JPH0750259A - Diamond semiconductor element - Google Patents
Diamond semiconductor elementInfo
- Publication number
- JPH0750259A JPH0750259A JP19441893A JP19441893A JPH0750259A JP H0750259 A JPH0750259 A JP H0750259A JP 19441893 A JP19441893 A JP 19441893A JP 19441893 A JP19441893 A JP 19441893A JP H0750259 A JPH0750259 A JP H0750259A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- diamond
- diamond semiconductor
- substrate
- ions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体工業における半
導体素子に関するものであり、特にダイヤモンドを主材
料とした半導体素子に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device in the semiconductor industry, and more particularly to a semiconductor device containing diamond as a main material.
【0002】[0002]
【従来の技術】ダイヤモンド半導体は、禁制帯幅が極め
て大きく、誘電率が他の半導体に比較してはるかに小さ
く従って高速動作に望まれる材料特性を有し、更に電
子、正孔の移動度が大きく、このほか化学的に安定、光
学的に高屈折率、紫外光から赤外光までの広範囲の透過
性などの優れた特性を有し、耐熱素子、短波長発光素
子、高発熱パワー素子などへの応用が期待されている。2. Description of the Related Art Diamond semiconductors have extremely large forbidden band width, have much smaller dielectric constant than other semiconductors, and therefore have the material properties desired for high-speed operation, and also have mobility of electrons and holes. In addition, it has excellent characteristics such as chemical stability, high refractive index optically, and wide range of transmittance from ultraviolet light to infrared light. Heat resistant element, short wavelength light emitting element, high heat generation power element, etc. Is expected to be applied.
【0003】従来のダイヤモンド半導体素子において
は、Si等の基板上に形成したダイヤモンド半導体薄膜
からなるダイヤモンド半導体素子(特開平1−1433
23)、あるいはダイヤモンド半導体薄膜上に絶縁性の
ダイヤモンド薄膜を保護膜として形成したダイヤモンド
半導体素子(特開平2−271528)があった。In a conventional diamond semiconductor element, a diamond semiconductor element composed of a diamond semiconductor thin film formed on a substrate such as Si (Japanese Patent Laid-Open No. 1-1433)
23), or a diamond semiconductor element (JP-A-2-271528) in which an insulating diamond thin film is formed as a protective film on the diamond semiconductor thin film.
【0004】図4にSi等の基板上に形成したダイヤモ
ンド半導体薄膜からなる上述した従来のダイヤモンド半
導体素子の概略断面図を示した。図4において16は基
板,17はダイヤモンド半導体薄膜,18は電極を示し
ている。FIG. 4 shows a schematic sectional view of the above-mentioned conventional diamond semiconductor element composed of a diamond semiconductor thin film formed on a substrate such as Si. In FIG. 4, 16 is a substrate, 17 is a diamond semiconductor thin film, and 18 is an electrode.
【0005】[0005]
【発明が解決しようとする課題】従来の技術で、Si基
板上に形成したダイヤモンド半導体薄膜を直接用いる素
子、あるいはダイヤモンド半導体薄膜上に絶縁性のダイ
ヤモンド薄膜を保護膜として形成した素子は、酸素の存
在する雰囲気中で使用する場合、800℃以上の温度で
ダイヤモンドがグラファイト化するため、作製した半導
体素子の特性を劣化させ、所望の特性を得られなくなる
という課題があった。In the prior art, an element that directly uses a diamond semiconductor thin film formed on a Si substrate or an element that forms an insulating diamond thin film as a protective film on a diamond semiconductor thin film is When it is used in an existing atmosphere, diamond is graphitized at a temperature of 800 ° C. or higher, which deteriorates the characteristics of the manufactured semiconductor device and makes it impossible to obtain desired characteristics.
【0006】本発明は、上記従来のダイヤモンド半導体
素子の欠点を改良し、800℃以上の温度での酸素の存
在する雰囲気中で使用する場合においても、ダイヤモン
ド半導体がグラファイト化せず、特性の安定した薄膜ダ
イヤモンド半導体素子を提供することを目的とする。The present invention has improved the above-mentioned drawbacks of the conventional diamond semiconductor element, and even when used in an atmosphere in which oxygen is present at a temperature of 800 ° C. or higher, the diamond semiconductor is not graphitized and the characteristics are stable. It is an object of the present invention to provide a thin film diamond semiconductor device having the above characteristics.
【0007】[0007]
【課題を解決するための手段】前記課題を解決するため
に本発明のダイヤモンド半導体素子は、基体上にp型ダ
イヤモンド半導体薄膜が形成され、更にその上にIII 族
元素を含む薄膜が形成されていることを特徴とする。In order to solve the above-mentioned problems, the diamond semiconductor element of the present invention has a p-type diamond semiconductor thin film formed on a substrate and further a thin film containing a group III element formed thereon. It is characterized by being
【0008】また、第2番目の本発明のダイヤモンド半
導体素子は、少なくとも表層部がp型ダイヤモンド半導
体からなるダイヤモンド基体上に、III 族元素を含む薄
膜が形成されていることを特徴とする。The diamond semiconductor element according to the second aspect of the present invention is characterized in that a thin film containing a group III element is formed on a diamond substrate having at least a surface layer portion made of a p-type diamond semiconductor.
【0009】また、前記いずれのダイヤモンド半導体素
子の構成においても、III 族元素を含む薄膜が、窒化ホ
ウ素薄膜である事が好ましい。In any of the above diamond semiconductor element structures, the thin film containing the group III element is preferably a boron nitride thin film.
【0010】[0010]
【作用】本発明のダイヤモンド半導体素子は、基体上に
形成されているp型ダイヤモンド薄膜上に、または、少
なくとも表層部がp型ダイヤモンド半導体からなるダイ
ヤモンド基体上に、III 族元素を含む薄膜を備えること
により、p型ダイヤモンド半導体薄膜が直接大気あるい
は酸素を含んだ雰囲気に晒されない。従って800℃以
上の温度での酸素の存在する雰囲気中で使用する場合に
おいても、ダイヤモンド半導体がグラファイト化せず、
特性の安定した薄膜ダイヤモンド半導体素子が提供でき
る。The diamond semiconductor device of the present invention is provided with a thin film containing a group III element on a p-type diamond thin film formed on a substrate, or on a diamond substrate having at least a surface layer portion made of a p-type diamond semiconductor. As a result, the p-type diamond semiconductor thin film is not directly exposed to the atmosphere or the atmosphere containing oxygen. Therefore, even when used in an atmosphere containing oxygen at a temperature of 800 ° C. or higher, the diamond semiconductor does not graphitize,
A thin film diamond semiconductor device having stable characteristics can be provided.
【0011】また、上記本発明のうち、少なくとも表層
部がp型ダイヤモンド半導体からなるダイヤモンド基体
の場合には、基体上にダイヤモンド薄膜を形成する工程
が不要になるので、生産性のよいダイヤモンド半導体素
子が提供できる。In the present invention, in the case of the diamond substrate having at least the surface layer portion made of the p-type diamond semiconductor, the step of forming the diamond thin film on the substrate becomes unnecessary, so that the diamond semiconductor element with good productivity can be obtained. Can be provided.
【0012】またいずれの発明においても、III 族元素
を含む薄膜を形成する際に、基体上のダイヤモンド薄
膜、あるいは、ダイヤモンド基体を構成するダイヤモン
ドへのp型のドーパントの導入と同時或は連続してIII
族元素を含む保護膜を形成することもでき、生産性を向
上し得るダイヤモンド半導体素子が提供できる。Further, in any of the inventions, when a thin film containing a group III element is formed, the diamond thin film on the substrate or the diamond which constitutes the diamond substrate is simultaneously or continuously introduced with the p-type dopant. III
A protective film containing a group element can also be formed, and a diamond semiconductor element that can improve productivity can be provided.
【0013】また、III 族元素を含む薄膜が、窒化ホウ
素薄膜である好ましい構成とすることにより、窒化ホウ
素は耐熱性が高いので、より耐熱性の優れたダイヤモン
ド半導体素子を提供できる。Further, by adopting a preferable structure in which the thin film containing the group III element is a boron nitride thin film, since boron nitride has high heat resistance, a diamond semiconductor element having more excellent heat resistance can be provided.
【0014】[0014]
【実施例】以下図面を参照しながら本発明の実施例につ
いて説明する。 実施例1 図1に本発明の第1の実施例のダイヤモンド半導体素子
の製造工程概略図を示した。Embodiments of the present invention will be described below with reference to the drawings. Example 1 FIG. 1 shows a schematic diagram of a manufacturing process of a diamond semiconductor device of a first example of the present invention.
【0015】真空容器内で、Si,石英,SiC,ダイ
ヤモンド等の基体1[図1の(a)]に、水素希釈のC
H4 (メタン),CO(一酸化炭素),B2 H6 (ジボ
ラン),B(CH3 )3 (トリメチルボロン)等を用
い、2.45GHzのマイクロ波によるプラズマCVD
法等によってp型のダイヤモンド薄膜2を形成する[図
1の(b)]。この後に同じ真空容器内で試料(基板
1)の温度を調節し、水素希釈のジボラン,NH3 (ア
ンモニア)ガスを真空容器中で高周波電力等で放電分解
し、生成されるホウ素を含んだガス及びイオン3と、窒
素を含んだガス及びイオン4によって、p型のダイヤモ
ンド薄膜2上に絶縁性の窒化ホウ素からなる保護膜5を
形成する[図1の(c)]。本実施例では、試料温度を
300℃で、水素希釈5%のジボラン,及びアンモニア
を真空容器内に導入後、圧力を1Torrに調整し、マ
イクロ波プラズマCVD法により絶縁性の窒化ホウ素か
らなる保護膜を形成した。In a vacuum container, hydrogen-diluted C is added to a substrate 1 [FIG. 1 (a)] made of Si, quartz, SiC, diamond or the like.
Plasma CVD by microwave of 2.45 GHz using H 4 (methane), CO (carbon monoxide), B 2 H 6 (diborane), B (CH 3 ) 3 (trimethylboron), etc.
The p-type diamond thin film 2 is formed by the method or the like [(b) of FIG. 1]. After that, the temperature of the sample (substrate 1) is adjusted in the same vacuum container, and diborane and NH 3 (ammonia) gas diluted with hydrogen are discharged and decomposed in the vacuum container by high-frequency power or the like, and a gas containing boron is generated. Then, the protective film 5 made of insulating boron nitride is formed on the p-type diamond thin film 2 by the ions 3, the gas containing nitrogen and the ions 4 [(c) of FIG. 1]. In this embodiment, the sample temperature is 300 ° C., diborane diluted with hydrogen of 5% and ammonia are introduced into the vacuum vessel, the pressure is adjusted to 1 Torr, and protection of insulating boron nitride is performed by the microwave plasma CVD method. A film was formed.
【0016】ここで水素希釈5%のジボランの代わりに
窒素希釈のジボランを用いてもよい。また放電分解を用
いない場合には、試料温度を400℃以上に設定し、高
濃度のジボランとアンモニアガスの熱分解を行って(減
圧CVD法)形成する。Here, diborane diluted with nitrogen may be used instead of diborane diluted with hydrogen of 5%. When discharge decomposition is not used, the sample temperature is set to 400 ° C. or higher, and high-concentration diborane and ammonia gas are thermally decomposed (depressurized CVD method).
【0017】なお、以上の様な化学的な気相成長(CV
D)法を用いずに、ホウ素のイオンあるいは蒸気と、窒
素を含んだイオンあるいは分子の照射を同時に行うこと
によって(イオン蒸着併用法)、絶縁性の窒化ホウ素保
護膜5を形成してもよい。また、絶縁性窒化ホウ素保護
膜5の形成を、窒化ホウ素等をターゲットとしたスパッ
タリング法によって行ってもよい。また、III 族元素を
含む薄膜である保護膜としては窒化ホウ素以外でもよ
く、例えば窒化アルミニウムなどを使用してもよい。窒
化ホウ素は、耐熱性がより高いので好ましい。The chemical vapor deposition (CV) as described above is performed.
The insulating boron nitride protective film 5 may be formed by simultaneously irradiating boron ions or vapor and ions or molecules containing nitrogen (D) together with the method D). . Further, the insulating boron nitride protective film 5 may be formed by a sputtering method using boron nitride or the like as a target. The protective film, which is a thin film containing a group III element, may be other than boron nitride, and for example, aluminum nitride may be used. Boron nitride is preferable because it has higher heat resistance.
【0018】以上の様な方法により、p型のダイヤモン
ド薄膜2の形成と保護膜5の形成を同時、或は連続して
行う。p型のダイヤモンド薄膜2,及び保護膜5を形成
した後に、コンタクトホール6の開口,及び電極7の形
成を行ない、半導体素子を完成させる[図1の
(d)]。By the above method, the p-type diamond thin film 2 and the protective film 5 are formed simultaneously or continuously. After forming the p-type diamond thin film 2 and the protective film 5, the contact hole 6 and the electrode 7 are formed to complete the semiconductor device [(d) of FIG. 1].
【0019】作製されたダイヤモンド半導体素子は、p
型の半導体特性を損なうことなく保護膜を形成すること
ができるとともに、ダイヤモンド半導体薄膜が直接大気
あるいは酸素を含んだ雰囲気に晒されない。従って、生
産性よく、信頼性の優れたダイヤモンド半導体素子を提
供できる。The produced diamond semiconductor element has p
The protective film can be formed without impairing the semiconductor characteristics of the mold, and the diamond semiconductor thin film is not directly exposed to the air or an atmosphere containing oxygen. Therefore, it is possible to provide a diamond semiconductor element having high productivity and excellent reliability.
【0020】実施例2 図2に本発明の第2の実施例のダイヤモンド半導体素子
の製造工程概略図を示した。Embodiment 2 FIG. 2 shows a schematic view of a manufacturing process of a diamond semiconductor device according to a second embodiment of the present invention.
【0021】Si,石英,SiC,ダイヤモンド等の基
体8[図2の(a)]上に、マイクロ波プラズマCVD
法等によりダイヤモンド薄膜9を形成する[図2の
(b)]。この場合、ダイヤモンド薄膜を形成せずに、
ダイヤモンド基板を直接用いてもよい。ダイヤモンド基
板を直接用いた場合には、ダイヤモンド薄膜9を形成す
る工程を省略でき、生産性の上では有利である。Microwave plasma CVD is performed on a substrate 8 [FIG. 2 (a)] made of Si, quartz, SiC, diamond or the like.
The diamond thin film 9 is formed by the method or the like [(b) of FIG. 2]. In this case, without forming a diamond thin film,
The diamond substrate may be used directly. When the diamond substrate is directly used, the step of forming the diamond thin film 9 can be omitted, which is advantageous in terms of productivity.
【0022】次にこの試料を真空容器に入れ、試料を9
00℃に加熱する。製造装置や作製する素子の構成によ
っては、ダイヤモンド薄膜9の形成後に連続して同一装
置内で行ってもよい。温度が安定した後に、ジボランを
真空容器に導入して放電分解させるとともに、試料を載
せる基板台にバイアスを印加することによって、ホウ素
を含んだガス及びイオン10をダイヤモンド薄膜9に照
射・注入し、p型のドーピング層11を形成する[図2
の(c)]。ジボランの代わりに、トリメチルボロン,
BH3 NH(CH3 ),BF3 等を用いてもよい。例え
ば、試料の温度を900℃とし、圧力を1Torrに制
御した0.5%水素希釈のジボランを13.56MHz
の高周波で放電分解させ、気相からホウ素及びそのイオ
ンをダイヤモンド薄膜9に照射・注入させることによっ
て、p型のドーピング層11が形成される。このとき、
ジボランの濃度,試料の温度,処理時間等によっては、
基体8を載せる基板台へのバイアスの印加や、ジボラン
の放電分解を行なわなくてもよい。また気相からホウ素
を拡散させるのではなく、高濃度のジボランの放電分解
等により、ホウ素被膜をタイヤモンド上に形成し、温度
を800℃以上にすることでホウ素被膜からの熱拡散に
よってp型のドーピング層11を形成してもよい。この
後に同じ真空容器内で試料(基板8)の温度を調節し、
水素希釈のジボランと,NH3 (アンモニア)の混合ガ
スを真空容器中で高周波電力等で放電分解し、生成され
るホウ素を含んだガス及びイオン10と、窒素を含んだ
ガス及びイオン12によって、p型のドーピング層11
上に絶縁性の窒化ホウ素からなる保護膜13を形成する
[図2の(d)]。本実施例では、試料温度を300℃
で、水素希釈5%のジボラン,及びアンモニアを真空容
器内に導入後、圧力を1Torrに調整し、プラズマC
VD法により絶縁性の窒化ホウ素からなる保護膜を形成
した。Next, this sample was placed in a vacuum container, and the sample
Heat to 00 ° C. Depending on the manufacturing apparatus and the configuration of the element to be manufactured, the diamond thin film 9 may be continuously formed in the same apparatus after the formation. After the temperature is stabilized, diborane is introduced into a vacuum container to cause electric discharge decomposition, and a gas containing boron and ions 10 is irradiated / injected into the diamond thin film 9 by applying a bias to the substrate table on which the sample is placed, A p-type doping layer 11 is formed [FIG.
(C)]. Instead of diborane, trimethylboron,
BH 3 NH (CH 3 ), BF 3 or the like may be used. For example, the temperature of the sample is set to 900 ° C. and diborane diluted with 0.5% hydrogen whose pressure is controlled to 1 Torr is set to 13.56 MHz.
Then, the p-type doping layer 11 is formed by subjecting the diamond thin film 9 to irradiation and implantation of boron and its ions from the gas phase by discharge decomposition at a high frequency. At this time,
Depending on the diborane concentration, sample temperature, processing time, etc.,
It is not necessary to apply a bias to the substrate table on which the base body 8 is placed or to perform discharge decomposition of diborane. Further, instead of diffusing boron from the gas phase, a boron coating is formed on the tire mond by discharge decomposition of high concentration diborane, and the temperature is set to 800 ° C. or higher, so that thermal diffusion from the boron coating causes p-type The doping layer 11 may be formed. After this, the temperature of the sample (substrate 8) is adjusted in the same vacuum container,
A mixed gas of hydrogen-diluted diborane and NH 3 (ammonia) is discharged and decomposed in a vacuum vessel by high-frequency power or the like, and a gas containing boron and ions 10 and a gas containing nitrogen and ions 12 are generated. p-type doping layer 11
A protective film 13 made of insulating boron nitride is formed thereon [(d) of FIG. 2]. In this embodiment, the sample temperature is 300 ° C.
Then, after introducing diborane with 5% hydrogen dilution and ammonia into the vacuum vessel, the pressure was adjusted to 1 Torr and plasma C was added.
A protective film made of insulating boron nitride was formed by the VD method.
【0023】ここで水素希釈5%のジボランの代わりに
窒素希釈のジボランを用いてもよい。また放電分解を用
いない場合には、試料温度を400℃以上に設定し、高
濃度のジボランとアンモニアガスを用いた減圧CVD法
で形成する。なお、以上の様なCVD法を用いずに、ホ
ウ素イオンの照射を行ってp型のドーピング層11を形
成した後、連続してホウ素のイオンあるいは蒸気と、窒
素を含んだイオンあるいは分子の照射を同時に行うイオ
ン蒸着併用法で、絶縁性の窒化ホウ素からなる保護膜1
3を形成してもよい。また、絶縁性窒化ホウ素保護膜1
3の形成を、窒化ホウ素等をターゲットとしたスパッタ
リング法によって行ってもよい。絶縁性窒化ホウ素保護
膜13を以上の様な方法により、p型のドーピング層1
1の形成と保護膜13の形成を同時、或は連続して行
う。Here, diborane diluted with nitrogen may be used instead of diborane diluted with hydrogen of 5%. When the discharge decomposition is not used, the sample temperature is set to 400 ° C. or higher and the low pressure CVD method using high-concentration diborane and ammonia gas is used. It should be noted that, without using the above-described CVD method, boron ions are irradiated to form the p-type doping layer 11, and then boron ions or vapor and nitrogen-containing ions or molecules are continuously irradiated. A protective film 1 made of an insulating boron nitride by an ion deposition combined method for simultaneously performing
3 may be formed. In addition, the insulating boron nitride protective film 1
3 may be formed by a sputtering method using boron nitride as a target. The insulating boron nitride protective film 13 is formed on the p-type doping layer 1 by the above method.
1 and the protective film 13 are formed simultaneously or successively.
【0024】p型のドーピング層11,及び保護膜13
を形成した後に、コンタクトホール14の開口,及び電
極15の形成を行ない、半導体素子を完成させる[図2
の(e)]。作製されたダイヤモンド半導体素子は、p
型のドーパントの導入と同時或は連続して保護膜を形成
することができるとともに、ダイヤモンド半導体薄膜が
直接大気あるいは酸素を含んだ雰囲気に晒されない。従
って、生産性よく、信頼性の優れたダイヤモンド素子を
提供できる。The p-type doping layer 11 and the protective film 13
After forming the contact hole 14, the contact hole 14 and the electrode 15 are formed to complete the semiconductor device [FIG.
(E)]. The manufactured diamond semiconductor element has p
The protective film can be formed simultaneously or continuously with the introduction of the type dopant, and the diamond semiconductor thin film is not directly exposed to the atmosphere or the atmosphere containing oxygen. Therefore, it is possible to provide a highly reliable diamond element with high productivity.
【0025】尚、III 族元素を含む薄膜である保護膜1
3としては窒化ホウ素以外でもよく、例えば窒化アルミ
ニウムなどを使用してもよい。窒化ホウ素は、耐熱性が
より高いので好ましい。The protective film 1 is a thin film containing a group III element.
Other than boron nitride may be used as 3, for example, aluminum nitride may be used. Boron nitride is preferable because it has higher heat resistance.
【0026】また、図3に本実施例の薄膜ダイヤモンド
素子の図2の(d)における素子の深さ方向の元素濃度
分布の模式図を示した。図中Bがホウ素元素の濃度曲
線、Cが炭素元素の濃度曲線、Siがシリコン元素の濃
度曲線を示している。また、基板はSiCの場合であ
る。Further, FIG. 3 shows a schematic diagram of the element concentration distribution in the depth direction of the thin film diamond element of this embodiment in FIG. 2 (d). In the figure, B shows the concentration curve of the boron element, C shows the concentration curve of the carbon element, and Si shows the concentration curve of the silicon element. The substrate is SiC.
【0027】[0027]
【発明の効果】本発明により、800℃以上の温度での
酸素の存在する雰囲気中で使用する場合においても、特
性の安定した薄膜ダイヤモンド半導体素子を提供するこ
とが可能となる。またp型のドーパントの導入を、保護
膜の形成と同時あるいは連続しても行うことができるた
め、生産性のよい、信頼性の優れた薄膜素子を提供する
ことができる。According to the present invention, it is possible to provide a thin film diamond semiconductor device having stable characteristics even when used in an atmosphere containing oxygen at a temperature of 800 ° C. or higher. Further, since the p-type dopant can be introduced simultaneously with or consecutively with the formation of the protective film, it is possible to provide a thin film element having high productivity and excellent reliability.
【0028】また、少なくとも表層部がp型ダイヤモン
ド半導体からなるダイヤモンド基体を基体とした場合に
は、基体上にダイヤモンド薄膜を形成する工程が不要に
なるので、更に生産性のよいダイヤモンド半導体素子を
提供できる。Further, when a diamond substrate having a p-type diamond semiconductor at least in the surface layer is used as a substrate, the step of forming a diamond thin film on the substrate is not required, so that a diamond semiconductor device with higher productivity is provided. it can.
【0029】また、III 族元素を含む薄膜が、窒化ホウ
素薄膜である好ましい構成とすることにより、より耐熱
性の優れたダイヤモンド半導体素子を提供できる。Further, by adopting a preferable structure in which the thin film containing the group III element is a boron nitride thin film, a diamond semiconductor element having more excellent heat resistance can be provided.
【図1】本発明に係る薄膜ダイヤモンド半導体素子の一
実施例の製造工程を示す概略図。FIG. 1 is a schematic view showing a manufacturing process of an embodiment of a thin film diamond semiconductor device according to the present invention.
【図2】本発明に係る薄膜ダイヤモンド半導体素子の別
の一実施例の製造工程を示す概略図。FIG. 2 is a schematic view showing a manufacturing process of another embodiment of the thin film diamond semiconductor element according to the present invention.
【図3】本発明に係る薄膜ダイヤモンド半導体素子に係
る第2実施例の図2の(d)における深さ方向の元素濃
度分布図。FIG. 3 is an element concentration distribution diagram in the depth direction in FIG. 2D of the second embodiment of the thin film diamond semiconductor device according to the present invention.
【図4】従来技術に係る薄膜ダイヤモンド半導体素子の
概略断面図。FIG. 4 is a schematic cross-sectional view of a thin film diamond semiconductor device according to a conventional technique.
1 基板 2 p型のダイヤモンド薄膜 3 ホウ素を含んだガス及びイオン 4 窒素を含んだガス及びイオン 5 絶縁性の窒化ホウ素からなる保護膜 6 コンタクトホール 7 電極 8 基板 9 ダイヤモンド薄膜 10 ホウ素を含んだガス及びイオン 11 p型のドーピング層 12 窒素を含んだガス及びイオン 13 絶縁性の窒化ホウ素からなる保護膜 14 コンタクトホール 15 電極 16 基板 17 ダイヤモンド半導体薄膜 18 電極 1 substrate 2 p-type diamond thin film 3 gas containing boron and ions 4 gas containing nitrogen and ions 5 protective film made of insulating boron nitride 6 contact hole 7 electrode 8 substrate 9 diamond thin film 10 gas containing boron And ions 11 p-type doping layer 12 gas and ions containing nitrogen 13 protective film made of insulating boron nitride 14 contact hole 15 electrode 16 substrate 17 diamond semiconductor thin film 18 electrode
───────────────────────────────────────────────────── フロントページの続き (72)発明者 平尾 孝 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Hirao 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.
Claims (3)
形成され、更にその上にIII 族元素を含む薄膜が形成さ
れていることを特徴とするダイヤモンド半導体素子。1. A diamond semiconductor element, comprising a p-type diamond semiconductor thin film formed on a substrate, and a thin film containing a group III element formed thereon.
導体からなるダイヤモンド基体上に、III 族元素を含む
薄膜が形成されていることを特徴とするダイヤモンド半
導体素子。2. A diamond semiconductor element, wherein a thin film containing a group III element is formed on a diamond substrate having at least a surface layer portion made of a p-type diamond semiconductor.
膜である請求項1または2に記載のダイヤモンド半導体
素子。3. The diamond semiconductor device according to claim 1, wherein the thin film containing a group III element is a boron nitride thin film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19441893A JPH0750259A (en) | 1993-08-05 | 1993-08-05 | Diamond semiconductor element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19441893A JPH0750259A (en) | 1993-08-05 | 1993-08-05 | Diamond semiconductor element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0750259A true JPH0750259A (en) | 1995-02-21 |
Family
ID=16324276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19441893A Pending JPH0750259A (en) | 1993-08-05 | 1993-08-05 | Diamond semiconductor element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0750259A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9635406B2 (en) | 1998-05-15 | 2017-04-25 | Rovi Guides, Inc. | Interactive television program guide system for determining user values for demographic categories |
US9736524B2 (en) | 2011-01-06 | 2017-08-15 | Veveo, Inc. | Methods of and systems for content search based on environment sampling |
US9749693B2 (en) | 2006-03-24 | 2017-08-29 | Rovi Guides, Inc. | Interactive media guidance application with intelligent navigation and display features |
US9848276B2 (en) | 2013-03-11 | 2017-12-19 | Rovi Guides, Inc. | Systems and methods for auto-configuring a user equipment device with content consumption material |
US10015562B2 (en) | 2000-03-31 | 2018-07-03 | Rovi Guides, Inc. | System and method for metadata-linked advertisements |
US10063934B2 (en) | 2008-11-25 | 2018-08-28 | Rovi Technologies Corporation | Reducing unicast session duration with restart TV |
US10075746B2 (en) | 1998-07-14 | 2018-09-11 | Rovi Guides, Inc. | Client-server based interactive television guide with server recording |
US10694256B2 (en) | 2007-03-09 | 2020-06-23 | Rovi Technologies Corporation | Media content search results ranked by popularity |
US10880607B2 (en) | 2003-11-06 | 2020-12-29 | Rovi Guides, Inc. | Systems and methods for providing program suggestions in an interactive television program guide |
US10984037B2 (en) | 2006-03-06 | 2021-04-20 | Veveo, Inc. | Methods and systems for selecting and presenting content on a first system based on user preferences learned on a second system |
-
1993
- 1993-08-05 JP JP19441893A patent/JPH0750259A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9635406B2 (en) | 1998-05-15 | 2017-04-25 | Rovi Guides, Inc. | Interactive television program guide system for determining user values for demographic categories |
US10075746B2 (en) | 1998-07-14 | 2018-09-11 | Rovi Guides, Inc. | Client-server based interactive television guide with server recording |
US10015562B2 (en) | 2000-03-31 | 2018-07-03 | Rovi Guides, Inc. | System and method for metadata-linked advertisements |
US10880607B2 (en) | 2003-11-06 | 2020-12-29 | Rovi Guides, Inc. | Systems and methods for providing program suggestions in an interactive television program guide |
US10986407B2 (en) | 2003-11-06 | 2021-04-20 | Rovi Guides, Inc. | Systems and methods for providing program suggestions in an interactive television program guide |
US10984037B2 (en) | 2006-03-06 | 2021-04-20 | Veveo, Inc. | Methods and systems for selecting and presenting content on a first system based on user preferences learned on a second system |
US9749693B2 (en) | 2006-03-24 | 2017-08-29 | Rovi Guides, Inc. | Interactive media guidance application with intelligent navigation and display features |
US10694256B2 (en) | 2007-03-09 | 2020-06-23 | Rovi Technologies Corporation | Media content search results ranked by popularity |
US10063934B2 (en) | 2008-11-25 | 2018-08-28 | Rovi Technologies Corporation | Reducing unicast session duration with restart TV |
US9736524B2 (en) | 2011-01-06 | 2017-08-15 | Veveo, Inc. | Methods of and systems for content search based on environment sampling |
US9848276B2 (en) | 2013-03-11 | 2017-12-19 | Rovi Guides, Inc. | Systems and methods for auto-configuring a user equipment device with content consumption material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6649545B2 (en) | Photo-assisted remote plasma apparatus and method | |
Dun et al. | Mechanisms of Plasma‐Enhanced Silicon Nitride Deposition Using SiH4/N 2 Mixture | |
US20070224837A1 (en) | Method for producing material of electronic device | |
US20030232500A1 (en) | Photo-assisted method for semiconductor fabrication | |
US5094915A (en) | Laser-excited synthesis of carbon films from carbon monoxide-containing gas mixtures | |
JPH1187341A (en) | Film formation and film-forming apparatus | |
JPH01172572A (en) | Method and apparatus for bonding ultrahard metal layer to substrate | |
US6419985B1 (en) | Method for producing insulator film | |
KR101837370B1 (en) | Method for deposition of amorphous carbon layer using plasmas | |
US6303520B1 (en) | Silicon oxynitride film | |
JPH0750259A (en) | Diamond semiconductor element | |
US6699531B1 (en) | Plasma treatment method | |
US5045346A (en) | Method of depositing fluorinated silicon nitride | |
US8383208B2 (en) | Method of fabricating organic light emitting device | |
EP1035569B1 (en) | Method for forming plasma films | |
JPH07106266A (en) | Manufacture of diamond semiconductor | |
JP2004015049A (en) | Method of oxidizing silicon wafer at low temperature and apparatus thereof | |
Boher et al. | Hydrogen and oxygen content of silicon nitride films prepared by multipolar plasma‐enhanced chemical vapor deposition | |
KR20020025004A (en) | Process and Apparatus for Forming Semiconductor Thin Film | |
Barbadillo et al. | Nitrogen incorporation in amorphous SiCN layers prepared from electron cyclotron resonance plasmas | |
Itoh et al. | Low-dielectric-constant nonporous fluorocarbon films for interlayer dielectric | |
US6531409B1 (en) | Fluorine containing carbon film and method for depositing same | |
JP2978704B2 (en) | Thin film formation method | |
JPH05229896A (en) | Production of conductive diamond | |
Ohshita et al. | Reaction of Si2H2 molecule on a silicon surface |