JPH0750207A - Current lead of superconducting device - Google Patents

Current lead of superconducting device

Info

Publication number
JPH0750207A
JPH0750207A JP19658693A JP19658693A JPH0750207A JP H0750207 A JPH0750207 A JP H0750207A JP 19658693 A JP19658693 A JP 19658693A JP 19658693 A JP19658693 A JP 19658693A JP H0750207 A JPH0750207 A JP H0750207A
Authority
JP
Japan
Prior art keywords
lead
temperature side
side lead
superconducting device
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19658693A
Other languages
Japanese (ja)
Other versions
JP3339118B2 (en
Inventor
Kiyoshi Takita
清 滝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP19658693A priority Critical patent/JP3339118B2/en
Publication of JPH0750207A publication Critical patent/JPH0750207A/en
Application granted granted Critical
Publication of JP3339118B2 publication Critical patent/JP3339118B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To prevent the characteristics of an oxide superconductor from being deteriorated by making water content adhere on the superconductor. CONSTITUTION:The interior of a cylindrical container 221A, in which an oxide superconductor 222 is housed, of a low-temperature side lead 22A is held in a vacuum state, whereby when a superconducting device is stopped its operation after being operated, the normal-temperature air flows in the container 221A and waterdrops are not generated on the surface of the superconductor 222 of a cryogenic temperature of 100 deg.K or lower. As a result, the characteristics of the superconductor 222 are never deteriorated. Moreover, an intermediate connection fitment 20A is provided with a refrigerant piping 202 for injecting a refrigerant from the outside and circulating holes 201A for connecting this piping 202 with a hollow part 233 of a high-temperature side lead 23, whereby the fitment 20A can be cooled at a temperature, which is required for maintaining the superconductor 222 in a superconductive state, and a circulating path, through which helium gas 41 required for cooling the lead 23 is made to pass, can be secured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、超電導装置の真空断
熱容器内の液体ヘリウム容器に収納されて液体ヘリウム
に浸漬された超電導コイルに外部電源から励磁電流を通
電するために使用される電流リード、特に熱侵入量を低
減するためにビスマス系などの酸化物超電導体が使用さ
れた超電導装置の電流リードに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current lead used for passing an exciting current from an external power source to a superconducting coil which is housed in a liquid helium container in a vacuum insulation container of a superconducting device and immersed in liquid helium. In particular, the present invention relates to a current lead of a superconducting device in which an oxide superconductor such as a bismuth-based oxide is used to reduce the amount of heat penetration.

【0002】[0002]

【従来の技術】超電導コイルは冷媒として高価な液体ヘ
リウムを使用して超電導状態を保持するため、この液体
ヘリウムの蒸発量を小さく抑えて液体ヘリウムの消費量
を低減し超電導装置の運転コストを低減することが望ま
しく、そのためには電流リードから超電導コイルへの熱
侵入量を小さくすることが必要である。
2. Description of the Related Art A superconducting coil uses expensive liquid helium as a refrigerant to maintain a superconducting state. Therefore, the evaporation amount of this liquid helium is suppressed to a small amount to reduce the consumption of liquid helium and the operating cost of the superconducting device. Therefore, it is necessary to reduce the amount of heat penetration from the current lead to the superconducting coil.

【0003】通常、極低温に保持された超電導コイルに
室温の外部電源から励磁電流を供給する電流リードは、
銅又は銅合金のような良導電性金属で構成されるが、こ
のような良導電性金属は同時に熱良伝導体の特性を持っ
ている。そのため、室温部から極低温部への伝導熱が侵
入する。導体で発生するジュール熱と室温からの熱伝導
による熱侵入を低減するために、液体ヘリウムが蒸発し
て生成した低温のヘリウムガスを低温端子から流入させ
て導体部を冷却構成が採用されている。
Usually, a current lead for supplying an exciting current from an external power source at room temperature to a superconducting coil kept at a cryogenic temperature is
It is composed of a good conductive metal such as copper or a copper alloy, and such a good conductive metal simultaneously has the characteristics of a good thermal conductor. Therefore, conduction heat penetrates from the room temperature part to the cryogenic part. In order to reduce Joule heat generated in the conductor and heat invasion due to heat conduction from room temperature, low temperature helium gas generated by evaporation of liquid helium is introduced from the low temperature terminal to cool the conductor part. .

【0004】超電導装置全体の熱負荷の大半は電流リー
ドで占めるため、電流リードの低熱侵入化は超電導装置
の経済的な運転を実現するために重要な課題となってい
る。酸化物超電導体が発見されると、液体窒素温度状態
でも超電導現象が保持できることから、ジュール発熱が
なく、かつ低温で銅の100分の1以下という低熱伝導
特性を持っていることから、電流リードの熱負荷の軽減
に有効であり、装置の経済的な運転か可能になる。
Since most of the heat load of the entire superconducting device is occupied by the current leads, lowering the heat penetration of the current leads is an important issue for realizing economical operation of the superconducting device. When an oxide superconductor was discovered, the superconducting phenomenon can be maintained even in the liquid nitrogen temperature state, so that it has no Joule heat generation and has a low thermal conductivity characteristic of 1/100 or less that of copper at low temperature. It is effective in reducing the heat load of the equipment and enables economical operation of the equipment.

【0005】図2は従来の酸化物超電導体を用いた超電
導装置の電流リードを示す回転断面図を含む立面図であ
る。この図において電流リード2は下から低温端子2
1、低温側リード22、高温側リード23及び常温端子
24からなっている。低温側リード22と高温側リード
23とは中間接続金具20で電気的機械的に接続されて
おり、低温端子21は引き出しリード11を介して液体
ヘリウム容器10に収納され液体ヘリウム4に浸漬され
ている超電導コイル1に接続され、常温端子24は一部
だけを示す真空容器3の外部の大気中にあって端子金具
242を介して図示しない外部電源に接続される。出口
管241は後述のように電流リード2内の導体を冷却し
ながら流れ昇ってきたヘリウムガスの出口である。
FIG. 2 is an elevational view including a rotating sectional view showing a current lead of a conventional superconducting device using an oxide superconductor. In this figure, the current lead 2 is from the bottom, the low temperature terminal 2
1, a low temperature side lead 22, a high temperature side lead 23, and a room temperature terminal 24. The low temperature side lead 22 and the high temperature side lead 23 are electrically and mechanically connected by an intermediate connection fitting 20, and the low temperature terminal 21 is housed in the liquid helium container 10 via the lead lead 11 and immersed in the liquid helium 4. The normal temperature terminal 24 is connected to the superconducting coil 1 and is connected to an external power source (not shown) through the terminal metal fitting 242 in the atmosphere outside the vacuum container 3 which is shown only partially. The outlet pipe 241 is an outlet for helium gas that has flowed up while cooling the conductor in the current lead 2 as described later.

【0006】低温側リード22は回転断面図に示すよう
に、筒状容器221とこれに同心に配置された棒状の酸
化物超電導体222とかなり、これらの間に中空部22
3があり、この中空部223をヘリウムガス41が流れ
ることによって酸化物超電導体222が超電導性を維持
する温度以下に保持される。ヘリウムガス41は後述す
るように低温端子21に設けられている流通孔から電流
リード2内に流入する。
As shown in the rotational cross-sectional view, the low temperature side lead 22 includes a cylindrical container 221 and a rod-shaped oxide superconductor 222 arranged concentrically with the cylindrical container 221, and a hollow portion 22 between them.
3, and the helium gas 41 flows through the hollow portion 223, so that the oxide superconductor 222 is maintained at a temperature below the superconductivity. The helium gas 41 flows into the current lead 2 through the flow hole provided in the low temperature terminal 21, as described later.

【0007】高温側リード23は回転断面図に示すよう
に、筒状容器231とその中を通る導線束232からな
っていて、中空部233を冷却のためのヘリウムガスが
流れる。図3は電流リードの一部を示す垂直断面図であ
る。この図において、酸化物超電導体222は下部が低
温端子21の接続金具212の穴に挿入され、上部が中
間接続金具20の穴に挿入されてそれぞれ半田付けなど
で電気的機械的に接続されている。筒状容器221もそ
れぞれ接続金具212と中間接続金具20とに気密に接
続されている。接続金具212には流通孔213が設け
られていて、端子金具211が配置される図2に示した
液体ヘリウム容器10と中空部223とを連通してお
り、中間接続金具20には流通孔201が設けられてい
て低温側リード22の中空部223と高温側リード23
の中空部233とを連通しており、それぞれヘリウムガ
ス41が流れることができるようになっている。
As shown in the rotational cross-sectional view, the high temperature side lead 23 comprises a cylindrical container 231 and a conductor wire bundle 232 passing through the cylindrical container 231, and helium gas for cooling flows through the hollow portion 233. FIG. 3 is a vertical sectional view showing a part of the current lead. In this figure, the oxide superconductor 222 has a lower part inserted into the hole of the connection fitting 212 of the low temperature terminal 21, and an upper part inserted into the hole of the intermediate connection fitting 20 and is electrically and mechanically connected by soldering or the like. There is. The cylindrical container 221 is also hermetically connected to the connection fitting 212 and the intermediate connection fitting 20, respectively. The connecting fitting 212 is provided with a through hole 213, which communicates the liquid helium container 10 shown in FIG. 2 in which the terminal fitting 211 is arranged with the hollow portion 223, and the intermediate connecting fitting 20 has a through hole 201. And the hollow portion 223 of the low temperature side lead 22 and the high temperature side lead 23 are provided.
To communicate with the hollow portion 233, and the helium gas 41 can flow therethrough.

【0008】[0008]

【発明が解決しようとする課題】電流リード2内のヘリ
ウムガス41の流れは前述のように、液体ヘリウムが蒸
発して低温端子21の流通孔213を通って低温側リー
ド22の中の中空部223に流入し中間接続金具20の
流通孔201を通って高温側リード23の中空部233
に流入し更に上昇して常温端子24の内部空間を通って
出口管241から外部に放出される。したがって、超電
導装置が運転中で液体ヘリウム4が蒸発してヘリウムガ
ス41が生成されている限り電流リード2内の空間には
ヘリウムガスが充満した状態になっている。一方、予備
冷却と呼ばれる超電導コイル1に電流を流す前の状態や
通電作業後の後処置などの作業時には空気が出口管24
1を通って逆に電流リード2内に流入することになる。
As described above, the flow of the helium gas 41 in the current lead 2 is such that the liquid helium evaporates and passes through the through hole 213 of the low temperature terminal 21 and the hollow portion in the low temperature side lead 22. 223 and the hollow portion 233 of the high temperature side lead 23 through the through hole 201 of the intermediate connection fitting 20.
Flowing in, further rising, passing through the internal space of the room temperature terminal 24, and discharged from the outlet pipe 241 to the outside. Therefore, as long as the liquid helium 4 is evaporated and the helium gas 41 is generated while the superconducting device is in operation, the space inside the current lead 2 is filled with the helium gas. On the other hand, the air is discharged from the outlet pipe 24 during pre-cooling in a state before a current is passed through the superconducting coil 1 or in a post-treatment such as a post-treatment after energization.
It will flow through 1 into the current lead 2 in reverse.

【0009】ところで、一般に酸化物超電導体に水分が
付着すると特性が劣化するということが実験などから判
明している。前述のように空気が中空部223の中に入
り込むと100K以下の極低温に保持されて超電導状態
になっていた酸化物超電導体222の表面に水分が付着
する可能性があり、そのために酸化物超電導体222が
劣化して使用不能になり電流リード2の交換や修理が必
要になるという問題が生ずる。電流リード2の交換、修
理には超電導装置から取り外す必要があるが、そのため
には超電導装置を分解する必要もあり、多大な費用を要
することになるとともに、交換、修理の期間中は超電導
装置全体の運転が不可能になるという問題をもある。
By the way, it has been found from experiments and the like that the characteristics generally deteriorate when water adheres to oxide superconductors. As described above, when air enters the hollow portion 223, water may be attached to the surface of the oxide superconductor 222 which is kept in a superconducting state by being kept at a cryogenic temperature of 100 K or less, and therefore the oxide is The problem arises that the superconductor 222 deteriorates and becomes unusable, and the current lead 2 needs to be replaced or repaired. For replacing or repairing the current lead 2, it is necessary to remove it from the superconducting device, but for that purpose it is necessary to disassemble the superconducting device, which requires a great deal of cost, and during replacement and repair, the entire superconducting device is required. There is also the problem that it becomes impossible to drive.

【0010】この発明の目的は、このような問題を解決
し、酸化物超電導体に水分の付着による特性劣化の可能
性のない信頼性の高い超電導装置の電流リードを提供す
ることにある。
An object of the present invention is to solve such a problem and to provide a highly reliable current lead for a superconducting device in which there is no possibility of characteristic deterioration due to adhesion of water to an oxide superconductor.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、外部電源に接続される常温端子
を備えた高温側リード、超電導コイルにコイルリードを
介して接続され低温端子を備えた低温側リード及びこれ
ら高温側リードと低温側リードを電気的機械的に接続す
る中間接続金具からなり、低温側リードが、棒状の酸化
物超電導体とこれを収納する筒状容器とからなる超電導
装置の電流リードにおいて、酸化物超電導体が収納され
る筒状容器内が真空に保持されてなるものとし、また、
中間接続金具に冷媒が注入される冷媒配管及びこの冷媒
配管と高温側リード内部とを連通する流通孔が設けられ
てなるものとし、このときの冷媒としては、液体窒素で
あってもヘリウムガスであってもよい。ヘリウムガスの
場合は、外部から供給することでもよいが、液体ヘリウ
ム容器内で液体ヘリウムが蒸発して生成され冷媒配管ま
で導かれたものでもよい。
In order to solve the above problems, according to the present invention, a high temperature side lead having a room temperature terminal connected to an external power source, and a low temperature terminal connected to a superconducting coil via a coil lead. A low temperature side lead and an intermediate connecting metal fitting for electrically and mechanically connecting the high temperature side lead and the low temperature side lead, and the low temperature side lead is composed of a rod-shaped oxide superconductor and a cylindrical container for housing the same. In the current lead of the superconducting device, the inside of the cylindrical container accommodating the oxide superconductor is held in vacuum, and
It is assumed that the intermediate connection fitting is provided with a refrigerant pipe for injecting a refrigerant and a circulation hole that communicates between the refrigerant pipe and the inside of the high temperature side lead, and the refrigerant at this time is helium gas even if it is liquid nitrogen. It may be. In the case of the helium gas, it may be supplied from the outside, or may be generated by the liquid helium being vaporized in the liquid helium container and introduced to the refrigerant pipe.

【0012】[0012]

【作用】この発明の構成において、酸化物超電導体が収
納される低温側リードの筒状容器内を真空に保持するこ
とによって、超電導装置を運転後停止しても100K以
下の低温であった酸化物超電導体の表面に水滴が発生し
ないのでその特性が劣化することがなくなる。また、中
間接続金具に外部から冷媒を注入する冷媒配管と、この
冷媒配管と高温側リードの中空部とを連通する流通孔を
設けることによって、中間接続金具を酸化物超電導体が
超電導状態を維持するに必要な温度に冷却することと高
温側リードを冷却に必要な冷媒を通す流通孔を確保する
ことができる。また、冷媒は液体窒素でもヘリウムガス
でも良く、ヘリウムガスの場合は、超電導装置の外部か
ら供給してもよいが、液体ヘリウム容器内で液体ヘリウ
ムが蒸発して生成したヘリウムガスを冷媒配管まで導く
ように構成してもよい。
In the structure of the present invention, by keeping the inside of the tubular container of the low temperature side lead in which the oxide superconductor is housed in a vacuum, even if the superconducting device is stopped after the operation, the oxidation was at a low temperature of 100K or less. Since no water droplets are generated on the surface of the superconductor, its characteristics are not deteriorated. Further, by providing a refrigerant pipe for injecting a refrigerant from the outside to the intermediate connection fitting and a through hole communicating between the refrigerant piping and the hollow portion of the high temperature side lead, the intermediate connection fitting maintains the oxide superconductor in a superconducting state. It is possible to cool to a temperature necessary for cooling and to secure a flow hole through which the coolant necessary for cooling the high temperature side lead passes. Further, the refrigerant may be liquid nitrogen or helium gas, and in the case of helium gas, it may be supplied from outside the superconducting device, but the helium gas generated by the evaporation of liquid helium in the liquid helium container is guided to the refrigerant pipe. It may be configured as follows.

【0013】[0013]

【実施例】以下この発明を実施例に基づいて説明する。
図1はこの発明の実施例を示す電流リードの部分垂直断
面図であり、図3と同じ部材については共通の符号を付
け類似のものには添字Aを付けて共通の事項に関する説
明を省く。この図において、低温側リード22Aに真空
引封止配管224を設け、低温端子21Aには図3の低
温端子21には設けられていた流通孔213を無くし、
中間接続金具20Aも図3の中間接続金具20に設けら
れていた流通孔201を無くし、代わりに高温側リード
23の中空部233が外部に連通する流通孔201Aを
設け冷媒配管202に接続する構成を採用している。し
たがって、低温側リード22Aの中空部223は真空封
止配管224につながっている以外は何にも連通してい
ない。
EXAMPLES The present invention will be described below based on examples.
FIG. 1 is a partial vertical cross-sectional view of a current lead showing an embodiment of the present invention. The same members as those in FIG. 3 are designated by the same reference numerals and the similar members are denoted by a suffix A to omit the explanation of common matters. In this figure, the low temperature side lead 22A is provided with a vacuum suction sealing pipe 224, and the low temperature terminal 21A is eliminated with the flow hole 213 provided in the low temperature terminal 21 of FIG.
The intermediate connection fitting 20A also eliminates the flow hole 201 provided in the intermediate connection fitting 20 of FIG. 3, and instead, the hollow portion 233 of the high temperature side lead 23 is provided with a flow hole 201A communicating with the outside and connected to the refrigerant pipe 202. Has been adopted. Therefore, the hollow portion 223 of the low temperature side lead 22A does not communicate with anything other than the vacuum sealing pipe 224.

【0014】中空部223Aは真空引封止配管224を
真空ポンプに接続して真空引きして真空状態にし、その
上で真空引封止配管224を封じきってしまう。したが
って、電流リード2Aに電流が流れる超電導装置の運転
中も停止中も酸化物超電導体222は真空状態にある中
空部223Aの中にあって、従来の電流リード2のよう
に水滴が付着したり湿度の高い空気に触れるなど酸化物
超電導体222の特性が劣化する要因が排除される。
In the hollow portion 223A, the vacuum suction sealing pipe 224 is connected to a vacuum pump to evacuate it to a vacuum state, and then the vacuum suction sealing pipe 224 is completely sealed. Therefore, the oxide superconductor 222 is in the hollow portion 223A in a vacuum state while the superconducting device in which a current flows through the current lead 2A is in operation or stopped, and water droplets are attached to the oxide superconductor 222 as in the conventional current lead 2. A factor that deteriorates the characteristics of the oxide superconductor 222 such as contact with air with high humidity is eliminated.

【0015】図3に示すように、高温側リード23を冷
却するためのヘリウムガス41は低温側リード22を介
して供給されていたので前述のように低温側リード22
Aの内部を真空に保持する構成を採用したことによって
高温側リード23へのヘリウムガス41の供給路がなく
なったので、図1のように、中間接続金具20Aの中に
外部に通ずる流通孔201Aを設け、冷媒配管202を
通じてヘリウムガス41を供給する構成を採用する。
As shown in FIG. 3, since the helium gas 41 for cooling the high temperature side lead 23 was supplied through the low temperature side lead 22, as described above, the low temperature side lead 22.
Since the supply passage of the helium gas 41 to the high temperature side lead 23 is eliminated by adopting the structure of keeping the inside of A in vacuum, as shown in FIG. 1, the intermediate connection fitting 20A has a through hole 201A communicating with the outside. Is provided and the helium gas 41 is supplied through the refrigerant pipe 202.

【0016】高温側リード23を冷却する冷媒としてヘ
リウムガス41を実際に使用し、そのヘリウムガス41
は従来と同様に液体ヘリウム4が気化することによって
生ずるものを使用する場合でも、中間接続金具20Aが
設けられる位置は液体ヘリウム容器10の外にあるの
で、何らかの方法で冷媒配管202までヘリウムガスを
導入する必要がある。また、冷媒によって冷却される中
間接続金具20Aの温度は酸化物超電導体222が超電
導状態になる温度以下であればよいので、100K以下
に冷却されればよい。したがって、冷媒として安価な液
体窒素(77K)を使用することもできる。ただ、この
場合は過冷却になって液体窒素が凝固する恐れがあるの
で、これを防止するために中間接続金具20Aに発熱体
を取付けるという配慮が必要である。
The helium gas 41 is actually used as a coolant for cooling the high temperature side lead 23.
Even when using a liquid helium 4 generated by vaporization as in the conventional case, since the position where the intermediate connection fitting 20A is provided is outside the liquid helium container 10, the helium gas is supplied to the refrigerant pipe 202 by some method. Need to be introduced. Further, the temperature of the intermediate connection fitting 20A cooled by the refrigerant may be equal to or lower than the temperature at which the oxide superconductor 222 becomes the superconducting state, and thus may be cooled to 100K or lower. Therefore, cheap liquid nitrogen (77K) can also be used as the refrigerant. However, in this case, there is a risk that the liquid nitrogen will be solidified due to overcooling, so in order to prevent this, it is necessary to consider attaching a heating element to the intermediate connection fitting 20A.

【0017】中空部223Aは真空状態を保持しなけれ
ばならないので、これを構成する筒状容器221A、中
間接続金具20A及び低温端子212Aそれぞれの接続
は真空を長期にわたって保持するのに充分な気密性が必
要であるし、筒状容器221Aの外部は常圧なので1気
圧に相当する気圧差に耐えることができる機械的強度も
必要である。ただ、このような要件は従来の技術の範囲
で容易に満足できるものである。
Since the hollow portion 223A has to maintain a vacuum state, the connection of the cylindrical container 221A, the intermediate connecting metal fitting 20A and the low temperature terminal 212A constituting the hollow portion 223A is airtight enough to hold the vacuum for a long period of time. Since the outside of the cylindrical container 221A is at normal pressure, it is also necessary to have mechanical strength capable of withstanding a pressure difference corresponding to 1 atm. However, such a requirement is easily satisfied within the scope of conventional techniques.

【0018】酸化物超電導体222が超電導状態にある
限り電流による損失は発生しないので中間接続金具20
Aを冷却してその温度を100K以下に保持する限り問
題はなく、酸化物超電導体222そのものを冷却する必
要はないので従来のような低温側リード22の中空部2
23A内にヘリウムガスを流す必要はなく、真空が保持
されていても冷却上の問題が生ずることはない。
As long as the oxide superconductor 222 is in the superconducting state, no loss due to current will occur, so the intermediate connecting fitting 20
There is no problem as long as A is cooled and the temperature thereof is maintained at 100 K or less, and it is not necessary to cool the oxide superconductor 222 itself.
It is not necessary to flow helium gas into 23A, and there is no problem in cooling even if the vacuum is maintained.

【0019】[0019]

【発明の効果】この発明は前述のように、酸化物超電導
体が収納される筒状容器内を真空に保持することによっ
て、酸化物超電導体が100K以下の極低温を維持して
いる超電導装置の運転状態の後、運転を停止した場合で
も常温空気が筒状容器内に流入することがないので、酸
化物超電導体の表面に水滴が生じることがない。したが
って、酸化物超電導体が水分によって特性が劣化するこ
とがなくなり信頼性の高い電流リードになるという効果
が得られる。また、中間接続金具に外部から冷媒を注入
する冷媒配管と、この冷媒配管から注入された冷媒を高
温側リードの中空部まで導く流通孔を設けて、中間接続
金具を冷却して酸化物超電導体の超電導状態への維持
と、高温側リードに冷媒を通す流通孔の確保という両方
の役目を果たさせることができる。このときの冷媒は液
体窒素でもヘリウムガスでも良く、また、ヘリウムガス
の場合は超電導装置の外部から供給してもよいが、液体
ヘリウム容器内で液体ヘリウムが蒸発して生成したヘリ
ウムガスを冷媒配管まで導くように構成してもよい。
As described above, according to the present invention, the inside of the cylindrical container in which the oxide superconductor is housed is kept in vacuum, so that the oxide superconductor maintains a cryogenic temperature of 100 K or less. Even if the operation is stopped after the operation state of (1), normal temperature air does not flow into the cylindrical container, so that water droplets do not occur on the surface of the oxide superconductor. Therefore, the characteristics of the oxide superconductor are not deteriorated by moisture, and the current lead having high reliability can be obtained. Further, a refrigerant pipe for injecting a refrigerant from the outside to the intermediate connection fitting and a flow hole for guiding the refrigerant injected from this refrigerant pipe to the hollow portion of the high temperature side lead are provided to cool the intermediate connection fitting to cool the oxide superconductor. Can maintain both the superconducting state and the circulation hole through which the refrigerant passes in the high temperature side lead. The refrigerant at this time may be liquid nitrogen or helium gas, and in the case of helium gas, it may be supplied from the outside of the superconducting device, but the helium gas generated by evaporation of liquid helium in the liquid helium container is used as a refrigerant pipe. You may comprise so that it may lead to.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す超電導装置の電流リー
ドの部分垂直断面図
FIG. 1 is a partial vertical sectional view of a current lead of a superconducting device showing an embodiment of the present invention.

【図2】従来の超電導装置の電流リードを示す回転断面
図を含む立面図
FIG. 2 is an elevation view including a rotating cross-sectional view showing a current lead of a conventional superconducting device.

【図3】図2の電流リードの部分垂直断面図FIG. 3 is a partial vertical sectional view of the current lead shown in FIG.

【符号の説明】[Explanation of symbols]

1 超電導コイル 2A 電流リード 21A 低温端子 211 端子金具 212A 接続金具 22 低温側リード 221 筒状容器 222 酸化物超電導体 223 中空部 224 真空引封止配管 23 高温側リード 231 筒状容器 233 中空部 20A 中間接続金具 201A 流通孔 202 冷媒配管 10 液体ヘリウム容器 4 液体ヘリウム 41 ヘリウムガス 1 superconducting coil 2A current lead 21A low temperature terminal 211 terminal metal fitting 212A connection metal fitting 22 low temperature side lead 221 cylindrical container 222 oxide superconductor 223 hollow part 224 vacuum suction sealing pipe 23 high temperature side lead 231 cylindrical container 233 hollow part 20A middle Connection fitting 201A Circulation hole 202 Refrigerant pipe 10 Liquid helium container 4 Liquid helium 41 Helium gas

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】外部電源に接続される常温端子を備えた高
温側リード、超電導コイルにコイルリードを介して接続
され低温端子を備えた低温側リード及びこれら高温側リ
ードと低温側リードを電気的機械的に接続する中間接続
金具からなり、低温側リードが、棒状の酸化物超電導体
とこれを収納する筒状容器とからなる超電導装置の電流
リードにおいて、酸化物超電導体が収納される筒状容器
内が真空に保持されてなることを特徴とする超電導装置
の電流リード。
1. A high temperature side lead having a room temperature terminal connected to an external power source, a low temperature side lead having a low temperature terminal connected to a superconducting coil via a coil lead, and these high temperature side lead and low temperature side lead are electrically connected. In the current lead of a superconducting device consisting of an intermediate connecting metal fitting that mechanically connects and the low temperature side lead consisting of a rod-shaped oxide superconductor and a cylindrical container accommodating this, a tubular shape in which the oxide superconductor is accommodated. A current lead of a superconducting device, characterized in that the inside of the container is held in vacuum.
【請求項2】中間接続金具に冷媒が注入される冷媒配管
及びこの冷媒配管と高温側リード内部とを連通する流通
孔が設けられてなることを特徴とする請求項1記載の超
電導装置の電流リード。
2. The electric current of the superconducting device according to claim 1, wherein the intermediate connection fitting is provided with a refrigerant pipe for injecting a refrigerant and a flow hole communicating the refrigerant pipe with the inside of the high temperature side lead. Reed.
【請求項3】冷媒が液体窒素であることを特徴とする請
求項2記載の超電導装置の電流リード。
3. The current lead for a superconducting device according to claim 2, wherein the refrigerant is liquid nitrogen.
【請求項4】冷媒が、ヘリウムガスであることを特徴と
する請求項2記載の超電導装置の電流リード。
4. The current lead for a superconducting device according to claim 2, wherein the refrigerant is helium gas.
【請求項5】ヘリウムガスが、液体ヘリウム容器内で液
体ヘリウムが蒸発して生成され冷媒配管まで導かれたも
のであることを特徴とする請求項4記載の超電導装置の
電流リード。
5. The current lead of a superconducting device according to claim 4, wherein the helium gas is generated by the evaporation of liquid helium in the liquid helium container and is led to the refrigerant pipe.
JP19658693A 1993-08-09 1993-08-09 Superconducting device current leads Expired - Lifetime JP3339118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19658693A JP3339118B2 (en) 1993-08-09 1993-08-09 Superconducting device current leads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19658693A JP3339118B2 (en) 1993-08-09 1993-08-09 Superconducting device current leads

Publications (2)

Publication Number Publication Date
JPH0750207A true JPH0750207A (en) 1995-02-21
JP3339118B2 JP3339118B2 (en) 2002-10-28

Family

ID=16360206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19658693A Expired - Lifetime JP3339118B2 (en) 1993-08-09 1993-08-09 Superconducting device current leads

Country Status (1)

Country Link
JP (1) JP3339118B2 (en)

Also Published As

Publication number Publication date
JP3339118B2 (en) 2002-10-28

Similar Documents

Publication Publication Date Title
US20080115510A1 (en) Cryostats including current leads for electronically powered equipment
US20080227647A1 (en) Current lead with high temperature superconductor for superconducting magnets in a cryostat
JP2006324325A (en) Super-conducting magnet apparatus
GB2476716A (en) Current lead assembly and its cooling method, suitable for a superconducting magnet
JP2002270913A (en) Superconductive coil unit and mri device
JP6104007B2 (en) Current supply device
US5563369A (en) Current lead
JP2952552B2 (en) Current leads for superconducting equipment
JPH0750207A (en) Current lead of superconducting device
JP3100083B2 (en) Cooling method of power supply line for cryogenic electric device and apparatus for implementing the method
JP2006108560A (en) Current lead for superconductive apparatus
JP2004111581A (en) Superconducting magnet unit
US20120007703A1 (en) Current lead assembly for superconducting magnet
JPH07131079A (en) High-temperature superconductor current lead
JP4337253B2 (en) Superconducting current lead
JP2003324013A (en) Oxide superconductor current lead
JPH0869911A (en) Superconducting magnet device
JP2515813B2 (en) Current lead for superconducting equipment
JP2581283B2 (en) Current lead for superconducting coil
JPH06268266A (en) Superconducting device
JP3860070B2 (en) Thermoelectric cooling power lead
JPH0955545A (en) Current lead for superconductive apparatus
JPS5898991A (en) Superconductive device
JPH11297524A (en) Current lead for superconducting device
JPH0983020A (en) Current lead for superconducting unit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070816

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130816

Year of fee payment: 11

EXPY Cancellation because of completion of term