JPH0750132B2 - AC / DC difference comparison measurement method using U-shaped resistance thermoelectric AC / DC converter - Google Patents

AC / DC difference comparison measurement method using U-shaped resistance thermoelectric AC / DC converter

Info

Publication number
JPH0750132B2
JPH0750132B2 JP3189139A JP18913991A JPH0750132B2 JP H0750132 B2 JPH0750132 B2 JP H0750132B2 JP 3189139 A JP3189139 A JP 3189139A JP 18913991 A JP18913991 A JP 18913991A JP H0750132 B2 JPH0750132 B2 JP H0750132B2
Authority
JP
Japan
Prior art keywords
converter
difference
thermocouple
heater
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3189139A
Other languages
Japanese (ja)
Other versions
JPH0510984A (en
Inventor
源太 米崎
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP3189139A priority Critical patent/JPH0750132B2/en
Publication of JPH0510984A publication Critical patent/JPH0510984A/en
Publication of JPH0750132B2 publication Critical patent/JPH0750132B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、U字状抵抗(ヒー
タ)式熱電型交直流変換器による交直差比較測定方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an AC / DC difference comparison measuring method using a U-shaped resistance (heater) type thermoelectric AC / DC converter.

【0002】[0002]

【従来の技術】低周波交流電圧(電流)を精密に測定す
るには、低周波交流電圧(電流)を直流電圧(電流)と
比較する必要がある。
2. Description of the Related Art In order to measure a low frequency AC voltage (current) with precision, it is necessary to compare the low frequency AC voltage (current) with a DC voltage (current).

【0003】従来、この比較のために、抵抗線(ヒー
タ)に電流を流し、その温度上昇を熱電対で検出する、
所謂熱電型交直流変換器が用いられている。この熱電型
交直流変換器は使用する熱電対の数によって単一熱電対
式熱電型交直流変換器(以下、SJTCと記す)と多数
熱電対式熱電型交直流変換器(以下、MJTCと記す)
とに分類されるが、何れも変換器に交流電圧(電流)を
印加し、その出力である熱起電力が同じとなる直流電圧
(電流)を調整して、直流電圧(電流)と比較すること
により、交流電圧(電流)の実効値を得るものである。
Conventionally, for this comparison, a current is passed through a resistance wire (heater), and the temperature rise is detected by a thermocouple.
A so-called thermoelectric AC / DC converter is used. This thermoelectric type AC / DC converter has a single thermocouple type thermoelectric type AC / DC converter (hereinafter referred to as SJTC) and a large number of thermocouple type thermoelectric type DC / DC converters (hereinafter referred to as MJTC) depending on the number of thermocouples used. )
In both cases, the AC voltage (current) is applied to the converter, and the DC voltage (current) that produces the same thermoelectromotive force as the output is adjusted and compared with the DC voltage (current). By doing so, the effective value of the AC voltage (current) is obtained.

【0004】この比較時に、交流電圧と直流電圧に少し
違いが生じるが、これを変換器の交直差と称し、この交
直差の小さな変換器が望ましく、低周波交流電圧(電
流)の精密測定に際しては、交直差が予め明らかな熱電
型交直流変換器を使用する必要がある。
At the time of this comparison, there is a slight difference between the AC voltage and the DC voltage. This difference is called the AC / DC difference of the converter. A converter with a small AC / DC difference is desirable, and is used for precise measurement of low frequency AC voltage (current). Requires the use of a thermoelectric type AC / DC converter whose AC / DC difference is known in advance.

【0005】しかし、従来熱電型交直流変換器の交直差
測定には交直差測定の基礎となる標準器がなく、変換器
の交直差の絶対値を測定することができなかった。そこ
で、従来は複数個の変換器のうちから2個ずつを取り出
してその交直差を比較測定し、交直差が最も小さなもの
を使用するようにしている。
However, in the AC / DC difference measurement of the conventional thermoelectric type AC / DC converter, there is no standard device as a basis for the AC / DC difference measurement, and the absolute value of the AC / DC difference of the converter cannot be measured. Therefore, conventionally, two converters are taken out from each of the plurality of converters, and the AC / DC difference is comparatively measured, and the one having the smallest AC / DC difference is used.

【0006】図3はこの比較測定のために使用されてい
る回路であって、本図においてTC1、TC2 は比較測定す
る第1の変換器、第2の変換器であって、ここでは第1
の変換器TC1 の熱起電力E1が第2の変換器TC2 の熱起電
力E2より大きい場合を想定している。
FIG. 3 shows a circuit used for this comparative measurement. In this figure, TC 1 and TC 2 are the first and second converters for comparative measurement. First
Thermoelectromotive force E 1 of the transducer TC 1 is assumed second thermoelectromotive force E 2 is greater than the converter TC 2.

【0007】変換器TC1 、およびTC2 は直列に接続さ
れ、これに精密電流電源Va,Vd からそれぞれ交流および
直流順方向、直流逆方向と連続的に電流を流す。なお、
変換器TC1 の熱起電力E1を抵抗器R1,R2 で分圧し、変換
器TC2 の熱起電力E2とほぼ等しくし、この差電圧および
標準となる変換器TC2 を、2つの精密デジタル電圧計DV
M1、DVM2 で測定する。この時の電源切り換え並びにデー
タの取り組み、交直差の差の計算処理はコントローラで
行なわれる。
The converters TC 1 and TC 2 are connected in series, and currents are continuously supplied from the precision current sources Va and Vd to the AC and DC forward directions and the DC reverse direction, respectively. In addition,
Divide the thermoelectromotive force E 1 of the transducer TC 1 with resistors R 1, R 2 minute, and substantially equal to the thermoelectromotive force E 2 of converter TC 2, the transducer TC 2 comprising a difference voltage and standard, Two precision digital voltmeters DV
Measure with M1 and DVM2. At this time, the controller performs the switching of the power source, the data processing, and the calculation processing of the difference between the AC / DC difference.

【0008】[0008]

【発明が解決しようとする課題】しかし、上述のように
複数個の変換器のうちから2個ずつを取り出してその交
直差を比較測定し、交直差が最も小さなものを選択して
低周波交流電圧(電流)の精密測定に使用する方法にお
いては、使用する変換器の交直差が標準器を基礎として
定められたものでなく、相対的な値であるため、これを
用いた低周波交流電圧(電流)の測定においても、十分
な精度を望むことができない。
However, as described above, two converters are taken out from each of the plurality of converters, and the AC / DC difference is comparatively measured. The AC / DC difference is selected and the low frequency AC is selected. In the method used for precise measurement of voltage (current), the AC / DC difference of the converter used is not a standard value based on the standard, but is a relative value. Even in the measurement of (current), sufficient accuracy cannot be expected.

【0009】また、上述の方法においては使用する変換
器の選択手順が煩雑であると同時に、低周波交流電圧
(電流)の精密測定に際してその都度使用する変換器の
選択を行なわなければならない等の難点がある。
Further, in the above-mentioned method, the procedure for selecting the converter to be used is complicated, and at the same time, the converter to be used must be selected each time the low-frequency AC voltage (current) is precisely measured. There are difficulties.

【0010】したがって、熱電型交直流変換器の交直差
を比較測定するに際して標準器の交直差の尺度として変
換器の交直差を測定することが望まれるが、従来理想的
な標準器がなく、この方法は確立されていない。
Therefore, it is desired to measure the AC / DC difference of the converter as a measure of the AC / DC difference of the standard device in the comparative measurement of the AC / DC difference of the thermoelectric AC / DC converter, but there is no ideal standard device in the past. This method is not established.

【0011】一方、上述のSJTCについてはWiddis等
によって交直差の測定式が導かれていたが、MJTCに
ついては十分な解析がなされておらず、SJTCの交直
差の測定式をそのまま適用して測定がなされていた。
On the other hand, for SJTC described above, the measurement formula of the AC / DC difference was introduced by Widdis, etc., but the MJTC has not been sufficiently analyzed, and the measurement formula of the AC / DC difference of SJTC is applied as it is. Was being done.

【0012】これに対して、本願発明者は絶縁基板上に
多数の熱電対を直列に接続し、該熱電対の一側の接点群
にはU字状のヒータを近接せしめ、該熱電対の他側の接
点群にはヒートシンクを近接せしめたMJTCについ
て、伝熱方程式の厳密な解を求め、これより精密な交直
差を求めたところ、このU字状ヒータのMJTCにおい
て交直差が零乃至零に近い値になることを見出した。即
ち、理想的な標準器となることを見出した。
On the other hand, the inventor of the present application connects a large number of thermocouples in series on an insulating substrate, and brings a U-shaped heater close to a contact group on one side of the thermocouple, so that An exact solution of the heat transfer equation was obtained for an MJTC with a heat sink placed close to the contact group on the other side, and a more precise AC / DC difference was obtained. It was found that the value is close to. That is, it was found that it would be an ideal standard device.

【0013】[0013]

【課題を解決するための手段】そこで、この発明は以上
の知見に基づき、絶縁基板上に多数の熱電対を直列に接
続し、該熱電対の一側の接点群にはU字状のヒータを近
接せしめ、該熱電対の他側の接点群にはヒートシンクを
近接せしめたMJTCを標準器として、熱電型交直流変
換器の交直差を比較測定する方法を提案するものであ
る。
Therefore, the present invention is based on the above findings, in which a large number of thermocouples are connected in series on an insulating substrate, and a U-shaped heater is provided at a contact group on one side of the thermocouple. And a heat sink close to the contact group on the other side of the thermocouple as a standard device, a method for comparatively measuring the AC / DC difference of the thermoelectric AC / DC converter is proposed.

【0014】このU字状のヒータのMJTCについて、
伝熱方程式の厳密な解を求め、これより交直差の測定式
を導くのは次のような手順による。先ず、直線状ヒータ
のMJTCのヒータに交流電流を流した場合の伝熱方程
式に境界条件を入れて一般解を求め、これをU字状ヒー
タのMJTCのヒータに交流電流を流した場合の一般解
とする。
Regarding the MJTC of this U-shaped heater,
The following procedure is used to obtain an exact solution of the heat transfer equation and derive the equation for measuring the AC / DC difference from this. First, a general solution is obtained by including boundary conditions in the heat transfer equation when an AC current is applied to a linear heater MJTC heater, and a general solution is obtained by applying an AC current to a U-shaped heater MJTC heater. The solution.

【0015】一方、直線状ヒータのMJTCのヒータに
直流電流を流した場合の伝熱方程式に上記直線状ヒータ
をU字状に折り返した場合の境界条件を入れてU字状ヒ
ータのMJTCのヒータに直流電流を流した場合の一般
解を求め、これらの一般解をヒータの長さに亙って積分
し、これらの積分値を交直差の定義式に代入して交直差
の測定式を求める。
On the other hand, the boundary condition when the linear heater is folded back in a U shape is added to the heat transfer equation when a direct current is applied to the heater of the MJTC linear heater, and the heater of the MJTC heater is a U-shaped heater. Obtain a general solution when a DC current is applied to, integrate these general solutions over the length of the heater, and substitute these integrated values into the definition formula of the AC / DC difference to obtain the AC / DC difference measurement formula. .

【0016】[0016]

【実施例】以下、この発明を図示の実施例に基づいて詳
細に説明する。図1は、直線状のヒータのMJTCを示
すもので、絶縁膜からなる基板1上にはその両側に接点
を長手方向に並べて直列に接続された熱電対2がある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the illustrated embodiments. FIG. 1 shows an MJTC of a linear heater. On a substrate 1 made of an insulating film, there are thermocouples 2 on both sides of which are arranged in series with contacts arranged in the longitudinal direction.

【0017】基板1の一側には長さ2Lの直線状抵抗膜
3(ヒータ)があり、その両端には端子金具4が接続さ
れている。
A linear resistance film 3 (heater) having a length of 2 L is provided on one side of the substrate 1, and terminal fittings 4 are connected to both ends thereof.

【0018】また、抵抗膜3には上記熱電対2の一側接
点群2aを近接させ、これを熱電対2の温接点としてい
る。
Further, the one side contact group 2a of the thermocouple 2 is brought close to the resistance film 3, and this is used as a hot junction of the thermocouple 2.

【0019】なお、この実施例では抵抗膜3の両端から
熱電対2の一側接点群2aが延設されるようにしてある。
In this embodiment, the one side contact group 2a of the thermocouple 2 is extended from both ends of the resistance film 3.

【0020】一方、基板1の他側には例えば銅ブロック
で構成されるヒートシンク5が設けられ、このヒートシ
ンク5には上記熱電対2の他側接点群2bが接続され、温
度の基準点(冷接点)としている。
On the other hand, on the other side of the substrate 1, there is provided a heat sink 5 composed of, for example, a copper block, and the other side contact group 2b of the thermocouple 2 is connected to the heat sink 5, and the temperature reference point (cooling point) Contact point).

【0021】このように構成されたMJTCには端子金
具4、4の入力端子4a、4a より電流Iが供給されると、
抵抗膜3は発熱して接点群2aの温度が上昇し、室温に保
たれた接点群2bとの間に熱起電力が生じ、各熱電対の起
電力は加算され、熱電対2の両端の端子に接続した出力
端子5a、5aに表われる。
When the current I is supplied from the input terminals 4a, 4a of the terminal fittings 4, 4 to the MJTC thus constructed,
The resistance film 3 generates heat and the temperature of the contact group 2a rises, a thermoelectromotive force is generated between the resistance film 3 and the contact group 2b kept at room temperature, the electromotive force of each thermocouple is added, and both ends of the thermocouple 2 are Appears at the output terminals 5a, 5a connected to the terminals.

【0022】一方、図2は図1の直線状の抵抗膜3を原
点を中心にU字状に折り返して構成したU字状ヒータの
MJTCを示すもので、U字状抵抗膜3(ヒータ)の外
周には熱電対2の一側接点群2aが近接されており、他に
ついては図1と同様であるので、同一符号を使用してそ
の説明を省略する。
On the other hand, FIG. 2 shows an MJTC of a U-shaped heater formed by folding back the linear resistance film 3 of FIG. 1 in a U-shape around the origin, and the U-shaped resistance film 3 (heater). The one side contact group 2a of the thermocouple 2 is close to the outer circumference of the above, and the other parts are the same as those in FIG.

【0023】次に、U字状ヒータのMJTCの交直差の
測定式を求める手順を示す。先ず、図1の直線状ヒータ
のMJTCの抵抗膜3に交流電流を流した場合の伝熱方
程式を求めるには、抵抗膜3の中点を原点とし、一方の
端子金具4までの距離を+L、他方の端子金具4までの
距離を−Lとし、抵抗膜の断面積をa1、その熱伝導度を
k1、抵抗率をρとする。
Next, the procedure for obtaining the measurement formula of the MJTC AC / DC difference of the U-shaped heater will be described. First, in order to obtain the heat transfer equation when an alternating current is applied to the resistance film 3 of the MJTC of the linear heater of FIG. 1, the middle point of the resistance film 3 is set as the origin and the distance to one of the terminal fittings 4 is + L. , The distance to the other terminal fitting 4 is -L, the cross-sectional area of the resistance film is a 1 , and its thermal conductivity is
Let k 1 and resistivity be ρ.

【0024】抵抗膜3から熱電対2方向への熱流を考え
る。この場合、熱電対2の断面積は金属により厚さが異
なり、また蒸着されている所といない所では厚さが異な
るので、厚さを平均化する単位長さ7当たりの等価断面
積を使用し、熱電対2の等価断面積をa2、その等価熱伝
導度をk2とする。このk2は熱電対2の熱伝度ではなく、
抵抗膜3と熱電対2は接していないことを考慮したもの
である。
Consider the heat flow from the resistance film 3 to the thermocouple 2. In this case, the cross-sectional area of the thermocouple 2 differs depending on the metal, and the thickness differs depending on where it is vapor-deposited, so use the equivalent cross-sectional area per unit length 7 to average the thickness. Then, the equivalent cross-sectional area of the thermocouple 2 is a 2 , and its equivalent thermal conductivity is k 2 . This k 2 is not the heat conductivity of thermocouple 2,
This is because the resistance film 3 and the thermocouple 2 are not in contact with each other.

【0025】抵抗膜3の任意のx線での微小面素dxから
冷接点迄ので熱流について考える。抵抗膜3の熱伝導は
a1k1(d2 θ/dx2)dx であり、熱電対2に伝達される熱は
a2k2(d2 θ/dx2)dx であり、更にこの面でのジュール熱
は( ρI2/a1)dxとなる。
Consider the heat flow from the micro-plane element dx to the cold junction at any x-ray of the resistive film 3. The heat conduction of the resistance film 3
a 1 k 1 (d 2 θ / dx 2 ) dx, and the heat transferred to thermocouple 2 is
a 2 k 2 (d 2 θ / dx 2 ) dx, and the Joule heat on this surface is (ρI 2 / a 1 ) dx.

【0026】これらが平衡しているので、伝熱方程式と
して次の(2)式が成り立つ。 a1k1(d2 θ/dx2) +a2k2(d2 θ/dx2) +ρI2/a1 =0 (2) この式はトムソン効果、ペルチェ効果のない時、即ち交
流電流が流れた場合である。
Since these are in equilibrium, the following equation (2) is established as a heat transfer equation. a 1 k 1 (d 2 θ / dx 2 ) + a 2 k 2 (d 2 θ / dx 2 ) + ρI 2 / a 1 = 0 (2) This equation is obtained when there is no Thomson effect or Peltier effect, that is, when the AC current is It is when it flows.

【0027】ここで、b=(ρI2/a1 )/(a1k1+a
2k2) とすると、(2)は下記(3)式のように変形さ
れる。 d2θ/dx2=−b (3)
Here, b = (ρI 2 / a 1 ) / (a 1 k 1 + a
2 k 2 ), (2) is transformed into the following equation (3). d 2 θ / dx 2 = -b (3)

【0028】抵抗膜3に交流を流したときの境界条件を
x=±Lで温度θ0 とし、(3)式にこの境界条件を代
入すると、原点に対して対称な下記(4)式によって表
わされる一般解が得られる。
When the boundary condition when an alternating current is applied to the resistance film 3 is x = ± L and the temperature is θ 0, and this boundary condition is substituted into the formula (3), the following formula (4) symmetrical with respect to the origin is obtained. The general solution represented is obtained.

【0029】 θ−θ0 =b/2(L2 −x2 ) (4)Θ−θ 0 = b / 2 (L 2 −x 2 ) (4)

【0030】次に、抵抗膜3に直流電流を流した場合の
伝熱方程式を求める。この場合、温度勾配のある所に直
流電流を流すと発熱(または吸熱)する。これがトムソ
ン効果である。
Next, a heat transfer equation when a direct current is applied to the resistance film 3 will be obtained. In this case, heat is generated (or heat is absorbed) when a direct current is applied to a place having a temperature gradient. This is the Thomson effect.

【0031】このトムソン係数をαとすると、トムソン
効果による発熱量はαId θである。そこで、伝熱方程
式は(2)にトムソン効果が加わり、下記(5)式とし
て得られる。
When the Thomson coefficient is α, the amount of heat generated by the Thomson effect is αId θ. Therefore, the heat transfer equation is obtained as the following equation (5) by adding the Thomson effect to (2).

【0032】 a1k1(d2 θ/dx2) +a2k2(d2 θ/dx2) +ρI2/a1 +αId θ/dx =0 (5)A 1 k 1 (d 2 θ / dx 2 ) + a 2 k 2 (d 2 θ / dx 2 ) + ρI 2 / a 1 + αId θ / dx = 0 (5)

【0033】ここで、C=αI/(a1k1+a2k2) とする
と、(5)は下記(6)式のように変形される。 d2θ/dx2+Cd θ/dx +b=0 (6)
Here, assuming that C = αI / (a 1 k 1 + a 2 k 2 ), equation (5) is transformed into equation (6) below. d 2 θ / dx 2 + Cd θ / dx + b = 0 (6)

【0034】次に、抵抗膜3と端子金具4の接点に直流
電流が流れるとペルチェ効果により接点に発熱(または
吸熱)が生じ、x=+Lで温度θ0 +Δθとなり、x=
−Lで温度θ0 −Δθとなる。
Next, when a direct current flows through the contact point between the resistance film 3 and the terminal fitting 4, heat (or heat absorption) occurs at the contact point due to the Peltier effect, and the temperature becomes θ 0 + Δθ at x = + L, and x =
At −L, the temperature becomes θ 0 −Δθ.

【0035】この境界条件を(6)に入れると、下記
(7)式で表わされる一般解が得られる。 θ−θ0 =(bL/C +Δθ) {(1/tanhCL)-e-Cx/sinhCL}−bx/C (7)
By inserting this boundary condition into (6), a general solution represented by the following expression (7) is obtained. θ-θ 0 = (bL / C + Δθ) {(1 / tanhCL) -e -Cx / sinhCL} -bx / C (7)

【0036】次に抵抗膜3をU字状に折り返した時、位
置xと原点に関して対称な位置−xではトムソン係数が
逆符号となるので、位置+xの温度θ+ 、位置−xの温
度θ- は上記(7)式より、下記(8)(9)式のよう
になる。
Next, when the resistance film 3 is folded back in a U-shape, the Thomson coefficient has the opposite sign at the position -x which is symmetrical with respect to the position x with respect to the origin, so that the temperature θ + at the position + x and the temperature θ at the position -x. - than equation (7), it becomes: (8) (9).

【0037】 θ+ −θ0 =(bL/C +Δθ){(1/tanhCL)-e-Cx/sinhCL} −bx/C (8) θ- −θ0 =(-bL/C + Δθ){-(1/tanhCL)+e-Cx/sinhCL}−bx/C (9)Θ + −θ 0 = (bL / C + Δθ) {(1 / tanhCL) -e −Cx / sinhCL} −bx / C (8) θ −θ 0 = (-bL / C + Δθ) {-(1 / tanhCL) + e -Cx / sinhCL} −bx / C (9)

【0038】また、抵抗膜3はU字状で、位置xと−x
は互いに近接しているので、抵抗膜3の任意の位置xで
の温度は上記(8)(9)式の平均値で表わされる。即
ち、下記(10)式のようになる。
The resistance film 3 is U-shaped and has positions x and -x.
Are close to each other, the temperature at any position x of the resistance film 3 is represented by the average value of the above equations (8) and (9). That is, it becomes like the following formula (10).

【0039】 ( θ+ + θ- -2θ0 )/2 =(bL/C ){(1/tanhCL)-e-Cx/sinhCL}−bx/C (10)+ + θ --0 ) / 2 = (bL / C) {(1 / tanhCL) -e -Cx / sinhCL} -bx / C (10)

【0036】即ち、直線状の抵抗膜3ではペルチェ効果
により、両電流端子間では温度差Δθがあるとした解が
(10)式より明らかなように、抵抗膜3をU字状にする
と、温度差Δθの項(ペルチェ効果)がなくなる。
That is, there is a solution that the linear resistance film 3 has a temperature difference Δθ between both current terminals due to the Peltier effect.
As is clear from the equation (10), when the resistance film 3 is U-shaped, the term of the temperature difference Δθ (Peltier effect) disappears.

【0040】また、図2に示したように、両電流端子は
同一金属熱留上に近接して設けられているため、温度差
はないとすることができる。
Further, as shown in FIG. 2, since both current terminals are provided close to each other on the same metal heat trap, it can be said that there is no temperature difference.

【0041】熱電対2の熱起電力は抵抗膜3の任意の位
置xの温度θに比例する。その比例定数をKとすると、
熱起電力はx=−Lからx=+Lまで積分することによ
って得られる。
The thermoelectromotive force of the thermocouple 2 is proportional to the temperature θ at an arbitrary position x of the resistance film 3. If the proportional constant is K,
The thermoelectromotive force is obtained by integrating from x = -L to x = + L.

【0042】したがって、抵抗膜3に交流電流が流れた
時の全熱起電力EACは上記(4)式をx=−Lからx=
Lまで積分し、その積分値を下記(11)式により得られ
る。
Therefore, the total thermoelectromotive force E AC when an alternating current flows through the resistance film 3 is obtained by the above equation (4) from x = −L to x =
It is integrated up to L, and the integrated value is obtained by the following equation (11).

【0043】 [0043]

【0044】同様にして直流電流を流した時の熱起電力
の総和EDCとすると、EDCは(10)式をx=−Lからx
=Lまで積分して得られた積分値を下記(12)式として
得られる。
Similarly, assuming that the total of the electromotive force E DC when a direct current is applied is E DC , E DC can be calculated from the equation (10) by x = -L to x.
The integral value obtained by integrating up to = L is obtained as the following equation (12).

【0045】 [0045]

【0046】ここで、具体的にはCL〈〈1が成り立つ
ので、上記(12)式を近似展開すると、下記(13)式が得ら
れる。
Here, specifically, CL << 1 holds. Therefore, when the above equation (12) is approximately expanded, the following equation (13) is obtained.

【0047】 EDC=K2/3bL3 (13)E DC = K2 / 3bL 3 (13)

【0048】上記(11) 式と(13)式を交直差δの定義式
{(EAC−EDC)/EDC}に代入すると、下記(14)式が
得られる。 δ=(EAC−EDC)/EDC=0 (14)
By substituting the above equations (11) and (13) into the defining equation {(E AC −E DC ) / E DC } of the direct-current difference δ, the following equation (14) is obtained. δ = (E AC −E DC ) / E DC = 0 (14)

【0049】即ち、抵抗膜3がU字状ヒータのMJTC
においては交直差δは一次近似で零、高次無限小では零
に近く、非常に小さいことが明かとなった。したがっ
て、このMJTCは理想的な標準器とすることができ
る。
That is, the resistance film 3 is an MJTC of a U-shaped heater.
In, it was revealed that the AC / DC difference δ is very small, which is close to zero in the first-order approximation and close to zero in high-order infinity. Therefore, this MJTC can be an ideal standard.

【0050】U字状ヒータのMJTCを標準器とした熱
電型交直流変換器の交直差比較測定は例えば図3に示す
回路を用いて行なうことができ、この場合第2の変換器
TC2の設置箇所に標準器となるU字状ヒータのMJTC
を設置し、第1の変換器TC1の設置箇所には比較測定す
る変換器を設置し、測定方法は上述の従来法と同様に行
なう。
The AC / DC difference comparison measurement of the thermoelectric type AC / DC converter using the MJTC of the U-shaped heater as a standard device can be performed by using, for example, the circuit shown in FIG. 3, in which case the second converter is used.
UJ-shaped heater MJTC that serves as a standard device at the location where TC 2 is installed
Is installed, a converter for comparative measurement is installed at the installation location of the first converter TC 1 , and the measuring method is the same as the above-mentioned conventional method.

【0051】[0051]

【発明の効果】以上要するに、この発明では交直差が零
乃至零に非常に近いU字状ヒータのMJTCを標準器と
して使用するため、非常に高精度で熱電型交直流変換器
の交直差の比較測定を行なうことができる。
In summary, according to the present invention, since the MJTC of the U-shaped heater having the AC / DC difference of 0 or very close to 0 is used as the standard device, the AC / DC difference of the thermoelectric type AC / DC converter can be very accurately achieved. Comparative measurements can be made.

【0052】なお、ここではU字状ヒータのMJTCに
ついて説明したが、従来より知られている立体MJT
C、或はU字状のヒータとして抵抗線を使用したもの、
或は抵抗線をバイフィラーにしたもの何れにも適用する
ことができる。
Although the MJTC of the U-shaped heater has been described here, the conventionally known three-dimensional MJTC.
A heater using a resistance wire as a C or U-shaped heater,
Alternatively, it can be applied to any one in which the resistance wire is a bifiller.

【0053】また、この発明では理想的な標準器を使用
するため、熱電型交直流変換器の比較測定が簡便に行な
うことができる。
Further, in the present invention, since the ideal standard device is used, the comparative measurement of the thermoelectric type AC / DC converter can be easily performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の原理を説明するために使用する直線
状ヒータのMJTCをモデル化した平面図
FIG. 1 is a plan view modeling the MJTC of a linear heater used for explaining the principle of the present invention.

【図2】この発明の原理を説明するために使用するU字
状ヒータのMJTCをモデル化した平面図
FIG. 2 is a plan view modeling the MJTC of a U-shaped heater used for explaining the principle of the present invention.

【図3】熱電型交直流変換器の交直差の比較測定回路[Fig. 3] Comparative measurement circuit of AC / DC difference of thermoelectric AC / DC converter

【符号の説明】[Explanation of symbols]

1 絶縁基板 2 熱電対 3 抵抗膜 4 端子金具 5 ヒートシンク 2a 一側の熱電対接点群 2b 他側の熱電対接点群 1 Insulating board 2 Thermocouple 3 Resistive film 4 Terminal fitting 5 Heat sink 2a Thermocouple contact group on one side 2b Thermocouple contact group on the other side

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 直線状の抵抗膜を原点を中心にU字状に
折り返して構成されたU字状のヒータの両電流端子を同
一金属熱留上に近接して設け、更に該ヒータの外周には
絶縁基板上に直列に接続された多数の熱電対の一側の接
点群を近接させ、該熱電対の他側の接点群にはヒートシ
ンクを近接せしめて多熱電対式熱電型交直流変換器を構
成し、該熱電型交直流変換器を標準器として、熱電型交
直流変換器の交直差を比較測定することを特徴とするU
字状抵抗式熱電型交直流変換器の交直差比較測定方法。
1. A linear resistance film is formed in a U-shape centering on the origin.
Both current terminals of the U-shaped heater that is folded back
(1) It is provided close to the heat retaining metal, and further on the outer circumference of the heater.
Connection of one side of many thermocouples connected in series on an insulating substrate
Bring the point cloud close to each other and apply heat to the contact group on the other side of the thermocouple.
The thermoelectric type AC / DC converter with multiple thermocouples
U, characterized in that the thermoelectric type AC / DC converter is used as a standard device to compare and measure the AC / DC difference of the thermoelectric type AC / DC converter.
Measuring method for AC / DC difference of thermoelectric type AC / DC converter with resistance type.
【請求項2】 交直差が零乃至零に近い多熱電対式熱電
型交直流変換器を標準器として使用する特許請求の範囲
第1項記載の方法。
2. The method according to claim 1, wherein a multi-thermocouple type thermoelectric type AC / DC converter having an AC / DC difference of zero or close to zero is used as a standard.
JP3189139A 1991-07-03 1991-07-03 AC / DC difference comparison measurement method using U-shaped resistance thermoelectric AC / DC converter Expired - Lifetime JPH0750132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3189139A JPH0750132B2 (en) 1991-07-03 1991-07-03 AC / DC difference comparison measurement method using U-shaped resistance thermoelectric AC / DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3189139A JPH0750132B2 (en) 1991-07-03 1991-07-03 AC / DC difference comparison measurement method using U-shaped resistance thermoelectric AC / DC converter

Publications (2)

Publication Number Publication Date
JPH0510984A JPH0510984A (en) 1993-01-19
JPH0750132B2 true JPH0750132B2 (en) 1995-05-31

Family

ID=16236067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3189139A Expired - Lifetime JPH0750132B2 (en) 1991-07-03 1991-07-03 AC / DC difference comparison measurement method using U-shaped resistance thermoelectric AC / DC converter

Country Status (1)

Country Link
JP (1) JPH0750132B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101414157B1 (en) * 2013-04-25 2014-07-02 한국표준과학연구원 Multi-junction thermal converter with high ouput voltage whose rated current can be designed and method for operating thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668517B2 (en) * 1987-03-19 1994-08-31 工業技術院長 Multi-thermocouple type thermoelectric AC / DC converter

Also Published As

Publication number Publication date
JPH0510984A (en) 1993-01-19

Similar Documents

Publication Publication Date Title
US3733887A (en) Method and apparatus for measuring the thermal conductivity and thermo-electric properties of solid materials
Roberts The absolute scale of thermoelectricity
KR0145027B1 (en) Measuring thermal conductivity and apparatus therefor
WO2015025586A1 (en) Thermophysical property measurement method and thermophysical property measurement device
CN111721802B (en) Comprehensive measuring device and method for thermal and electrical physical properties of two-dimensional material
Wilkins et al. Multijunction thermal convertor. An accurate dc/ac transfer instrument
Chen et al. Low-frequency ac measurement of the Seebeck coefficient
JP6607469B2 (en) Thermophysical property measuring method and thermophysical property measuring device
JPH0750132B2 (en) AC / DC difference comparison measurement method using U-shaped resistance thermoelectric AC / DC converter
Shirley Steady‐state temperature profiles in narrow thin‐film conductors
US1407147A (en) A corpora
JP7079471B2 (en) Thermophysical property measuring device and thermophysical property measuring method
Fujiki et al. Development on measurement method for Thomson coefficient of thin film
US3111844A (en) Heat rate measuring apparatus
US1765563A (en) Louis a
JPH0750131B2 (en) Method of measuring AC / DC difference in multi-thermocouple type thermoelectric AC / DC converter
Inglis et al. Current-independent ac-dc transfer errors in single-junction thermal converters
Zhang et al. Method for reduction of ac-dc transfer error caused by the Thomson effect for the multijunction thermal converter
WO2024214475A1 (en) Parameter acquisition method for thermoelectric conversion module, information provision method, current value list creation method, and computer program
WO2024116508A1 (en) Peltier coefficient calculation method, program, and measurement system
Bode Measurements of the thermal conductivity of metals at high temperatures
JPH0143903B2 (en)
RU1790759C (en) Method of measuring thermal conductivity of electroconductive specimen
Xu et al. An online test microstructure for thermal conductivity of surface-micromachined polysilicon thin films
SU759967A1 (en) Thermotransducer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term