(例えば歪超格子のようなも
の)を生じ、光励起によって、微粒子を分散させた膜と
Si基板またはGe基板との界面において発光するもの
と思われる。
The reason why the Si-based or Ge-based light-emitting device according to the present invention has a high luminous efficiency and a good storage stability is not uncertain at present. However, dispersed IVb group Sn, Pb and Vb As are present. , Sb, Bi at least one kind of fine particles, directly or through a film as a dispersion medium, between the Si substrate or the Ge substrate, some surface structure involved in light emission (such as strained superlattice) ) Is generated, and light is excited at the interface between the film in which the fine particles are dispersed and the Si substrate or the Ge substrate.

【0012】[0012]

【実施例】以下、本発明の発光素子及びその製造方法を
実施例によって具体的に説明するが、勿論これらによっ
て限定されるものではない。
EXAMPLES The light emitting device of the present invention and the method for manufacturing the same will be specifically described below by way of examples, but of course the invention is not limited thereto.

【0013】〔実施例1〕SnとSiO2 とをターゲッ
トとして、p型、(100)面のSiウエハを基板とす
るスパッタリングを行ない、厚さ約2μmの膜を形成さ
せた。スパッタリングの条件は次のようであった。 装 置 ; 高周波マグネトロン型(13.56M
Hz) 基 板 ; 4インチSiウエハ、p型、(10
0)面 ターゲット ; 6インチSiO2 (石英)上に約5m
m角、厚さ約1mmのSn板4枚を配置 真 空 度 ; 10-6Paまで減圧した後に、1Pa
までArガスを導入 高周波入力 ; 600W 基板温度 ; 室温、70℃、100℃、150℃、
または200℃
[Example 1] Sputtering was performed using Sn and SiO 2 as targets with a p-type (100) plane Si wafer as a substrate to form a film having a thickness of about 2 μm. The sputtering conditions were as follows. Equipment: High frequency magnetron type (13.56M
Hz) substrate; 4 inch Si wafer, p-type, (10
0) surface target: about 5 m on 6 inch SiO 2 (quartz)
Arrange 4 pieces of Sn plates with m-square and thickness of about 1 mm. Trueness; 1 Pa after depressurizing to 10 -6 Pa
Ar gas is introduced until high frequency input; 600W substrate temperature; room temperature, 70 ° C, 100 ° C, 150 ° C,
Or 200 ℃

【0014】得られたSi基板上のSn分散SiO2
について高分解能透過型電子顕微鏡(TEM)で観察し
たところ、図1に模式的に示すように、Snは直径10
nm以下の微粒子として分散していることが確認され
た。図1において、11はSi基板、12はSiO2
膜、13はSn微粒子である。
Observation of the obtained Sn-dispersed SiO 2 film on the Si substrate with a high-resolution transmission electron microscope (TEM) revealed that Sn had a diameter of 10 mm.
It was confirmed that the particles were dispersed as fine particles of nm or less. In FIG. 1, 11 is a Si substrate and 12 is SiO 2.
The film 13 is Sn fine particles.

【0015】〔比較例1〕Snを使用せず、SiO2
(石英)のみをターゲットとした以外は、実施例1と全
く同様にスパッタリングして、Si基板上に約2μm厚
さのSiO2 膜を形成させた。基板温度は室温とした。
[Comparative Example 1] SiO 2 was used without using Sn.
Except for using only (quartz) as a target, sputtering was performed in the same manner as in Example 1 to form a SiO 2 film having a thickness of about 2 μm on the Si substrate. The substrate temperature was room temperature.

【0016】実施例1の基板温度の異なる試料5種、及
び比較例1の試料について、励起光源としてアルゴンイ
オンレーザ(波長4579Åと4765Å、出力のワッ
ト密度6mW/mm2 )を試料面に入射し、観測された
発光スペクトルを図2に示した。図2において、横軸は
フォトン(光子)エネルギ(eV)であり、縦軸は発光
強度(任意単位)である。
Argon ion lasers (wavelengths 4579Å and 4765Å, output watt density 6 mW / mm 2 ) were made incident on the sample surface as excitation light sources for the five samples of Example 1 having different substrate temperatures and the sample of Comparative Example 1. The observed emission spectrum is shown in FIG. In FIG. 2, the horizontal axis represents photon (photon) energy (eV), and the vertical axis represents emission intensity (arbitrary unit).

【0017】図2で明らかなように、比較例1のSiO
2 のみの膜の場合には全く発光が認められないに対し、
Snを分散させたSiO2 膜の場合には、スパッタリン
グ時の基板温度に関係なく、フォトンエネルギ約2.2
eVのところに最大発光強度を有する可視領域の発光が
観測された。この時の発光強度は平均で0.3nW/c
2 であった。
As is clear from FIG. 2, the SiO 2 of Comparative Example 1
In the case of the film of 2 only, no light emission is observed,
In the case of a SiO 2 film in which Sn is dispersed, the photon energy is about 2.2 regardless of the substrate temperature during sputtering.
Emission in the visible region having the maximum emission intensity was observed at eV. The emission intensity at this time is 0.3 nW / c on average.
It was m 2 .

【0018】なお、図2において観測された発光スペク
トルには、基板温度によって若干の差異はあるものの、
何れにも干渉によるハンチングが見られる。これは、S
iO2 膜とSi基板との界面における発光がSiO2
を経て観測されることによるものと理解される。従って
SiO2 膜による干渉のない、本来の発光と推測される
発光スペクトルを滑らかな線で付け加えた。
The emission spectrum observed in FIG. 2 is slightly different depending on the substrate temperature,
Hunting due to interference is seen in both cases. This is S
It is understood that the light emission at the interface between the iO 2 film and the Si substrate is observed through the SiO 2 film. Therefore, the emission spectrum estimated to be the original emission without interference by the SiO 2 film was added with a smooth line.

【0019】上述の図2の励起発光スペクトルの観測に
は図3にブロック図で示した測定系を用いた。図3にお
いて、励起光源としてのアルゴンイオンレーザ発振器1
からのレーザはモノクロメータ2を経由させた後、反射
鏡3a、3b、3cで反射させて測定試料Sに入射させ
た。
The measurement system shown in the block diagram of FIG. 3 was used to observe the excitation emission spectrum of FIG. In FIG. 3, an argon ion laser oscillator 1 as an excitation light source
After passing through the monochromator 2, the laser from No. 1 was reflected by the reflecting mirrors 3a, 3b, 3c and made incident on the measurement sample S.

【0020】入射レーザiは試料Sの面で反射レーザr
として反射されるが、入射レーザiによって励起された
試料Sからは発光eとして光子が放出されるので、発光
eをコンデンサレンズ4で集光し、励起の二波長に対応
してダブルモノクロメータ5を経由させた後に、検出用
の光電子増倍管6によって増幅した。次いで、その信号
を前置増幅器7を通して波高分析器(マルチチャンネル
アナライザ)8に入力し、フォトンエネルギと発光強度
の関係を示す発光スペクトルとしてX−Yレコーダ10
に出力させた。マイクロコンピュータ9は波高分析器8
からの信号を発光スペクトルとして図示しないブラウン
管(CRT)に表示させ、かつフロッピーディスクに記
録させるためのものである。
The incident laser i is reflected on the surface of the sample S by a laser r
However, since the photon is emitted as the light emission e from the sample S excited by the incident laser i, the light emission e is condensed by the condenser lens 4 and the double monochromator 5 corresponding to the two wavelengths of the excitation. After passing through, it was amplified by a photomultiplier tube 6 for detection. Then, the signal is input to a wave height analyzer (multi-channel analyzer) 8 through a preamplifier 7, and an XY recorder 10 is formed as an emission spectrum showing a relationship between photon energy and emission intensity.
Output to. Microcomputer 9 is wave height analyzer 8
This is for displaying the signal from the device as a light emission spectrum on a cathode ray tube (CRT) not shown and recording it on a floppy disk.

【0021】なお、実施例1で得た試料を大気中で1カ
月以上放置した後にも同じ強度の発光が観測されたの
で、これらの試料は保存安定性の良好なものであると認
められた。
Since the light emission of the same intensity was observed even after the samples obtained in Example 1 were allowed to stand in the atmosphere for one month or more, it was confirmed that these samples had good storage stability. .

【0022】〔実施例2〕実施例1と全く同様にして、
Si基板の温度のみを300℃、400℃、600℃と
したスパッタリングを行なって、Snを分散させたSi
2膜を有するSi基板を得た。
[Embodiment 2] In exactly the same manner as in Embodiment 1,
Si in which Sn is dispersed by performing sputtering with the temperature of the Si substrate set to 300 ° C., 400 ° C., and 600 ° C.
A Si substrate having an O 2 film was obtained.

【0023】これら3種の試料からは実施例1と同様な
励起発光スペクトルが得られた。
From these three types of samples, the same excitation and emission spectra as in Example 1 were obtained.

【0024】〔実施例3〕実施例1におけるSi基板に
代えてGe基板を使用した。Ge基板にはp型で(10
0)面を有するウエハを使用した。基板の種類を代えた
以外は実施例1と全く同様のスパッタリングを行なっ
て、Snを分散させたSiO2膜を有し、スパッタリン
グ時の基板温度の異なる5種のGe基板を得た。これら
の試料は実施例1の試料と同様に発光することが観測さ
れた。
Example 3 A Ge substrate was used instead of the Si substrate in Example 1. For the Ge substrate, p-type (10
A wafer having a 0) plane was used. The same sputtering as in Example 1 was performed except that the type of the substrate was changed to obtain five types of Ge substrates having a SiO 2 film in which Sn was dispersed and having different substrate temperatures during sputtering. It was observed that these samples emit light in the same manner as the sample of Example 1.

【0025】〔実施例4〕実施例1において使用したS
n板をPb板に置き換えた以外は、実施例1と同様の装
置、同様の条件でスパッタリングを実施例して、Pbを
分散させたSiO2 膜を有するSi基板を得た。基板温
度は室温のみとした。図3の測定系によってこの試料か
らも可視領域の発光が観測された。
[Example 4] S used in Example 1
Sputtering was carried out under the same apparatus and conditions as in Example 1 except that the n-plate was replaced with a Pb-plate to obtain a Si substrate having a Pb-dispersed SiO 2 film. The substrate temperature was only room temperature. Luminescence in the visible region was also observed from this sample by the measurement system of FIG.

【0026】〔実施例5〜7〕実施例1において使用し
たSnに代えてAs、Sb、Biを夫々別に6インチS
iO2 ウエハ上に配置し、Si基板の温度を常温として
実施例1と同様にスパッタリングを行なった。得られた
3種の試料からは表1に示すように実施例1と同様な発
光スペクトルが観測された。
[Examples 5 to 7] As, Sb, and Bi were replaced by 6 inches S instead of Sn used in Example 1, respectively.
It was placed on the iO 2 wafer and the sputtering was performed in the same manner as in Example 1 with the temperature of the Si substrate at room temperature. As shown in Table 1, emission spectra similar to those of Example 1 were observed from the obtained three kinds of samples.

【0027】[0027]

【表1】 [Table 1]

【0028】〔実施例8〕実施例1においてターゲット
としたSiO2 とSn板4枚のうち、Sn板の2枚をS
b板2枚と置き換え、その他は実施例1と同様に、p
型、(100)面のSiウエハを基板とするスパッタリ
ングを行なった。基板温度は常温のみとした。
[Embodiment 8] Of the four target SiO 2 and Sn plates in Embodiment 1, two Sn plates are S
Replaced with two b-plates, and other than that, as in the first embodiment, p
Sputtering was performed using a mold and a (100) surface Si wafer as a substrate. The substrate temperature was only room temperature.

【0029】得られた、SnとSbとの微粒子が混合分
散されたSiO2 膜を有するSi基板から、可視領域の
励起発光スペクトルが観測された。
From the obtained Si substrate having a SiO 2 film in which fine particles of Sn and Sb were mixed and dispersed, an excited emission spectrum in the visible region was observed.

【0030】以上、本発明の各実施例について説明した
が、勿論、本発明はこれらに限定されることなく、本発
明の技術的思想に基いて種々の変形が可能である。
Although the respective embodiments of the present invention have been described above, needless to say, the present invention is not limited to these, and various modifications can be made based on the technical idea of the present invention.

【0031】例えば各実施例においては、IVb族のS
n、Pb及びVb族のAs、Sb、Biの中の少なくと
も1種を分散させる膜をSiO2 としたが、可視領域の
発光に対し透明な材料、例えばAl23 も膜として使
用し得る。
For example, in each of the embodiments, an IVb group S
The film in which at least one of As, Sb, and Bi of the n, Pb, and Vb groups is dispersed is SiO 2 , but a material transparent to light emission in the visible region, for example, Al 2 O 3 can also be used as the film. .

【0032】また各実施例においては、Si基板または
Ge基板の(100)面にスパッタリングしたが、これ
以外の面、例えば(110)面や(111)面もIVb
族のSn、Pb、及びVb族のAs、Sb、Biの中の
少なくとも1種を分散させたSiO2 膜によって発光の
要因であろう歪超格子を生ずることが推測されるので、
Si基板またはGe基板の(100)面以外の面を使用
する場合も本発明の技術的思想の範囲属するものとす
る。
Further, in each of the examples, the (100) plane of the Si substrate or the Ge substrate was sputtered, but other planes such as (110) plane and (111) plane are also IVb.
Since it is presumed that a strained superlattice, which may be a factor of light emission, is generated by a SiO 2 film in which at least one of Sn, Pb of the group B, and As, Sb, Bi of the group Vb is dispersed,
The use of a surface other than the (100) surface of the Si substrate or the Ge substrate also belongs to the scope of the technical idea of the present invention.

【0033】また各実施例においては、p型のSi基板
またはGe基板を採用したが、n型のSi基板またはG
e基板を用いた場合においても、IVb族のSn、P
b、及びVb族のAs、Sb、Biの中の少なくとも1
種を分散させたSiO2 膜によって発光の要因であろう
歪超格子を生ずることが推測されるので、n型のSi基
板またはGe基板を使用する場合も本発明の技術的思想
の範囲に属するものとする。
In each of the embodiments, a p-type Si substrate or a Ge substrate is used, but an n-type Si substrate or a G substrate is used.
Even when the e substrate is used, IVb group Sn, P
b, and at least one of As, Sb, and Bi of the Vb group
It is presumed that a strained superlattice, which may be a factor of light emission, is generated by the SiO 2 film in which the seeds are dispersed. Therefore, even when an n-type Si substrate or a Ge substrate is used, it belongs to the scope of the technical idea of the present invention. I shall.

【0034】[0034]

【発明の効果】これ迄発光が認められたとしても実用に
は遠いものであったSiまたはGeの半導体において、
本発明のSi系またはGe系の発光素子は上述したよう
に発光効率が高く、保存安定性の良好な発光を与える。
また、本発明の発光素子はSiを始めとして廉価な材料
からなるものである上、エピタキシなどの高度な技術に
よることなく、一般的なスパッタリング技術によって製
造し得る。
EFFECTS OF THE INVENTION In the semiconductor of Si or Ge, which has been far from practical use even if emission of light is observed,
The Si-based or Ge-based light-emitting element of the present invention has high emission efficiency as described above and gives light emission with good storage stability.
Further, the light emitting device of the present invention is made of an inexpensive material such as Si, and can be manufactured by a general sputtering technique without using a high technique such as epitaxy.

【0035】更には本発明によって、同一のSi基板ま
たはGe基板上において、発光素子のような光素子とI
Cのような電子素子を組合わせることが可能になる。
Furthermore, according to the present invention, an optical device such as a light emitting device and an I-device can be formed on the same Si substrate or Ge substrate.
It becomes possible to combine electronic devices such as C.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の発光素子の要部断面の模式図である。FIG. 1 is a schematic view of a cross section of a main part of a light emitting device of the present invention.

【図2】本発明の発光素子の励起発光スペクトルを示す
図である。
FIG. 2 is a diagram showing an excited emission spectrum of the light emitting device of the present invention.

【図3】図2の発光スペクトルを観測するための測定系
のブロック図である。
FIG. 3 is a block diagram of a measurement system for observing the emission spectrum of FIG.

【符号の説明】[Explanation of symbols]

11 Si基板 12 SiO2 膜 13 Sn微粒子11 Si substrate 12 SiO 2 film 13 Sn fine particles

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 IVb族のSn、Pb及びVb族のA
s、Sb、Biの中の少なくとも1種の微粒子を分散さ
せた膜を表面に形成させたSi基板またはGe基板であ
ることを特徴とする発光素子。
1. Group IVb Sn, Pb and Vb Group A
A light emitting device, which is a Si substrate or a Ge substrate having a surface on which a film in which at least one kind of fine particles of s, Sb, and Bi is dispersed is formed.
【請求項2】 前記Si基板または前記Ge基板の表面
の結晶方位が(100)である請求項1に記載の発光素
子。
2. The light emitting device according to claim 1, wherein a crystal orientation of a surface of the Si substrate or the Ge substrate is (100).
【請求項3】 前記Si基板または前記Ge基板がp型
である請求項1又は請求項2に記載の発光素子。
3. The light emitting device according to claim 1, wherein the Si substrate or the Ge substrate is p-type.
【請求項4】 前記膜の分散媒がSiO2 の膜である請
求項1から請求項3の何れかに記載の発光素子。
4. The light emitting device according to claim 1, wherein the dispersion medium of the film is a SiO 2 film.
【請求項5】 前記微粒子の平均粒径が10nm以下で
ある請求項1から請求項4の何れかに記載の発光素子。
5. The light emitting device according to claim 1, wherein the average particle size of the fine particles is 10 nm or less.
【請求項6】 Si基板またはGe基板の表面にIVb
族のSn、Pb及びVb族のAs、Sb、Biの中の少
なくとも1種の微粒子を分散させた膜をスパッタリング
により形成させることを特徴とする発光素子の製造方
法。
6. IVb is formed on the surface of a Si substrate or a Ge substrate.
A method for manufacturing a light-emitting element, which comprises forming a film in which at least one kind of fine particles selected from the group consisting of Sn, Pb and Vb group As, Sb and Bi is dispersed by sputtering.
【請求項7】 前記Si基板または前記Ge基板の表面
の結晶方位が(100)である請求項6に記載の発光素
子の製造方法。
7. The method for manufacturing a light emitting device according to claim 6, wherein the crystal orientation of the surface of the Si substrate or the Ge substrate is (100).
【請求項8】 前記Si基板または前記Ge基板がp型
である請求項6又は請求項7に記載の発光素子の製造方
法。
8. The method for manufacturing a light emitting device according to claim 6, wherein the Si substrate or the Ge substrate is p-type.
【請求項9】 前記膜の分散媒がSiO2 の膜である請
求項6から請求項8の何れかに記載の発光素子の製造方
法。
9. The method for manufacturing a light emitting device according to claim 6, wherein the dispersion medium of the film is a SiO 2 film.
【請求項10】 前記微粒子の平均粒径が10nm以下
である請求項6から請求項9の何れかに記載の発光素子
の製造方法。
10. The method for manufacturing a light emitting device according to claim 6, wherein the average particle size of the fine particles is 10 nm or less.
JP21512093A 1993-08-06 1993-08-06 Light-emitting element and manufacture thereof Pending JPH0750432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21512093A JPH0750432A (en) 1993-08-06 1993-08-06 Light-emitting element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21512093A JPH0750432A (en) 1993-08-06 1993-08-06 Light-emitting element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0750432A true JPH0750432A (en) 1995-02-21

Family

ID=16667073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21512093A Pending JPH0750432A (en) 1993-08-06 1993-08-06 Light-emitting element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0750432A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730934B2 (en) 1996-06-19 2004-05-04 Matsushita Electric Industrial Co., Ltd. Optoelectronic material, device using the same and method for manufacturing optoelectronic material
JP2010008194A (en) * 2008-06-26 2010-01-14 Konica Minolta Medical & Graphic Inc Ge nanoparticle and biosubstance labelling agent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730934B2 (en) 1996-06-19 2004-05-04 Matsushita Electric Industrial Co., Ltd. Optoelectronic material, device using the same and method for manufacturing optoelectronic material
US6838743B2 (en) 1996-06-19 2005-01-04 Matsushita Electric Industrial Co., Ltd. Optoelectronic material, device using the same and method for manufacturing optoelectronic material
JP2010008194A (en) * 2008-06-26 2010-01-14 Konica Minolta Medical & Graphic Inc Ge nanoparticle and biosubstance labelling agent

Similar Documents

Publication Publication Date Title
Martinelli et al. The application of semiconductors with negative electron affinity surfaces to electron emission devices
US20100025796A1 (en) Microchannel plate photocathode
Williams et al. Current status of negative electron affinity devices
US20060170324A1 (en) Fabrication of group III-nitride photocathode having Cs activation layer
US5807764A (en) Vertical cavity electron beam pumped semiconductor lasers and methods
US6396049B1 (en) Microchannel plate having an enhanced coating
Bazarov et al. Thermal emittance and response time measurements of a GaN photocathode
Zanatta et al. Visible luminescence from a-SiN films doped with Er and Sm
US7580440B2 (en) System for emission of electromagnetic radiation, and method for making
JPH10312742A (en) Electron emitting element and display device with it
Holmes et al. Pure single-photon emission from an InGaN/GaN quantum dot
JPH0750432A (en) Light-emitting element and manufacture thereof
JP6676372B2 (en) Scintillator and electronic detector
Hostein et al. Time-resolved characterization of InAsP∕ InP quantum dots emitting in the C-band telecommunication window
JP3785721B2 (en) ZnO ultraviolet light emitter and method for producing the same
Fisher et al. Properties of high sensitivity GaP/In x Ga1− x P/GaAs:(Cs–O) transmission photocathodes
Bourree et al. Comparison of the optical characteristics of GaAs photocathodes grown using MBE and MOCVD
JP3878747B2 (en) Semiconductor photocathode
US6872981B1 (en) Diamond ultraviolet luminescent element
Sommer Practical use of III-V compound electron emitters
JP2007088420A (en) Method of manufacturing semiconductor light emitting element
JP3806515B2 (en) Semiconductor photocathode
Grazzi et al. Optoelectronic properties of GaN epilayers in the region of yellow luminescence
KR20030022975A (en) Photocathode having ultra-thin protective layer
JPH05206515A (en) Ultrafine particle light-emitting element and its manufacturing device