JPH0750258B2 - Optical beam scanning device - Google Patents

Optical beam scanning device

Info

Publication number
JPH0750258B2
JPH0750258B2 JP61224460A JP22446086A JPH0750258B2 JP H0750258 B2 JPH0750258 B2 JP H0750258B2 JP 61224460 A JP61224460 A JP 61224460A JP 22446086 A JP22446086 A JP 22446086A JP H0750258 B2 JPH0750258 B2 JP H0750258B2
Authority
JP
Japan
Prior art keywords
optical system
light beam
lens
scanning
scanning direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61224460A
Other languages
Japanese (ja)
Other versions
JPS6378121A (en
Inventor
雄一 木村
義春 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61224460A priority Critical patent/JPH0750258B2/en
Publication of JPS6378121A publication Critical patent/JPS6378121A/en
Publication of JPH0750258B2 publication Critical patent/JPH0750258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光源からの光ビームを偏向器によって偏向し被
走査面を走査する光ビーム走査装置に関するものであ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light beam scanning device for scanning a surface to be scanned by deflecting a light beam from a light source with a deflector.

従来の技術 従来より偏向反射面を有する偏向器、例えば回転多面鏡
を用いた光ビーム走査装置において、その偏向反射面の
倒れにより偏向走査された光ビームが、走査面に直角な
面内で変化しても被走査面上での走査線にピッチむらが
生じない様な光ビーム走査装置は種々知られている。例
えば、特開昭56−36622号公報、特開昭57−144516号公
報では、レーザー光源を適当な手段で適当なビーム径に
コリメートされた光ビームを得る光源、線状に結像する
単一の平凸シリンドリカルレンズからなる第1結像光学
系とその線状の結像位置近傍に偏向された光ビームを被
走査面上に結像する単一の球面レンズと単一のトーリッ
ク面を有するレンズからなる第2結像光学系から構成さ
れている。その偏向反射面とその被走査面は走査方向と
直角な面内において幾何光学的共役関係にあり、その偏
向反射面の倒れを光学的に補正し走査線のピッチむらを
補正している。
2. Description of the Related Art Conventionally, in a light beam scanning device using a deflector having a deflecting / reflecting surface, for example, a rotary polygon mirror, a light beam deflected and scanned by tilting of the deflecting / reflecting surface changes in a plane perpendicular to the scanning surface. There are various known light beam scanning devices that do not cause pitch irregularity in scanning lines on the surface to be scanned. For example, in JP-A-56-36622 and JP-A-57-144516, a light source for obtaining a light beam collimated with a laser light source into an appropriate beam diameter by an appropriate means, a linear image forming unit First imaging optical system consisting of a plano-convex cylindrical lens, and a single spherical lens and a single toric surface for imaging the light beam deflected in the vicinity of its linear imaging position on the surface to be scanned The second imaging optical system is composed of a lens. The deflective reflecting surface and the surface to be scanned have a geometrical-optical conjugate relationship in a plane perpendicular to the scanning direction, and the tilt of the deflective reflecting surface is optically corrected to correct the pitch unevenness of the scanning line.

発明が解決しようとする問題点 しかしながら、従来の光ビーム走査装置では、走査方向
のFナンバーが60、走査方向と直角な方向のFナンバー
が100と大きく、光ビームの被走査面におけるスポット
径が約100μm程度となり、1mm当り10ドット程度の解像
度しか得られない。小さいスポット径を得るにはFナン
バーを小さくし、且つ充分な収差補正を必要とするが従
来の光ビーム走査装置では、第2結像光学系の走査方向
と直角な面内のパワーが、前記幾何光学的共役関係を満
足するために必然的に強くなり、収差が大きく発生し易
く、Fナンバーを小さくすることが困難であった。
However, in the conventional light beam scanning device, the F number in the scanning direction is as large as 60 and the F number in the direction perpendicular to the scanning direction is as large as 100, and the spot diameter of the light beam on the surface to be scanned is large. It is about 100 μm, and only a resolution of about 10 dots per mm can be obtained. In order to obtain a small spot diameter, it is necessary to reduce the F-number and to perform sufficient aberration correction. However, in the conventional light beam scanning device, the power in the plane perpendicular to the scanning direction of the second imaging optical system is In order to satisfy the geometrical optics conjugate relation, it becomes inevitably strong, large aberration is likely to occur, and it is difficult to reduce the F number.

問題点を解決するための手段 上記問題を解決するために本発明の光ビーム走査装置
は、第1結像光学系は走査方向に対し直角な方向にのみ
光の収束効果を有し、更に補正過剰な球面収差が生じる
ように構成され、走査方向に対し直角な方向に関し、そ
の光向反射面と被走査面とが幾何光学的共役関係をな
し、前記第2結像光学系は、偏向器側から順に、偏向器
側に凹面を向けた正のメニスカス球面レンズ、偏向器側
に凸面を向けた正の球面レンズとトーリック面を有する
レンズの3枚により構成され、次の条件を満足するよう
に構成するものである。
In order to solve the above problems, in the light beam scanning device of the present invention, the first imaging optical system has the effect of converging light only in the direction perpendicular to the scanning direction, and the correction is further performed. The light-reflecting surface and the surface to be scanned have a geometrical-optical conjugate relationship in a direction perpendicular to the scanning direction, and the second imaging optical system is a deflector. In order from the side, a positive meniscus spherical lens with a concave surface facing the deflector side, a positive spherical lens with a convex surface facing the deflector side, and a lens having a toric surface are used in order to satisfy the following conditions. It is composed of.

3.8<fP/fV<5.0 ……(1) 0.2f<L2<0.4f ……(2) 但し、fは全系の焦点距離、fP,fVはそれぞれ第2結像
光学系の走査方向の焦点距離、走査方向と直角な方向の
焦点距離、L2は第2結像光学系のレンズ全長である。
3.8 <f P / f V <5.0 (1) 0.2f <L 2 <0.4f (2) where f is the focal length of the entire system, and f P and f V are the second imaging optical system, respectively. Is the focal length in the scanning direction, the focal length in the direction perpendicular to the scanning direction, and L 2 is the total lens length of the second imaging optical system.

作用 第2結像光学系は、走査方向に対し直角な方向に関し偏
向反射面と被走査面とが幾何光学的共役関係にあるの
で、走査方向と直角な面内のパワーが走査方向のパワー
に比べて強くなっている。従って走査方向に対し直角な
方向における球面収差は補正不足となりFナンバーを小
さくすることは残存収差によって回折限界系の光学系と
する上で大きな制約を受けていた。しかしながら本発明
は第1結像光学系が補正過剰な球面収差を持つように構
成されているので、前記第2結像光学系の走査方向に直
角な方向における補正不足な球面収差と相互に打ち消し
合う。以上のような作用により全系の残存収差は著しく
低減され、その結果、本発明の光ビーム走査装置は、F
ナンバーを小さくすることが可能となり光ビームの被走
査面におけるスポット径を小さく絞り込むことが出来る
高印字品質化に対応した光ビーム走査装置が得られるこ
ととなる。
In the second imaging optical system, since the deflective reflection surface and the surface to be scanned have a geometrical optical conjugate relationship in the direction perpendicular to the scanning direction, the power in the surface perpendicular to the scanning direction becomes the power in the scanning direction. It is stronger than that. Therefore, the spherical aberration in the direction perpendicular to the scanning direction is insufficiently corrected, and the reduction of the F number is greatly restricted by the residual aberration in making the optical system of the diffraction limited system. However, according to the present invention, since the first image forming optical system is constructed so as to have overcorrected spherical aberration, it is possible to mutually cancel out the uncorrected spherical aberration in the direction perpendicular to the scanning direction of the second image forming optical system. Fit. With the above operation, the residual aberration of the entire system is significantly reduced, and as a result, the optical beam scanning device of the present invention is
Therefore, it is possible to obtain a light beam scanning device capable of reducing the number and narrowing the spot diameter of the light beam on the surface to be scanned, which corresponds to high printing quality.

条件(1)は、第2結像光学系の偏向方向に関する焦点
距離と偏向方向と直角な方向に関する焦点距離の比を規
定するものであり、fP/fVが下限を越えると非点収差が
過大となる。
The condition (1) defines the ratio of the focal length in the deflection direction of the second imaging optical system to the focal length in the direction orthogonal to the deflection direction, and as f P / f V exceeds the lower limit, astigmatism is obtained. Is too large.

条件(2)は、第2結像光学系のレンズ全長を規定する
ものである。L2が下限を越えるコンパクト化には有利で
あるが、非点収差が過大となり良好な収差補正が困難と
なり、L2が上限を越えると第2結像光学系の全長が過大
となり、それにともないトーリック面を有するレンズの
口径も大くなるためコストの低減が困難となる。
The condition (2) defines the total lens length of the second imaging optical system. Although it is advantageous for compactness in which L 2 exceeds the lower limit, astigmatism becomes excessive and it becomes difficult to correct aberrations satisfactorily. When L 2 exceeds the upper limit, the total length of the second imaging optical system becomes excessive, which Since the diameter of a lens having a toric surface also becomes large, it becomes difficult to reduce the cost.

さらに、トーリック面を有するレンズは、走査方向と直
角な面内において偏向器側に凹面を向けた全体で正のパ
ワーを有するメニスカス単レンズであることが望まし
い。
Furthermore, it is desirable that the lens having the toric surface is a meniscus single lens having a positive power as a whole with a concave surface facing the deflector in a plane perpendicular to the scanning direction.

さらに、トーリック面を有するレンズは、その偏向器側
の面の走査方向の屈折に関する曲率半径をr10とすると
き、r10=∞とすれば加工上容易であり、コストを下げ
るのに有効である。
Furthermore, a lens having a toric surface is easy to process if r 10 = ∞, where r 10 is the radius of curvature related to the refraction in the scanning direction of the surface on the deflector side, and it is effective in reducing the cost. is there.

実施例 以下に本発明になる光ビーム走査装置の一実施例を示
す。但し、各実施例中r1,r2,……は光源から順に走査方
向の屈折に関する各面の曲率半径、r1′,r2′,……は
光源から順に走査方向と直角な方向の屈折に関する各面
の曲率半径、d1,d2,……は上記各面の面間隔、n1,n2,…
…はそれぞれのレンズの波長790nmにおける屈折率であ
る。
Embodiment An embodiment of the light beam scanning device according to the present invention will be described below. However, in each of the examples, r 1 , r 2 , ... Are the radii of curvature of the respective surfaces relating to refraction in the scanning direction in order from the light source, and r 1 ′, r 2 ′,. Curvature radii of each surface related to refraction, d 1 , d 2 , ... are surface spacings of the above surfaces, n 1 , n 2 ,
... is the refractive index of each lens at a wavelength of 790 nm.

発明になる光ビーム走査装置の実施例について図面を参
照しながら説明する。第1図は本発明に係る光ビーム走
査装置の第1実施例に基づく概略構成図を示す斜視図で
ある。レーザー光源からの出力光はコリメータレンズで
適当なビーム径となる様コリメートされ(図示せず)
に、光ビーム1は、2枚のシリンドリカルレンズ2,3か
ら構成された第1結像光学系5によって偏向反射面6の
近傍に走査方向に線状に結像される。偏向反射面6は回
転多面鏡7の周囲に設けられた複数の偏向反射面の1つ
である。これはモーター(図示せず)等によって回転駆
動され、偏向をおこなう。その偏向反射面6によって、
被走査面12に走査スポットを形成する。ここで、その2
枚の球面レンズ8,9とトーリックレンズ10は、第1図に
示す如く光ビーム走査装置の小型化が可能なように、光
ビームが通過する範囲を少なくとも確保できるような外
形形状とするのが望ましい。第2図(a),(b)は、
前記第1実施例の各々走査面内におけるレンズ配置と光
路を示す概略図と走査方向と直角な面内におけるレンズ
配置と光路を示す概略図である。第2図(b)に示す如
く、第2結像光学系11に対して、走査方向と直角な面内
においては、偏向反射面6と被走査面12は幾何光学的共
役関係にあり、所謂偏向反射面の面倒れの補正機能を有
している。この様な作用を有する第2結像光学系は、走
査方向に直角な方向におけるパワーが、偏向方向のパワ
ーに比べて大であり、走査方向に直角な方向で補正不足
の球面収差が発生する。本実施例においては、前記の如
く、シリンドリカルレンズ群によって構成される第1結
像光学系5が、その第2結像光学系で発生する補正不足
の球面収差を相殺するように補正過剰の球面収差を、走
査方向に直角な方向に発生させている。これによって、
全系での球面収差は著しく低減されている。第3図,第
4図,第5図及び第6図は、それぞれ第1実施例,第2
実施例,第3実施例及び第4実施例における特性を示
す。図中(a)は第1結像光学系の走査方向と直角な方
向の球面収差、(b)は第2結像光学系の走査方向と直
角な方向の球面収差、(c)は全系の走査方向と直角な
方向の球面収差、(d)は非点収差を示し、実線がサジ
タル(S)方向、破線がメリディオナル(M)方向の収
差を表している。(e)は走査の直線性の特性を示して
いる。各図から明らかな様に、全系の各残存収差は良好
に補正されており、Fナンバーの小さく広画角で、しか
も面倒れ補正機能を有する光ビーム走査装置が実現され
ている。
An embodiment of a light beam scanning device according to the invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a schematic configuration diagram based on a first embodiment of a light beam scanning device according to the present invention. The output light from the laser light source is collimated by a collimator lens to have an appropriate beam diameter (not shown).
First, the light beam 1 is linearly imaged in the scanning direction in the vicinity of the deflective reflection surface 6 by the first imaging optical system 5 composed of two cylindrical lenses 2 and 3. The deflecting / reflecting surface 6 is one of a plurality of deflecting / reflecting surfaces provided around the rotary polygon mirror 7. This is rotationally driven by a motor (not shown) or the like to perform deflection. By the deflective reflection surface 6,
A scanning spot is formed on the surface 12 to be scanned. Where 2
As shown in FIG. 1, the spherical lenses 8 and 9 and the toric lens 10 have an outer shape so that at least a range through which the light beam passes can be secured so that the light beam scanning device can be downsized. desirable. 2 (a) and (b),
FIG. 3 is a schematic diagram showing a lens arrangement and an optical path in each scanning plane of the first embodiment, and a schematic diagram showing a lens arrangement and an optical path in a plane perpendicular to the scanning direction. As shown in FIG. 2B, in the plane perpendicular to the scanning direction with respect to the second imaging optical system 11, the deflective reflection surface 6 and the scanned surface 12 have a geometrical optical conjugate relationship, which is a so-called. It has a function of correcting the surface tilt of the deflective reflection surface. In the second imaging optical system having such an action, the power in the direction orthogonal to the scanning direction is larger than the power in the deflection direction, and spherical aberration that is undercorrected occurs in the direction orthogonal to the scanning direction. . In the present embodiment, as described above, the first image-forming optical system 5 formed by the cylindrical lens group has the overcorrected spherical surface so as to cancel the uncorrected spherical aberration generated in the second image-forming optical system. The aberration is generated in the direction perpendicular to the scanning direction. by this,
The spherical aberration in the entire system is significantly reduced. FIGS. 3, 4, 5, and 6 show the first embodiment and the second embodiment, respectively.
The characteristics in Examples, Third Example and Fourth Example are shown. In the figure, (a) is a spherical aberration in a direction perpendicular to the scanning direction of the first imaging optical system, (b) is a spherical aberration in a direction perpendicular to the scanning direction of the second imaging optical system, and (c) is the entire system. The spherical aberration in the direction perpendicular to the scanning direction, (d) indicates the astigmatism, the solid line indicates the sagittal (S) direction, and the broken line indicates the meridional (M) direction. (E) shows the linearity characteristic of scanning. As is clear from each figure, each residual aberration of the entire system is well corrected, and an optical beam scanning device having a small F number, a wide angle of view, and a surface tilt correction function is realized.

第2実施例,第4実施例は第2結像光学系のトーリック
面を有するレンズにおいて偏向器側の面の走査方向の屈
折に関する曲率半径r10をr10=0としたものである。こ
のことによって、加工が容易となりコストの低減ができ
る。
In the second and fourth embodiments, in the lens having the toric surface of the second imaging optical system, the radius of curvature r 10 related to the refraction in the scanning direction of the deflector side surface is set to r 10 = 0. This facilitates processing and reduces cost.

発明の効果 本発明は、光源からの光ビームを線状に偏向反射面の近
傍に結像する第1結像光学系が、補正過剰な球面収差を
持つように構成され、更に第2結像光学系が、偏向器側
から順に、偏向器側に凹面を向けた負のメニスカス球面
レンズ、偏向器側に凸面を向けた負の球面レンズとトー
リック面を有するレンズの3枚により構成され、前記の
条件を満足することによって全系の残存収差が良好に補
正されたFナンバーの小さく広画角でしかも面倒れ補正
機能を有する光ビーム走査装置を提供するものである。
EFFECTS OF THE INVENTION According to the present invention, the first imaging optical system for linearly imaging the light beam from the light source in the vicinity of the deflective reflection surface is configured to have overcorrected spherical aberration, and further the second imaging The optical system comprises, in order from the deflector side, a negative meniscus spherical lens having a concave surface facing the deflector side, a negative spherical lens having a convex surface facing the deflector side, and a lens having a toric surface. By satisfying the condition (1), the present invention provides a light beam scanning device in which the residual aberration of the entire system is satisfactorily corrected, the F number is small, the angle of view is wide, and the surface tilt correction function is provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1実施例に基づく光ビーム走査装置
の概略構成を示す斜視図、第2図は本発明の第1実施例
の装置の構成図、第3図は第1実施例における特性図、
第4図,第5図,第6図はそれぞれ第2実施例,第3実
施例,第4実施例の特性図である。 1……光ビーム、5……第1結像光学系、6……偏向反
射面、11……第2結像光学系、12……被走査面。
FIG. 1 is a perspective view showing a schematic configuration of a light beam scanning device based on the first embodiment of the present invention, FIG. 2 is a configuration diagram of the device of the first embodiment of the present invention, and FIG. 3 is a first embodiment. Characteristic diagram in
FIGS. 4, 5, and 6 are characteristic diagrams of the second, third, and fourth embodiments, respectively. 1 ... Light beam, 5 ... First imaging optical system, 6 ... Deflection / reflection surface, 11 ... Second imaging optical system, 12 ... Scanned surface.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】光源からの光ビームを線状に結像する第1
結像光学系、その第1結像光学系による線状の結像の位
置近傍にその偏向反射面を有する偏向器、その偏向器で
偏向された光束を第2結像光学系を介して被走査面を走
査する光ビーム走査装置において、前記第1結像光学系
は走査方向に対し直角な方向にのみ光の収束効果を有
し、更に補正過剰な球面収差が生じるように構成され、
走査方向に対し直角な方向に関し、その偏光反射面と被
走査面とが幾何光学的共役関係をなし、前記第2結像光
学系は、偏向器側から順に、偏向器側に凹面を向けた負
のメニスカス球面レンズ、偏向器側に凸面を向けた負の
球面レンズとトーリック面を有するレンズの3枚により
構成され、次の条件を満足することを特徴とする光ビー
ム走査装置。 3.8<fP/fV<5.0 ……(1) 0.2f<L2<0.4f ……(2) 但し、fは全系の偏向方向の焦点距離、fP,fVはそれぞ
れ第2結像光学系の走査方向の焦点距離、走査方向と直
角な方向の焦点距離、L2は第2結像光学系のレンズ全長
である。
1. A first image forming a linear light beam from a light source.
An image forming optical system, a deflector having the deflection reflection surface near the position of linear image formation by the first image forming optical system, and a light beam deflected by the deflector via the second image forming optical system. In a light beam scanning device that scans a scanning surface, the first imaging optical system is configured to have a light converging effect only in a direction perpendicular to the scanning direction, and further to cause overcorrected spherical aberration.
With respect to the direction perpendicular to the scanning direction, the polarization reflection surface and the surface to be scanned have a geometrical optical conjugate relationship, and the second imaging optical system has a concave surface facing the deflector side in order from the deflector side. A light beam scanning device comprising three lenses, a negative meniscus spherical lens, a negative spherical lens having a convex surface facing the deflector side, and a lens having a toric surface, which satisfies the following conditions. 3.8 <f P / f V <5.0 (1) 0.2f <L 2 <0.4f (2) However, f is the focal length in the deflection direction of the entire system, and f P and f V are the second connection. The focal length in the scanning direction of the image optical system, the focal length in the direction perpendicular to the scanning direction, and L 2 are the total lens length of the second imaging optical system.
【請求項2】トーリック面を有するレンズは、その偏向
器側の面の偏向方向の屈折に関する曲率半径をr10とす
るとき、r10=∞である特許請求の範囲第(1)項記載
の光ビーム走査装置。
2. A lens having a toric surface, wherein r 10 = ∞, where r 10 is a radius of curvature relating to the refraction of the deflector side surface in the deflection direction. Light beam scanning device.
JP61224460A 1986-09-22 1986-09-22 Optical beam scanning device Expired - Fee Related JPH0750258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61224460A JPH0750258B2 (en) 1986-09-22 1986-09-22 Optical beam scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61224460A JPH0750258B2 (en) 1986-09-22 1986-09-22 Optical beam scanning device

Publications (2)

Publication Number Publication Date
JPS6378121A JPS6378121A (en) 1988-04-08
JPH0750258B2 true JPH0750258B2 (en) 1995-05-31

Family

ID=16814126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61224460A Expired - Fee Related JPH0750258B2 (en) 1986-09-22 1986-09-22 Optical beam scanning device

Country Status (1)

Country Link
JP (1) JPH0750258B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821711A (en) * 1981-07-31 1983-02-08 Fujitsu Ltd Optical device
JPS60233616A (en) * 1984-05-07 1985-11-20 Canon Inc Optical scanning device

Also Published As

Publication number Publication date
JPS6378121A (en) 1988-04-08

Similar Documents

Publication Publication Date Title
JP2563260B2 (en) Optical beam scanning device
US4571035A (en) Two-element fθ lens group capable of correcting leaning of deflecting plane
JP3303558B2 (en) Scanning optical device
JP3620767B2 (en) Reflective scanning optical system
JPH0727123B2 (en) Surface tilt correction scanning optical system
JPH07113950A (en) Light beam scanning device and image forming lens
JP2673591B2 (en) fθ lens and laser scanning optical system using the same
JP2511904B2 (en) Optical beam scanning device
JP4349500B2 (en) Optical scanning optical system
EP1376196B1 (en) Optical scanner comprising a compact f-theta lens with high cromatic aberration correctabilty
JP2945097B2 (en) Telecentric fθ lens
JP2956169B2 (en) Scanning optical device
JP3034565B2 (en) Telecentric fθ lens
JP2702516B2 (en) fθ lens
JP2583856B2 (en) Optical beam scanning device
JP3122452B2 (en) Optical scanning device
JPH0750258B2 (en) Optical beam scanning device
JP3283162B2 (en) Scan lens
JPS61175607A (en) Scanning optical system
JP2626708B2 (en) Scanning optical system
JP2553882B2 (en) Scanning optical system
JP2775434B2 (en) Scanning optical system
JP2790845B2 (en) Fθ lens system in optical scanning device
JPH07104483B2 (en) Constant velocity scanning lens
JP3069281B2 (en) Optical scanning optical system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees