JPH0749528B2 - Polymer composite manufacturing method - Google Patents

Polymer composite manufacturing method

Info

Publication number
JPH0749528B2
JPH0749528B2 JP63305164A JP30516488A JPH0749528B2 JP H0749528 B2 JPH0749528 B2 JP H0749528B2 JP 63305164 A JP63305164 A JP 63305164A JP 30516488 A JP30516488 A JP 30516488A JP H0749528 B2 JPH0749528 B2 JP H0749528B2
Authority
JP
Japan
Prior art keywords
polymer
temperature
solution
film
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63305164A
Other languages
Japanese (ja)
Other versions
JPH02151661A (en
Inventor
利雄 西原
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP63305164A priority Critical patent/JPH0749528B2/en
Publication of JPH02151661A publication Critical patent/JPH02151661A/en
Publication of JPH0749528B2 publication Critical patent/JPH0749528B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 繊維強化プラスチックは、飛躍的に向上した物性の故に
耐荷重構造用材料として重要視され各種各様の材料が開
発され、実用化されてきた。かかる複合材料の製造に
は、別途製造された強化用繊維を一方向に並べる工程
や、更にマトリックスを含浸させる工程を要し、しかも
その際オートクレーブ中で行う工程が入る等の複雑な段
階的操作を必要とする。
DETAILED DESCRIPTION OF THE INVENTION Fiber-reinforced plastics are regarded as important as load-bearing structural materials because of their dramatically improved physical properties, and various kinds of materials have been developed and put into practical use. The production of such a composite material requires a step of arranging separately produced reinforcing fibers in one direction and a step of further impregnating a matrix, and at that time, a complicated stepwise operation such as a step performed in an autoclave is included. Need.

一方複合材料の強度と耐久度は、強化用繊維とマトリッ
クス高分子との界面の状態に大きく左右される。両者の
界面は繊維自体がマクロなため、そこに存在する欠陥は
マクロに伝播し、複合材料の破壊につながる。
On the other hand, the strength and durability of the composite material largely depend on the state of the interface between the reinforcing fiber and the matrix polymer. Since the fiber itself is a macro at the interface between the two, defects existing there propagate to the macro, leading to the destruction of the composite material.

かかる欠点を解決するために、マクロな形状でしか分散
しえない繊維状強化材に代えて、高モジュラスの補強用
高分子とマトリックス高分子とを共通溶媒中に溶解し
て、両者をミクロな分子的オーダで混合しこれを凝固・
成形することにより、補強用高分子が極めてミクロな状
態で分散,混合し、しかも補強用高分子が配向してなる
高分子複合体を製造することが検討されてきた。
In order to solve such a drawback, in place of the fibrous reinforcing material that can be dispersed only in a macro shape, a high modulus reinforcing polymer and a matrix polymer are dissolved in a common solvent, and both are micro-dispersed. Mix by molecular order and solidify /
It has been studied to produce a polymer composite in which the reinforcing polymer is dispersed and mixed in an extremely microscopic state by molding and the reinforcing polymer is oriented.

本発明者らは、現在有機高分子繊維として、優れた引張
りモジュラスを与えるポリ−p−フェニレンベンゾビス
チアゾール等のポリアゾール系高分子を補強用高分子と
して用い、各種マトリックスポリマーとの各組合せ系で
の高モジュラス化について検討を進めてきた。
The present inventors have now used, as an organic polymer fiber, a polyazole-based polymer such as poly-p-phenylenebenzobisthiazole, which gives an excellent tensile modulus, as a reinforcing polymer, and in each combination system with various matrix polymers. We have been studying the high modulus of.

本発明者らは、先に該高分子溶液の等方性相から異方性
相への相転移過液状態を利用して高モジュラスの繊維,
フイルムを得る手段を提案した(特願昭61−47191
号)。しかしながら、高分子複合体のフイルムを積層し
た成形物を得るためには、該フイルムの厚さを厚くした
方が形成上有利であるが、上記の湿式成形では厚さを厚
くすると凝固性が悪化し、良好なフイルムが得られなか
った。
The inventors of the present invention previously used a high-modulus fiber by utilizing a liquid phase transition from an isotropic phase to an anisotropic phase of the polymer solution,
Proposed a method for obtaining a film (Japanese Patent Application No. 61-47191)
issue). However, in order to obtain a molded product in which a film of a polymer composite is laminated, it is advantageous in terms of formation to increase the thickness of the film, but in the above wet molding, increasing the thickness deteriorates the coagulation property. However, a good film could not be obtained.

本発明者らは、かかる問題点を解決すべくポリ−p−フ
ェニレンベンゾビスチアゾール等のポリアゾール系高分
子を補強用高分子として用い、マトリックス高分子とし
て屈曲性高分子を用いた系での高モジュラス化及び厚膜
化について鋭意検討した結果、本発明に到達したもので
ある。
In order to solve such a problem, the present inventors have used a polyazole-based polymer such as poly-p-phenylene benzobisthiazole as a reinforcing polymer and a flexible polymer as a matrix polymer. The present invention has been achieved as a result of intensive studies on the modulus and the film thickness.

即ち本発明は、実質的に棒状骨格を有するポリアゾール
からなる補強高分子(A)と融着性を有するマトリック
ス高分子(B)とを主として含有し、かつ光学的擬等方
性を示す温度領域と光学的異方性を示す温度領域とを有
する高分子溶液を、ダイ又はオリフィスから気体中に押
し出し、次いで凝固浴中に導入し、しかして連続的に引
取ることからなる高分子複合体の製造法において、当該
ダイ又はオリフィスの温度は当該高分子溶液が光学的擬
等方性を示す温度領域内にあるように保持され、当該凝
固浴の温度は当該高分子溶液が光学的擬等方性を示す温
度領域内にあるように保持されていることを特徴とする
高分子複合体の製造法である。
That is, the present invention mainly comprises a reinforcing polymer (A) substantially composed of a polyazole having a rod-like skeleton and a matrix polymer (B) having a fusion property, and has a temperature range exhibiting optical pseudo-isotropy. And a temperature range exhibiting optical anisotropy, a polymer solution is extruded into a gas from a die or an orifice, then introduced into a coagulation bath, and then continuously taken out. In the manufacturing method, the temperature of the die or the orifice is maintained so that the polymer solution is in a temperature range in which the polymer solution exhibits optical pseudoisotropy, and the temperature of the coagulation bath is such that the polymer solution is optically pseudoisotropic. A method for producing a polymer composite, which is characterized in that the polymer composite is held so as to be in a temperature range exhibiting the property.

本発明において用いる補強高分子(A)としては、下記
[但し、式中Xは−S−,−O−又は を表わし、結合手(イ),(ロ)は、更にアゾール環又
は炭化水素環を形成する結合手であるか、或いはその一
方に水素原子が結合し、他方が結合手であるものであ
る。] で表わされるアゾール骨格を有する実質的に棒状骨格の
ポリアゾールが挙げられ、具体的には、米国特許第4,20
7,407号明細書に記載されたポリマーがあり、就中ポリ
ーp−フェニレンベンゾビスチアゾール,ポリ−p−フ
ェニレンベンゾオキサゾール,ポリ−p−フェニレンベ
ンゾビスイミダゾール等のポリアゾール類が挙げられ
る。
The reinforcing polymer (A) used in the present invention has the following formula [Wherein X is -S-, -O- or The bonds (a) and (b) are bonds that further form an azole ring or a hydrocarbon ring, or one of them has a hydrogen atom bonded thereto and the other has a bond. ] A substantially rod-like skeleton polyazole having an azole skeleton represented by
There are polymers described in the specification of No. 7,407, and polyazoles such as poly-p-phenylene benzobisthiazole, poly-p-phenylene benzoxazole, and poly-p-phenylene benzobisimidazole can be mentioned.

補強高分子(A)の分子量は通常分子量の目安となる固
有粘度が2以上であり、好ましくは2.5以上、特に好ま
しくは3以上である。
Regarding the molecular weight of the reinforcing polymer (A), the intrinsic viscosity which is a standard of the molecular weight is usually 2 or more, preferably 2.5 or more, particularly preferably 3 or more.

本発明において用いられるマトリックス高分子(B)
は、補強高分子(A)と同一溶媒に溶解するものであ
り、ナイロン6,ナイロン66,ナイロン610,ナイロン12,ナ
イロン11等の脂肪族ポリアミド;ポリヘキサメチレンイ
ソフタルアミド等の半芳香族ポリアミド;ポリメタフェ
ニレンイソフタルアミド等の芳香族ポリアミド;エーテ
ル基等の屈曲性基を導入した屈曲性芳香族ポリアミド;
ポリエステル;ポリカーボネート;ポリ酢酸ビニル;ポ
リサルフォン;ポリエーテルサルフォン;ポリエーテル
イミド,ポリエーテルケトン;ポリフェニレンサルファ
イド等があげられる。
Matrix polymer (B) used in the present invention
Are soluble in the same solvent as the reinforcing polymer (A), and are aliphatic polyamides such as nylon 6, nylon 66, nylon 610, nylon 12, nylon 11; semi-aromatic polyamides such as polyhexamethylene isophthalamide; Aromatic polyamides such as polymetaphenylene isophthalamide; Flexible aromatic polyamides having flexible groups such as ether groups introduced;
Polyester; polycarbonate; polyvinyl acetate; polysulfone; polyether sulfone; polyether imide, polyether ketone; polyphenylene sulfide and the like.

共通溶媒としては、構成ポリマーを溶解するものであれ
ばよく、例えば濃硫酸,メタンスルホン酸,クロルスル
ホン酸,ポリリン酸,トリフロロ酢酸,リン酸等の酸性
溶媒が挙げられる。これらは適宜混合して用いても良
い。また溶解した高分子の加水分解を押えるため、溶媒
中の水の量をできるだけ少くするための添加剤を混入し
てもよい。例えば発煙硫酸,クロルスルホン酸等の添加
があげられる。
The common solvent may be any solvent that can dissolve the constituent polymers, and examples thereof include acidic solvents such as concentrated sulfuric acid, methanesulfonic acid, chlorosulfonic acid, polyphosphoric acid, trifluoroacetic acid, and phosphoric acid. These may be appropriately mixed and used. Further, in order to suppress the hydrolysis of the dissolved polymer, an additive for reducing the amount of water in the solvent as much as possible may be mixed. Examples include addition of fuming sulfuric acid and chlorosulfonic acid.

高分子複合体形成用の原液は、上記共通溶媒に補強高分
子とマトリックス高分子とを溶解した高分子溶液であ
り、該高分子溶液は光学的擬等方性を示す温度領域と、
光学的異方性を示す温度領域が必要である。
A stock solution for forming a polymer complex is a polymer solution in which a reinforcing polymer and a matrix polymer are dissolved in the common solvent, and the polymer solution has a temperature range exhibiting optical pseudo-isotropicity,
A temperature range showing optical anisotropy is required.

光学的擬等方性を示す温度領域と光学的異方性を示す温
度領域は、ポリマーの種類,重合度,成分比及び濃度に
よって変化するものであるが、以下の測定方法により決
定することができる。
The temperature range showing optical quasi-isotropy and the temperature range showing optical anisotropy vary depending on the type of polymer, the degree of polymerization, the component ratio and the concentration, but they can be determined by the following measurement methods. it can.

即ち、所定の高分子溶液を調製し、それをスライドガラ
ス上に薄くのばして配置し、高分子溶液の厚さが0.1mm
になるようにしてプレパラートでおさえる。かくして調
製されたサンプルを直交ニコルを有する偏光顕微鏡の観
察下におく。先ずサンプルの温度を0℃に下げて、スラ
イドガラス上の高分子複合体溶液を光学的異方性を示す
状態とする。
That is, prepare a predetermined polymer solution, spread it thinly on a slide glass and arrange it, and the thickness of the polymer solution is 0.1 mm.
And hold it in preparation. The sample thus prepared is placed under the observation of a polarizing microscope with crossed Nicols. First, the temperature of the sample is lowered to 0 ° C. to bring the polymer composite solution on the slide glass into a state exhibiting optical anisotropy.

融点測定装置(YANAGIMOTO(株))を用い、偏光顕微鏡
で観察しながらサンプルの温度を徐々に(5℃/min)上
昇させると、特定の温度において視野が暗くなり光学的
等方性の状態に変化したことが観察される。この時の温
度を転移温度と名づける。等方性になったことを確認後
この温度から、スライドガラス上の高分子溶液を徐々に
(2℃/min)冷却する。
When the temperature of the sample is gradually increased (5 ° C / min) while observing with a polarization microscope using a melting point measuring device (YANAGIMOTO Co., Ltd.), the visual field becomes dark at a specific temperature and becomes an optical isotropic state. It is observed that it has changed. The temperature at this time is named the transition temperature. After confirming that it became isotropic, the polymer solution on the slide glass is gradually cooled (2 ° C / min) from this temperature.

冷却方法としては、サンプル置台のまわりに冷媒を流す
冷却ユニットをとりつけこれをコントロールすることに
よって所定の温度変化を得る。冷却温度は0℃までとす
る。このサンプルを直交ニコルを有する偏光顕微鏡で観
察すると、温度低下と共にある温度の所で視野像が明る
くなり始める。この温度を擬相転移温度と呼ぶことにす
る。
As a cooling method, a predetermined temperature change is obtained by mounting and controlling a cooling unit that causes a coolant to flow around the sample table. The cooling temperature is up to 0 ° C. When this sample is observed with a polarizing microscope having a crossed Nicols, the visual field image starts to become bright at a certain temperature as the temperature decreases. This temperature is called the pseudo-phase transition temperature.

擬相転移温度は相転移温度よりも低く、一般に相転移温
度が高くなる程、相転移温度と擬相転移温度との温度差
は小さくなる。一回、等方性相にした後の相転移温度と
擬相転移温度範囲の該高分子溶液を擬等方性相と呼ぶこ
とにする。系によっては相転移温度が出現しても、擬相
転移温度が0℃までの冷却では出現しない場合がある。
The quasi phase transition temperature is lower than the phase transition temperature, and generally, the higher the phase transition temperature, the smaller the temperature difference between the phase transition temperature and the quasi phase transition temperature. The polymer solution having a phase transition temperature and a pseudo-phase transition temperature range once converted into the isotropic phase will be referred to as a pseudo-isotropic phase. Depending on the system, even if the phase transition temperature appears, it may not appear when the pseudo phase transition temperature is cooled to 0 ° C.

このような系に於いては、擬等方性領域は転移温度から
0℃までの温度範囲に於いて出現していることを示して
いる。
In such a system, it is shown that the pseudo isotropic region appears in the temperature range from the transition temperature to 0 ° C.

厚物でも良好なフイルムは、擬等方性の溶液をTダイか
ら同じ擬等方性温度範囲に保持された凝固浴中に押し出
すことによって得ることができる。溶媒に成分ポリマー
を溶解して得た高分子複合体溶液は、光学的異方性相か
ら昇温して光学的等方性相にした後、冷却して擬等方性
相の状態にすることによって良好なフイルムを得ること
ができる。単に溶解後の高分子複合体溶液を擬等方性転
移温度と転移温度間に昇温してもこの効果は小さい。
A film which is good in thickness can be obtained by extruding a pseudo-isotropic solution from a T-die into a coagulation bath maintained in the same pseudo-isotropic temperature range. A polymer composite solution obtained by dissolving component polymers in a solvent is heated from an optically anisotropic phase to an optically isotropic phase, and then cooled to a pseudo isotropic phase state. As a result, a good film can be obtained. This effect is small even if the temperature of the polymer complex solution after dissolution is raised between the quasi-isotropic transition temperature and the transition temperature.

本発明方法においては、補強高分子,マトリックス高分
子の種類,分子量,溶媒系及び各高分子の成分比・濃度
が決定されると上記測定方法に従って光学的擬等方性,
光学的異方性を示す温度領域をそれぞれ測定し、ダイ又
はオリフィスの温度を光学的擬等方性温度領域に、凝固
浴の温度を光学的擬等方性温度領域にそれぞれ保持し、
公知の方法に従ってダイ又はオリフィスから高分子溶液
を押し出し、気体を経由して凝固浴中に導き、連続的に
引き取ることにより半乾半湿的にフイルム又は繊維を製
造する。
In the method of the present invention, when the reinforcing polymer, the type of the matrix polymer, the molecular weight, the solvent system, and the component ratio / concentration of each polymer are determined, the optical pseudoisotropic property according to the above measurement method
Each temperature region showing optical anisotropy is measured, the temperature of the die or the orifice is kept in the optical pseudo isotropic temperature region, and the temperature of the coagulation bath is kept in the optical pseudo isotropic temperature region, respectively.
According to a known method, a polymer solution is extruded from a die or an orifice, introduced into a coagulation bath via a gas, and continuously taken out to produce a film or fiber semi-dry and semi-moist.

この際、ダイ又はオリフィスから押し出された擬等方性
の高分子溶液は、凝固浴中で擬等方性の温度のまま凝固
が進行することになる。このため補強高分子は等方性溶
液から凝固させたものに比べてさらに一層棒状の集合体
の形成が促進されこの分散がその後の延伸操作による配
向性向上に有効に働くものと思われる。
At this time, the quasi-isotropic polymer solution extruded from the die or the orifice is allowed to coagulate in the coagulation bath at the quasi-isotropic temperature. Therefore, it is considered that the reinforcing polymer further promotes the formation of rod-shaped aggregates as compared with the one solidified from an isotropic solution, and this dispersion is effective in improving the orientation by the subsequent stretching operation.

高分子溶液を等方性溶液の状態からTダイから吐出した
場合には、良好なフイルムを得ることができない。補強
高分子がミクロに分散しすぎて、その後の延伸による高
分子の配向性に良い結果を持たらさないためと思われ
る。
When the polymer solution is discharged from the T-die in the state of isotropic solution, a good film cannot be obtained. This is probably because the reinforcing polymer was dispersed in the microscopic state too much and did not give a good result to the orientation of the polymer by the subsequent stretching.

又高分子溶液を光学的異方性の状態からTダイから吐出
すると、補強ポリマーはマクロに分散しすぎてその後の
延伸性が劣り良好なフイルムが得られない。凝固浴温度
は本発明の効果を引き出す上で重要な因子である。凝固
浴温度が擬相転移温度以下の領域にあると、厚膜の製膜
時、Tダイから吐出した高分子溶液の凝固が完了する前
に、高分子溶液が凝固温湿度になり、その結果、マクロ
な相分離に進行しすぎて、延伸性に優れた良好なフイル
ムが得られなくなる。
When the polymer solution is discharged from the T-die in the optically anisotropic state, the reinforcing polymer is excessively dispersed in the macro and the subsequent stretchability is poor and a good film cannot be obtained. The coagulation bath temperature is an important factor in bringing out the effect of the present invention. If the coagulation bath temperature is in the range below the pseudo-phase transition temperature, the polymer solution becomes coagulation temperature / humidity before the coagulation of the polymer solution discharged from the T die is completed during thick film formation. However, since the macrophase separation proceeds too much, a good film having excellent stretchability cannot be obtained.

本発明において用いられる補強高分子(A)とマトリッ
クス高分子(B)の割合はA/A+Bが5〜45%の範囲に
あるのがよい。補強高分子(A)が5%よりも小さい場
合には、補強効果が小さく45%を越すと、補強高分子
(A)の配向性が低下し本発明の特徴を発現することが
できない。
The ratio of the reinforcing polymer (A) and the matrix polymer (B) used in the present invention is preferably such that A / A + B is in the range of 5 to 45%. When the reinforcing polymer (A) is less than 5%, the reinforcing effect is small, and when it exceeds 45%, the orientation of the reinforcing polymer (A) is lowered and the characteristics of the present invention cannot be exhibited.

本発明において用いられる固有粘度とは、100%硫酸も
しくはメタンスルホン酸もしくはクロルスルホン酸に補
強高分子(A)の濃度が0.2g/100ccになるように溶解
後、30℃で常法により求めたηinhである。補強高分子
(A)が上記の溶媒のいずれにも溶解する時は、その中
でもっとも低い値をその補強高分子(A)の固有粘度と
する。
The intrinsic viscosity used in the present invention is determined by a conventional method at 30 ° C. after dissolving in 100% sulfuric acid, methanesulfonic acid or chlorosulfonic acid so that the concentration of the reinforcing polymer (A) is 0.2 g / 100 cc. ηinh. When the reinforcing polymer (A) dissolves in any of the above solvents, the lowest value among them is taken as the intrinsic viscosity of the reinforcing polymer (A).

以下に本発明の効果を実施例をもって示すが、実施例中
の百分率は、ことわらない限り重量基準で示す。繊維・
フイルムの機械的性質は、サンプル長10cmを毎分100%
の伸長速度で測定したものである。
The effects of the present invention will be shown below with reference to examples, and the percentages in the examples are based on weight unless otherwise specified. fiber·
The mechanical properties of the film are 100% per minute for a sample length of 10 cm.
It was measured at the elongation rate of.

該高分子溶液を凝固するための凝固液としては、用いる
溶媒に非溶解性の溶媒を混合した系、例えば、硫酸水溶
液,メタンスルホン酸水溶液,リン酸水溶液等が挙げら
れる。
As a coagulation liquid for coagulating the polymer solution, a system in which a solvent used is mixed with an insoluble solvent, for example, an aqueous solution of sulfuric acid, an aqueous solution of methanesulfonic acid, an aqueous solution of phosphoric acid and the like can be mentioned.

凝固液は単一浴でなく二浴以上にしても良い。この場合
第二浴以降は、第一浴上りのテープ,フイルム等を実質
的に凝固せしめるものであり、本発明の凝固浴条件を満
たす必要はない。凝固第一浴が本発明の条件を満たす必
要がある。
The coagulation liquid may be two or more baths instead of a single bath. In this case, after the second bath, the tape, film and the like after the first bath are substantially solidified, and it is not necessary to satisfy the coagulation bath conditions of the present invention. The coagulation first bath must meet the conditions of the present invention.

凝固上りの未延伸フイルムは、残存溶媒を十分に除いた
後、特に酸溶媒系ではアンモニアあるいは水酸化ナトリ
ウム等で中和処理することが必要である。
The unstretched film that has just solidified needs to be neutralized with ammonia, sodium hydroxide or the like, especially in an acid solvent system, after the residual solvent is sufficiently removed.

乾燥フイルムは、その後フイルム等の延伸で用いられて
いる通常の延伸操作によって高モジュラスなフイルムと
なる。
The dry film becomes a high-modulus film by a normal stretching operation that is then used for stretching the film or the like.

実施例1 補強高分子(A)として、ポリ−p−フェニレンベンゾ
ビスチアゾール(PPBTと略す)を常法に従って重合し、
メタンスルホン酸溶媒における固有粘度が3.6のものを
得た。
Example 1 As a reinforcing polymer (A), poly-p-phenylenebenzobisthiazole (abbreviated as PPBT) was polymerized by a conventional method,
An intrinsic viscosity of 3.6 in a methanesulfonic acid solvent was obtained.

マトリックス高分子(B)は、3,4′−ジアミノジフェ
ニルエーテル(50モル%)とパラフェニレンジアミン
(50モル%)とをN−メチルピロリドンに濃度が6%に
なるようにして、乾燥窒素雰囲気下に溶解せしめ、5℃
に冷却した後、激しく攪拌しながらテレフタル酸ジクロ
ライドの粉末(100モル%)を当該溶液にすみやかに添
加し、35℃で1時間重合反応を行ない、これを水にて沈
澱し中和して得た。以下該ポリマーをPPOT−50と略す。
PPOT−50のηinhは硫酸溶媒で3.6であった。PPBTとPPOT
−50の成分比が30/70になるようにしてメタンスルホン
酸に溶解し、ポリマー全濃度が6%のものを作成した。
該高分子複合体溶液の異方性から等方性に転移する温度
(相転移温度)は83℃であった。又等方性から冷却して
異方性相が出現しはじめる擬相転移温度は42℃であっ
た。
The matrix polymer (B) was prepared by adding 3,4'-diaminodiphenyl ether (50 mol%) and paraphenylenediamine (50 mol%) to N-methylpyrrolidone in a concentration of 6% under a dry nitrogen atmosphere. Dissolve in 5 ℃
After cooling to 50 ° C., terephthalic acid dichloride powder (100 mol%) was immediately added to the solution with vigorous stirring, and a polymerization reaction was carried out at 35 ° C. for 1 hour. It was Hereinafter, the polymer is abbreviated as PPOT-50.
Ηinh of PPOT-50 was 3.6 in sulfuric acid solvent. PPBT and PPOT
It was dissolved in methanesulfonic acid so that the component ratio of -50 would be 30/70 to prepare a polymer having a total concentration of 6%.
The temperature (phase transition temperature) at which the polymer composite solution transitions from anisotropy to isotropicity is 83 ° C. The quasi-phase transition temperature at which an anisotropic phase begins to appear upon cooling due to isotropicity was 42 ° C.

該高分子複合体溶液を相転移温度以上の85℃に加温後、
これを70℃に保持されたプランジャーに仕込んだ。プラ
ンジャーとTダイの間には、約30cmのパイプでつなぎ、
このパイプとTダイの温度を擬相転移温度と相転移温度
間の50℃に保った。Tダイか吐出する該高分子複合体溶
液温度は50℃を示した。
After heating the polymer composite solution to 85 ° C. which is higher than the phase transition temperature,
This was placed in a plunger maintained at 70 ° C. Connect the plunger and T-die with a pipe of about 30 cm,
The temperature of the pipe and the T-die was kept at 50 ° C between the pseudo-phase transition temperature and the phase transition temperature. The temperature of the polymer composite solution discharged from the T-die was 50 ° C.

凝固浴にはメタンスルホン酸の60%水溶液で温度は60℃
であった。凝固を開始したフイルムをさらにメタンスル
ホン酸30%の水溶液の40℃の第II液に浸漬し、それを水
で十分に洗浄した。水酸化ナトリウム水溶液で中和後さ
らに24時間水で洗浄した。ながまきテープはレール状の
固定枠にはめて定長自然乾燥後、さらに熱風乾燥器で15
0℃×6時間乾燥した。
The coagulation bath is a 60% aqueous solution of methanesulfonic acid and the temperature is 60 ° C.
Met. The film which started to coagulate was further dipped in a solution II containing 40% aqueous solution of 30% methanesulfonic acid and thoroughly washed with water. After neutralization with an aqueous sodium hydroxide solution, the mixture was washed with water for another 24 hours. Attach the Nagamaki tape to a rail-shaped fixing frame and allow it to dry for a fixed length, then use a hot air dryer to apply 15
It was dried at 0 ° C for 6 hours.

このサンプルを熱板390℃にて最高延伸倍率の0.8倍で延
伸した。得られたサンプルの性能は膜厚(μm)/モジ
ュラス(GPa)/伸度(%)/強度(GPa)=75/125/1.6
/1.3であった。
This sample was stretched at 390 ° C. on a hot plate at 0.8 times the maximum stretching ratio. The performance of the obtained sample is film thickness (μm) / modulus (GPa) / elongation (%) / strength (GPa) = 75/125 / 1.6
It was /1.3.

実施例2 補強高分子(A)として、ポリ−p−フェニレンベンゾ
ビスチアゾール(PPBT)を実施例1と同じように重合し
て固有粘度が5.4のものを得た。
Example 2 As the reinforcing polymer (A), poly-p-phenylenebenzobisthiazole (PPBT) was polymerized in the same manner as in Example 1 to obtain an intrinsic viscosity of 5.4.

PPBTと実施例1で作られたPPOT−50の成分比が25/75に
なるようにしてメタンスルホン酸に溶解し、ポリマー全
濃度が5.7%のものを作成した。該高分子複合体溶液の
相転移温度は85℃であった。又擬相転移温度は50℃であ
った。
PPBT and PPOT-50 prepared in Example 1 were dissolved in methanesulfonic acid so that the component ratio was 25/75 to prepare a polymer having a total concentration of 5.7%. The phase transition temperature of the polymer composite solution was 85 ° C. The quasi-phase transition temperature was 50 ℃.

該高分子溶液を相転移以上の85℃に加温後、これを60℃
に保持されたプランジャーに仕込んだ。Tダイから吐出
する該高分子複合体溶液の温度は60℃を示した。
After heating the polymer solution to 85 ° C above the phase transition, heat it to 60 ° C.
Charged into the plunger held by. The temperature of the polymer composite solution discharged from the T-die was 60 ° C.

凝固液はメタンスルホン酸の60%水溶液で、温度は60℃
であった。
The coagulation liquid is a 60% aqueous solution of methanesulfonic acid, and the temperature is 60 ° C.
Met.

その他の条件は実施例1と同じようにして膜厚(μm)
/モジュラス(GPa)/伸度(%)/強度(GPa)=83/1
20/1.6/1.2のフイルムを得た。
Other conditions are the same as in Example 1 and the film thickness (μm)
/ Modulus (GPa) / Elongation (%) / Strength (GPa) = 83/1
I got a film of 20 / 1.6 / 1.2.

比較例1 実施例1においてメタンスルホン酸に溶解した該高分子
複合体溶液を転移温度以下の45℃に昇温後、メタンスル
ホン酸60%の水溶液で凝固浴温度45℃の凝固浴中にTダ
イから吐出し製膜した。
Comparative Example 1 The polymer composite solution dissolved in methanesulfonic acid in Example 1 was heated to 45 ° C. below the transition temperature, and then treated with an aqueous solution of 60% methanesulfonic acid in a coagulation bath at a coagulation bath temperature of 45 ° C. It was discharged from the die to form a film.

製膜後のフイルムを実施例1と同じようにして、乾燥後
最高延伸倍率の0.8倍で延伸した。サンプルの力学特性
は 膜厚(μm)/モジュラス(GPa)/伸度(%)/強度
(GPa)=73/91/1.3/0.92 と低いものであった。
After the film formation, the film was dried in the same manner as in Example 1 and then stretched at a maximum draw ratio of 0.8. The mechanical properties of the sample were as low as film thickness (μm) / modulus (GPa) / elongation (%) / strength (GPa) = 73/91 / 1.3 / 0.92.

比較例2 実施例1に於いて、メタンスルホン酸に溶解した該高分
子溶液を転移温度以上の90℃に昇温後、そのままその温
度でTダイから温度60℃のメタンスルホン酸60%水溶液
中に空気層を介して押し出した。
Comparative Example 2 In Example 1, the temperature of the polymer solution dissolved in methanesulfonic acid was raised to 90 ° C., which is higher than the transition temperature, and then the temperature was maintained at that temperature from a T-die in a 60% aqueous solution of methanesulfonic acid. Extruded through the air layer.

製膜後のフイルムを実施例1と同じようにして乾燥後最
高延伸倍率の0.8倍で延伸した。サンプルの力学特性は 膜厚(μm)/モジュラス(GPa)/伸度(%)/強度
(GPa)=71/81/1.1/0.95 と劣っていた。
The film after film formation was dried in the same manner as in Example 1 and then stretched at a maximum draw ratio of 0.8. The mechanical properties of the sample were inferior as film thickness (μm) / modulus (GPa) / elongation (%) / strength (GPa) = 71/81 / 1.1 / 0.95.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】実質的に棒状骨格を有するポリアゾールか
らなる補強高分子(A)と融着性を有するマトリックス
高分子(B)とを主として含有し、かつ光学的擬等方性
を示す温度領域と光学的異方性を示す温度領域とを有す
る高分子溶液を、ダイ又はオリフィスから気体中に押し
出し、次いで凝固浴中に導入し、しかして連続的に引取
ることからなる高分子複合体の製造法において、当該ダ
イ又はオリフィスの温度は当該高分子溶液が光学的擬等
方性を示す温度領域内にあるように保持され、当該凝固
浴の温度は当該高分子溶液が光学的擬等方性を示す温度
領域内にあるように保持されていることを特徴とする高
分子複合体の製造法。
1. A temperature range mainly containing a reinforcing polymer (A) substantially composed of a polyazole having a rod-like skeleton and a matrix polymer (B) having a fusion property and exhibiting optical pseudo-isotropic property. And a temperature range exhibiting optical anisotropy, a polymer solution is extruded into a gas from a die or an orifice, then introduced into a coagulation bath, and then continuously taken out. In the manufacturing method, the temperature of the die or the orifice is maintained so that the polymer solution is in a temperature range in which the polymer solution exhibits optical pseudoisotropy, and the temperature of the coagulation bath is such that the polymer solution is optically pseudoisotropic. A method for producing a polymer composite, characterized in that the polymer composite is held so as to be in a temperature range exhibiting properties.
JP63305164A 1988-12-03 1988-12-03 Polymer composite manufacturing method Expired - Lifetime JPH0749528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63305164A JPH0749528B2 (en) 1988-12-03 1988-12-03 Polymer composite manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63305164A JPH0749528B2 (en) 1988-12-03 1988-12-03 Polymer composite manufacturing method

Publications (2)

Publication Number Publication Date
JPH02151661A JPH02151661A (en) 1990-06-11
JPH0749528B2 true JPH0749528B2 (en) 1995-05-31

Family

ID=17941835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63305164A Expired - Lifetime JPH0749528B2 (en) 1988-12-03 1988-12-03 Polymer composite manufacturing method

Country Status (1)

Country Link
JP (1) JPH0749528B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57109851A (en) * 1980-12-27 1982-07-08 Motoo Takayanagi Reinforced polymeric composition
JPS62205128A (en) * 1986-03-06 1987-09-09 Agency Of Ind Science & Technol Production of polymer composite
JPH0737577B2 (en) * 1986-08-29 1995-04-26 ザ・ユニバ−シテイ・オブ・アクロン Self-reinforcing polymer composite and method for producing the same

Also Published As

Publication number Publication date
JPH02151661A (en) 1990-06-11

Similar Documents

Publication Publication Date Title
US5356584A (en) Polybenzazole fibers with ultra-high physical properties and method for making them
CN100575397C (en) In prepreg, be used as the flexible polymer element of toughner
JPH0759763B2 (en) High-strength, high-modulus polyvinyl alcohol fiber and method for producing the same
AU632555B2 (en) Process for making oriented, shaped articles of para-aramid/thermally-consolidatable polymer blends
KR102096574B1 (en) Method for producing aramid nano fiber dispersion
KR20100114767A (en) Molecular miscible blend of aromatic polyamide and amorphous polymer, preparing method thereof, aromatic polyamide blend fiber using the same and dyeing method of the polyamide blend fiber
JPH01287167A (en) Production of high polymer composite material
US5366781A (en) Oriented, shape articles of lyotropic/thermally-consolidatable polymer blends
JPH0353336B2 (en)
JPH0749528B2 (en) Polymer composite manufacturing method
JP3093434B2 (en) Blends of polybenzimidazole with aromatic polyamides, aromatic polyamide-hydrazides or aromatic polyamides containing heterocyclic bonds
JPH0450333B2 (en)
JPH0637562B2 (en) Polymer composite manufacturing method
JP2936676B2 (en) Heat resistant film
JPH0689159B2 (en) Polymer composite manufacturing method
JPH0625266B2 (en) Method for producing polyazole biaxially oriented film
JP2001348726A (en) Method for producing dense poly(metaphenyleneisophthalamide)-based fiber
JPH0136785B2 (en)
JPH0476055A (en) Polymer composite and its preparation
JP3486653B2 (en) Method for producing aromatic polyamide film
JPH04146946A (en) Polymer composition
JPS58125744A (en) Optically anisotropic dope of polyamide
JPH07258411A (en) Aromatic polythiazole molecular composite material and its production
JPH03143923A (en) Wholly aromatic polyamide and its molding
JPH0376807A (en) Polyvinyl alcohol fiber having excellent hot-water resistance and high strength and modulus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term