JPH0450333B2 - - Google Patents

Info

Publication number
JPH0450333B2
JPH0450333B2 JP61047191A JP4719186A JPH0450333B2 JP H0450333 B2 JPH0450333 B2 JP H0450333B2 JP 61047191 A JP61047191 A JP 61047191A JP 4719186 A JP4719186 A JP 4719186A JP H0450333 B2 JPH0450333 B2 JP H0450333B2
Authority
JP
Japan
Prior art keywords
polymer
temperature
reinforcing
anisotropy
polymer solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61047191A
Other languages
Japanese (ja)
Other versions
JPS62205128A (en
Inventor
Toshio Nishihara
Hiroshi Mera
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61047191A priority Critical patent/JPS62205128A/en
Publication of JPS62205128A publication Critical patent/JPS62205128A/en
Publication of JPH0450333B2 publication Critical patent/JPH0450333B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Artificial Filaments (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<技術分野> 本発明は、補強高分子としてのポリアゾールと
マトリツクスとしての屈曲性高分子を含有する溶
液から、力学特性の優れた高分子複合体を製造す
る方法に関するものである。 <背景技術> 繊維強化プラスチツクスは、飛躍的に向上した
物性の故に耐荷重構造用複合材料として重要視さ
れ、各種各様の材料が開発され、実用化されてき
た。 かかる複合材料の製造には、別途製造された強
化用繊維を一方向に並べる工程や、更に強化され
るべきプラスチツクスをマトリツクス高分子とし
て含浸させる工程を要し、しかもその際オートク
レーブ中で行う工程が入る等の複雑な段階的操作
を必要とする。一方複合材料の強度と耐久度は、
強化用繊維とマトリツクス高分子との界面の状態
に大きく左右される。両者の界面は繊維自体がマ
クロな物体であるためマクロな界面であり、そこ
に存在する欠陥はマクロに伝播し、複合材料の破
壊につながる。 かかる欠点を解決するために、マクロな形状で
しか分散しえない繊維状強化材に代えて、ミクロ
に分子状に分散しうる高モジユラスな補強用高分
子を用いて、それとマトリツクス用高分子とを共
通溶媒中に溶解して両者をミクロな分子状に混合
し、これを凝固・成形することにより、補強成分
と被補強成分とが極めてミクロな状態で分散・混
合し、しかも配向している高分子複合体を製造す
ることが検討されてきた。 従来、複合材料に用いられてきた強化用繊維
は、それが高モジユラスの有機繊維になればなる
ほどフイブリス化しやすくなるが、上記の如き高
分子複合体にすることにより高モジユラスであり
しかもフイブリル化しにくいものが得られること
も考えられ、それに向けての研究もなされてき
た。 ところで、これら高分子複合体の力学特性を向
上させるためには、、高分子複合体の一次成形体
(例えばテープ状、フイルム状或いは繊維状成形
体)の中で、補強用高分子を、更に必要によつて
はマトリツクス高分子をも、高配向する必要があ
る。 十分に両高分子が配向した場合には、モジユラ
スは各高分子の成分単独で期待される値の各成分
比の和で表わされる値となるものであるが、実際
には配向が不十分であるためこの値より低いのが
現状である。 本発明者らは、現在有機高分子繊維としては、
最も高い引張りモジユラスを与えるポリ−p−フ
エニレンベンゾビスオキサゾール等のポリアゾー
ル系高分子を補強高分子として用い、屈曲性高分
子をマトリツクス高分子として用いた系での高モ
ジユラス化について鋭意検討した結果、本発明に
到達したものである。 即ち本発明は、実質的に棒状骨格を有するポリ
アゾールからなる補強高分子(A)と融着性を有する
マトリツクス高分子(B)とを主として含有する高分
子溶液を、ダイ又はオリフイスから気体中に押し
出し、次いで凝固浴中に導入し、しかして連続的
に引取ることからなる高分子複合体の製造方にお
いて、当該高分子溶液が光学的等方性を示す温度
領域と光学的準異方性を示す温度領域とを有する
ものであり、当該ダイ又はオリフイスの温度は当
該高分子溶液が光学的等方性を示す温度領域内に
あるように保持され、当該気体及び/又は凝固浴
の温度は当該高分子溶液が光学的準異方性を示す
温度領域内にあるように保持され、かつ当該補強
高分子(A)の固有粘度が15以下であることを特徴と
する高分子複合体の製造法である。 本発明において用いる補強高分子(A)としては、
下記式 [但し、式中Xは−S−,−O−又は
<Technical Field> The present invention relates to a method for producing a polymer composite with excellent mechanical properties from a solution containing a polyazole as a reinforcing polymer and a flexible polymer as a matrix. <Background Art> Fiber-reinforced plastics have been regarded as important as composite materials for load-bearing structures because of their dramatically improved physical properties, and various materials have been developed and put into practical use. The production of such composite materials requires a process of arranging reinforcing fibers manufactured separately in one direction, and a process of impregnating the plastic to be further reinforced as a matrix polymer, and this process is carried out in an autoclave. requires complicated step-by-step operations such as On the other hand, the strength and durability of composite materials are
It greatly depends on the state of the interface between the reinforcing fiber and the matrix polymer. The interface between the two is a macroscopic interface because the fiber itself is a macroscopic object, and defects existing there propagate macroscopically and lead to destruction of the composite material. In order to solve this drawback, instead of the fibrous reinforcing material that can only be dispersed in a macroscopic form, we used a highly modulus reinforcing polymer that can be dispersed in a microscopic molecular form, and combined it with a matrix polymer. By dissolving both in a common solvent and mixing them in a microscopic molecular form, and solidifying and molding this, the reinforcing component and the reinforced component are dispersed and mixed in an extremely microscopic state, and are oriented. Producing polymer composites has been considered. Conventionally, the reinforcing fibers used in composite materials are more likely to fibrillate as they become organic fibers with higher modulus, but by making them into polymer composites like the one described above, they have a high modulus and are less likely to fibrillate. It is thought that things can be obtained from this, and research has been carried out toward this end. By the way, in order to improve the mechanical properties of these polymer composites, it is necessary to further add a reinforcing polymer to the primary molded product of the polymer composite (for example, a tape, film, or fibrous molded product). If necessary, the matrix polymer also needs to be highly oriented. If both polymers are sufficiently oriented, the modulus will be a value expressed by the sum of the ratios of each component of the expected value for each polymer component alone, but in reality, the orientation is insufficient. Therefore, the current value is lower than this value. The present inventors have discovered that currently, organic polymer fibers include:
The results of intensive studies on achieving high modulus in a system using a polyazole polymer such as poly-p-phenylenebenzobisoxazole, which provides the highest tensile modulus, as a reinforcing polymer and a flexible polymer as a matrix polymer. , the present invention has been achieved. That is, in the present invention, a polymer solution mainly containing a reinforcing polymer (A) consisting of a polyazole having a substantially rod-shaped skeleton and a matrix polymer (B) having fusibility is introduced into a gas through a die or orifice. In a method for producing a polymer composite consisting of extrusion, then introduction into a coagulation bath, and continuous withdrawal, the temperature range in which the polymer solution exhibits optical isotropy and the optical quasi-anisotropy are determined. The temperature of the die or orifice is maintained within a temperature range in which the polymer solution exhibits optical isotropy, and the temperature of the gas and/or coagulation bath is Production of a polymer composite characterized in that the polymer solution is maintained within a temperature range exhibiting optical quasi-anisotropy, and the reinforcing polymer (A) has an intrinsic viscosity of 15 or less. It is the law. As the reinforcing polymer (A) used in the present invention,
The following formula [However, in the formula, X is -S-, -O- or

【式】 を表わし、結合手(イ),(ロ)は、更にアゾール環又は
炭化水素環を形成する結合手であるが、或いはそ
の一方に水素原子が結合し、他方が結合手である
ものである。] で表わされるアゾール骨格を有する実質的に棒状
骨格のポリアゾールが挙げられ、具体的には、米
国特許第4207407号明細書に記載されたポリマー
があり、就中ポリ−p−フエニレンベンゾビスチ
アゾール,ポリ−p−フエニレンベンゾオキサゾ
ール,ポリ−p−フエニレンベンゾビスイミダゾ
ール等のポリアゾール類が挙げられる。 補強高分子(A)の分子量は通常分子量の目安とな
る固有粘度が1以上であり、好ましくは1.5以上、
特に好ましくは2以上である。一方、固有粘度が
高すぎるものは好ましくなく、20になると良好な
ものは得られない。本発明の効果を発現するため
には補強高分子の固有粘度は15以下であり、好ま
しくは12以下、特に好ましくは10以下にするのが
よい。 本発明において用いられるマトリツクス高分子
(B)は、補強高分子(A)と同一溶媒に溶解するもので
あり、ナイロン6,ナイロン66,ナイロン610,
ナイロン12,ナイロン11等の脂肪族ポリアミド;
ポリヘキサメチレンイソフタルアミド等の半芳香
族ポリアミド;ポリメタフエニレンイソフタルア
ミド等の芳香族ポリアミド:エーテル基等の屈曲
性基を導入した屈曲性芳香族ポリアミド;ポリエ
ステル;ポリカーボネート;ポリ酢酸ビニル;ポ
リサルフオン;ポリエーテルサルフオン;ポリエ
ーテルイミド;ポリエーテルケトン;ポリフエニ
レンサルフアイド等があげられる。 共通溶媒としては、構成ポリマーを溶解するも
のであればよく、例えば濃硫酸,メタンスルホン
酸,クロルスルホン酸,ポリリン酸,トリフロロ
酢酸,リン酸等の酸性溶媒が挙げられる。これら
は滴宜混合して用いても良い。また溶解した高分
子の加水分解を押さえるため、溶媒中の水の量を
できるだけ少くするための添加剤を混入してもよ
い。例えば発煙硫酸,クロルスルホン酸等の添加
があげられる。 高分子複合体形成用の原液は、上記共通溶媒に
補強高分子とマトリツクス高分子とを溶解した高
分子溶液であり、該高分子溶液は、光学的等方性
を示す温度領域と、光学的準異方性を示す溶液領
域が必要である。 光学的等方性を示す温度領域と光学的準異方性
を示す温度領域は、ポリマーの種類,重合度,成
分比及び濃度によつて変化するものであるが、以
下の測定方法により決定することができる。 即ち、所定の高分子溶液を調製し、それをスラ
イドガラス上に薄くのばして配置し、高分子溶液
の厚さが0.1mmになるようにしてプレパラートで
おさえる。かくして調製されたサンプルを直交ニ
コルを有する偏光顕微鏡の観察下におく。先ずサ
ンプルの温度を室温(20℃)以下に下げて、スラ
イドガラス上の高分子複合体溶液を光学的異方性
を示す状態とする。 融点測定装置(YANAGIMOTO(株))を用い、
偏光顕微鏡で観察しながらサンプルの温度を徐々
に(5℃/min.)上昇させると、特定の温度に
おいて視野が暗くなり光学的等方性の状態に変化
したことを観察される。この時の温度を転移温度
と名づける。等方性になつたことを確認後この温
度から、スライドガラス上の高分子溶液を所定温
度、例えば20℃に急速に冷却する。 冷却方法としては、該温度に冷却された銅又は
銀等の熱伝導性のよい物質の上にずりを加えない
で置くことが達成される。このサンプルを直交ニ
コルを有する偏光顕微鏡で観察すると、高分子溶
液の調製法の条件によつて光学的異方性が出現す
るまでの時間が大巾に変わる。この場合上記転移
温度が高い系程、一般に光学的異方性が出現する
までの時間が短くなる。 しかして、上記の如き急冷を加えた際に、冷却
開始後光学的異方性が出現するまでの時間が30秒
以上持続すれば、この温度は光学的準異方性温度
領域内の温度である。 本発明方法においては、補強高分子,マトリツ
クス高分子の種類,分子量,溶媒系及び各高分子
の成分比・濃度が決定されると上記測定方法に従
つて光学的等方性,光学的準異方性を示す温度領
域をそれぞれ測定し、ダイ又はオリフイスの温度
を光学的等方性温度領域に、気体及び/又は凝固
浴の温度を光学的準異方性温度領域にそれぞれ保
持し、公知の方法に従つてダイ又はオリフイスか
ら高分子溶液を押し出し、気体を経由して凝固浴
中に導き、連続的に引き取ることにより半乾半湿
的にフイルム又は繊維を製造する。 この際、ダイ又はオリフイスから押し出された
高分子溶液は、気体及び/又は凝固浴中で急激に
冷却されて光学的準異方性を示す温度に急速に達
するめ、補強高分子は極めて微小な棒状の集合体
を形成するための条件が整うこととなる。これに
反し、気体及び/又は凝固液の温度を光学的異方
性温度領域(前記時間が30秒未満)とすると得ら
れる成形物は延伸性が劣り、良好な力学特性を示
さない。 また補強高分子(A)の分子量の目安となる固有粘
度が15以下のもの、特に12以下のものを用いる
と、補強高分子(A)の極めて微小な棒状の集合体が
形成されやすくなるため、その後の延伸操作にお
いてマトリツクスポリマー中で補強高分子が(A)が
すみやかに配向されやすいためか、力学特性が意
外に向上する。これに反し、気体及び凝固液の温
度が光学的等方性温度領域であると最終成形物の
力学特性、特にモジユラスの絶対値が本発明の方
法に比べて劣るものとなる。 補強高分子の棒状のミクロな集合体を形成する
他の手段としては、高分子複合体溶液の高分子濃
度を適切に選定することで一定温度で光学的等方
性から光学的異方性に転移する領域で、補強ポリ
マーを棒状に集合することが知られているが、こ
の方式では、補強高分子のミクロな集合体を形成
する条件が極めて狭いためか理由は明らかでない
が、本発明に比べて良好な成形物は得られない。 該高分子溶液を凝固するための凝固液として
は、用いる溶媒に非溶解性の溶媒を混合した系、
例えば、硫酸水溶液,メタンスルホン酸水溶液等
が挙げられる。凝固液の温度は、該高分子複合体
溶液が光学的準異方性を呈する温度に保持する必
要がある。 一般にスリツトダイ又はオリフイスの保持温度
と凝固浴の温度との温度差が大きくなるように設
定することが、後の延伸操作で高配向・高モジユ
ラスの成形物を得るためには、好ましいと云え
る。 本発明において用いられる補強高分子(A)とマト
リツクス高分子(B)の割合はA/A+Bが5〜45%
の範囲にあるのがよい。補強高分子(A)が5%より
も小さい場合には、補強効果が小さく45%を越す
と、補強高分子(A)の配向性が低下し本発明の特徴
を発現することができない。 本発明において用いられる固有粘度とは、100
%硫酸もしくはメタンスルホン酸もしくはクロル
スルホン酸に補強高分子(A)の濃度が0.2g/100c.c.
になるように溶解後、30℃で常法により求めた
ηinhである。補強高分子(A)が上記の溶媒のいずれ
にも溶解する時は、その中でもつとも低い値をそ
の補強高分子(A)の固有粘度とする。 以下に本発明の効果を実施例をもつて示すが、
実施例中の百分率は、ことわらない限り重量基準
で示す。繊維・フイルムの機械的性質は、サンプ
ル長2cmを毎分100%の伸長速度で測定したもの
である。 実施例1〜2,比較例1〜3 補強高分子(A)として、ポリ−p−フエニレンベ
ンゾビスチアゾール(PPBTと略す)を常法に従
つて重合し、メタンスルホン酸溶媒における固有
粘度が3.0のもの得た。 マトリツクス高分子(B)は、3.4′−ジアミノジフ
エニルエーテル(50モル%)とパラフエニレンジ
アミン(50モル%)とをN−メチルピロリドンに
濃度が6%になるようにして、乾燥窒素雰囲気下
に溶解せしめ、5℃に冷却した後、激しく攪拌し
ながらテレフタル酸ジクロライドの粉末(100モ
ル%)を当該溶液にすみやかに添加し、35℃で1
時間重合反応を行い、これを水にて沈澱し中和し
て得た。以下該ポリマーをPPOT−50と略す。
PPOT−50のηinhは硫酸溶媒で3.6であつた。
PPBTとPPOT−50の成分比が25/75になるよう
にしてメタンスルホン酸に溶解し、ポリマー全濃
度が4,5,6,7及び8%のものを作成した。
該高分子複合体溶液の異方性から等方性に転移す
る温度(相転移温度)表1に示す通りであつた。 該高分子溶液を転移温度以上の96℃に加温後、
それを20℃の銀板上に置いて冷却し、その後異方
性が出現する時間をそれぞれ測定した。出現時間
は表1に示す通りであつた。該高分子溶液を注射
器型の容器に入れ、温度が80℃で直径が0.25mmの
オリフイスから線速度が5m/minになるように
して押し出した。空気層(温度25℃,距離18cm)
を通過後、氷水凝固液へ導いた。凝固上りの多少
ストレツチのかかつた未延伸糸は、十分に洗浄
し、アンモニア水で中和後ボビンに巻きとられ
た。温水翌60℃で延伸後風乾し、さらに200℃の
オーブンで乾燥後、350℃,および450℃の電気炉
の中で熱延伸した。熱延伸糸の力学性能は表1に
示す通りで本発明の効果が歴然と表われている。
[Formula], and the bonds (a) and (b) are bonds that further form an azole ring or a hydrocarbon ring, or a hydrogen atom is bonded to one of them and the other is a bond. It is. ] Substantially rod-like polyazoles having an azole skeleton represented by the following are mentioned, and specifically, there are polymers described in U.S. Pat. No. 4,207,407, among which poly-p-phenylenebenzobisthiazole , poly-p-phenylene benzoxazole, poly-p-phenylene benzobisimidazole, and other polyazoles. The molecular weight of the reinforcing polymer (A) is usually such that the intrinsic viscosity, which is a guideline for molecular weight, is 1 or more, preferably 1.5 or more,
Particularly preferably 2 or more. On the other hand, it is not preferable that the intrinsic viscosity is too high, and if the intrinsic viscosity is 20, a good product cannot be obtained. In order to achieve the effects of the present invention, the reinforcing polymer should have an intrinsic viscosity of 15 or less, preferably 12 or less, particularly preferably 10 or less. Matrix polymer used in the present invention
(B) is dissolved in the same solvent as the reinforcing polymer (A), and includes nylon 6, nylon 66, nylon 610,
Aliphatic polyamides such as nylon 12 and nylon 11;
Semi-aromatic polyamides such as polyhexamethylene isophthalamide; Aromatic polyamides such as polymetaphenylene isophthalamide; Flexible aromatic polyamides into which flexible groups such as ether groups have been introduced; Polyester; Polycarbonate; Polyvinyl acetate; Polysulfon; Examples include polyether sulfone; polyetherimide; polyether ketone; polyphenylene sulfide, and the like. The common solvent may be any solvent that can dissolve the constituent polymers, and examples thereof include acidic solvents such as concentrated sulfuric acid, methanesulfonic acid, chlorosulfonic acid, polyphosphoric acid, trifluoroacetic acid, and phosphoric acid. These may be mixed and used. Further, in order to suppress hydrolysis of the dissolved polymer, an additive may be mixed in to reduce the amount of water in the solvent as much as possible. For example, addition of fuming sulfuric acid, chlorosulfonic acid, etc. may be mentioned. The stock solution for forming a polymer composite is a polymer solution in which a reinforcing polymer and a matrix polymer are dissolved in the above-mentioned common solvent. A region of solution exhibiting quasi-anisotropy is required. The temperature range showing optical isotropy and the temperature range showing optical quasi-anisotropy vary depending on the type of polymer, degree of polymerization, component ratio, and concentration, but are determined by the following measurement method. be able to. That is, a predetermined polymer solution is prepared, spread thinly on a slide glass, and placed so that the thickness of the polymer solution is 0.1 mm, and is covered with a slide. The sample thus prepared is placed under observation using a polarizing microscope with crossed Nicols. First, the temperature of the sample is lowered to below room temperature (20°C) to bring the polymer composite solution on the slide glass into a state where it exhibits optical anisotropy. Using a melting point measuring device (YANAGIMOTO Co., Ltd.),
When the temperature of the sample is gradually increased (5° C./min.) while observing it with a polarizing microscope, it is observed that the field of view becomes dark at a certain temperature and changes to an optically isotropic state. The temperature at this time is called the transition temperature. After confirming that it has become isotropic, the polymer solution on the slide glass is rapidly cooled from this temperature to a predetermined temperature, for example, 20°C. The cooling method is achieved by placing the film on a material with good thermal conductivity, such as copper or silver, which has been cooled to the above temperature without adding any shear. When this sample is observed using a polarizing microscope with crossed Nicols, the time it takes for optical anisotropy to appear varies greatly depending on the conditions of the polymer solution preparation method. In this case, the higher the transition temperature of the system, the shorter the time until optical anisotropy appears. Therefore, when applying rapid cooling as described above, if the time from the start of cooling to the appearance of optical anisotropy continues for 30 seconds or more, this temperature is within the optical quasi-anisotropy temperature range. be. In the method of the present invention, once the types, molecular weights, solvent systems, and component ratios and concentrations of the reinforcing polymers and matrix polymers are determined, optical isotropy and optical quasi-anisotropy are determined according to the above measurement method. The temperature range showing the anisotropy is measured, and the temperature of the die or orifice is kept in the optically isotropic temperature range, and the temperature of the gas and/or coagulation bath is kept in the optically quasi-anisotropic temperature range. According to the method, a polymer solution is extruded through a die or orifice, guided through a gas into a coagulation bath, and continuously withdrawn to produce films or fibers in a semi-dry and semi-wet manner. At this time, the polymer solution extruded from the die or orifice is rapidly cooled in a gas and/or coagulation bath and rapidly reaches a temperature at which it exhibits optical quasi-anisotropy. The conditions for forming a rod-shaped aggregate are now in place. On the other hand, when the temperature of the gas and/or coagulation liquid is in the optically anisotropic temperature range (the time is less than 30 seconds), the molded product obtained has poor stretchability and does not exhibit good mechanical properties. In addition, if a reinforcing polymer (A) with an intrinsic viscosity of 15 or less, especially one with an intrinsic viscosity of 12 or less, is used, extremely small rod-shaped aggregates of the reinforcing polymer (A) are likely to be formed. The mechanical properties are surprisingly improved, probably because the reinforcing polymer (A) is easily oriented quickly in the matrix polymer during the subsequent stretching operation. On the other hand, if the temperatures of the gas and coagulation liquid are in the optically isotropic temperature range, the mechanical properties of the final molded product, especially the absolute value of the modulus, will be inferior to those obtained by the method of the present invention. Another way to form rod-shaped micro aggregates of reinforcing polymers is to change optical isotropy to optical anisotropy at a constant temperature by appropriately selecting the polymer concentration of the polymer composite solution. It is known that reinforcing polymers are aggregated into rod shapes in the region of transition, but the reason for this method is not clear, perhaps because the conditions for forming microscopic aggregates of reinforcing polymers are extremely narrow, but the present invention Comparatively, better molded products cannot be obtained. As a coagulating liquid for coagulating the polymer solution, a system in which an insoluble solvent is mixed with the solvent used,
Examples include sulfuric acid aqueous solution, methanesulfonic acid aqueous solution, and the like. The temperature of the coagulation liquid must be maintained at a temperature at which the polymer composite solution exhibits optical quasi-anisotropy. In general, it is preferable to set the temperature difference between the holding temperature of the slit die or orifice and the temperature of the coagulation bath to be large in order to obtain a molded product with high orientation and high modulus in the subsequent stretching operation. The ratio of reinforcing polymer (A) and matrix polymer (B) used in the present invention is 5 to 45% A/A+B.
It is good that it is within the range of . When the reinforcing polymer (A) is less than 5%, the reinforcing effect is small, and when it exceeds 45%, the orientation of the reinforcing polymer (A) is reduced and the characteristics of the present invention cannot be expressed. The intrinsic viscosity used in the present invention is 100
% sulfuric acid, methanesulfonic acid or chlorosulfonic acid with a concentration of reinforcing polymer (A) of 0.2g/100c.c.
ηinh was determined by a conventional method at 30°C after dissolving so that When the reinforcing polymer (A) dissolves in any of the above solvents, the lowest value among them is taken as the intrinsic viscosity of the reinforcing polymer (A). The effects of the present invention will be shown below with examples,
Percentages in the examples are given on a weight basis unless otherwise specified. Mechanical properties of fibers and films were measured using a sample length of 2 cm at an elongation rate of 100% per minute. Examples 1-2, Comparative Examples 1-3 As the reinforcing polymer (A), poly-p-phenylenebenzobisthiazole (abbreviated as PPBT) was polymerized according to a conventional method, and the intrinsic viscosity in methanesulfonic acid solvent was I got the 3.0 one. The matrix polymer (B) was prepared by adding 3.4′-diaminodiphenyl ether (50 mol%) and paraphenylene diamine (50 mol%) to N-methylpyrrolidone at a concentration of 6% in a dry nitrogen atmosphere. After cooling to 5°C, terephthalic acid dichloride powder (100 mol%) was immediately added to the solution with vigorous stirring, and the mixture was heated to 1°C at 35°C.
A polymerization reaction was carried out for a period of time, and the resultant was precipitated and neutralized with water. Hereinafter, this polymer will be abbreviated as PPOT-50.
ηinh of PPOT-50 was 3.6 in sulfuric acid solvent.
PPBT and PPOT-50 were dissolved in methanesulfonic acid at a component ratio of 25/75 to prepare polymers with total polymer concentrations of 4, 5, 6, 7, and 8%.
The temperature at which the polymer composite solution transitions from anisotropy to isotropy (phase transition temperature) was as shown in Table 1. After heating the polymer solution to 96°C, which is higher than the transition temperature,
It was placed on a silver plate at 20°C to cool it, and then the time required for anisotropy to appear was measured. The appearance times were as shown in Table 1. The polymer solution was placed in a syringe-shaped container and extruded at a temperature of 80° C. through an orifice with a diameter of 0.25 mm at a linear velocity of 5 m/min. Air layer (temperature 25℃, distance 18cm)
After passing through, it was led to an ice water coagulation solution. The somewhat stretched undrawn yarn after coagulation was thoroughly washed, neutralized with aqueous ammonia, and then wound onto a bobbin. After stretching in warm water at 60°C, the film was air-dried, further dried in an oven at 200°C, and then hot-stretched in electric furnaces at 350°C and 450°C. The mechanical performance of the hot drawn yarn is as shown in Table 1, clearly demonstrating the effects of the present invention.

【表】 実施例3〜5及び比較例4〜5 実施例1で用いたPPBTとPPOT−50を用い、
PPBTとPPOT−50の成分比が30/70になるよう
にメタンスルホン酸に溶解し、ポリマー全濃度が
4,5,6,7,8%のものを作成した。 該高分子溶液の異方性に転移がある場合にはそ
の温度及び該高分子溶液を90℃に加熱後、それを
20℃の銀板上に置いて冷却し、その後異方性が出
現する時間を測定した。結果は表2に示す通りで
あつた。 実施例1と同じようにして、紡糸延伸し、力学
特性を評価した。表2に示すように本発明の条件
を満たすものは、良好な力学特性を示した。
[Table] Examples 3 to 5 and Comparative Examples 4 to 5 Using PPBT and PPOT-50 used in Example 1,
PPBT and PPOT-50 were dissolved in methanesulfonic acid at a component ratio of 30/70 to prepare polymers with total polymer concentrations of 4, 5, 6, 7, and 8%. If there is a transition in the anisotropy of the polymer solution, change the temperature and the temperature after heating the polymer solution to 90°C.
It was placed on a silver plate at 20°C to cool it, and then the time for anisotropy to appear was measured. The results were as shown in Table 2. Spinning and drawing were carried out in the same manner as in Example 1, and the mechanical properties were evaluated. As shown in Table 2, those that met the conditions of the present invention exhibited good mechanical properties.

【表】 実施例6,比較例5 補強高分子として、PPBTを実施例1の方法に
準じて重合しηinhが7.3のものを得た。この
PPBTと実施例1で得られたマトリツクスポリマ
ーPPOT−50との割合が25/75になるようにし
て、メタンスルホン酸に溶解し、ポリマー全濃度
が6%になるようにした。 該高分子溶液の転移温度は62℃であり、20℃で
急冷したときの異方性が出現する時間は60秒以上
であり、準異方性を呈した。該高分子溶液をスリ
ツトダイ10mm×0.1mmから押し出し、温水延伸,
熱延伸を常法に従つてすることで厚み(μm)/
モジユラス(GPa)/伸度(%)/強度(GPa)
=51/82/3.5/1.1を得た。一方、ポリマー全濃
度が4%のものは準異方性状態を示さず、等方性
溶液から製膜したものは、厚み(μm)/モジユ
ラス(GPa)/伸度(%)/強度(GPa)=52/
53/2.6/0.8であり、良好でなかつた。 比較例 7 補強ポリマーとしてのPPBTを実施例1の方法
に従つて重合し、ηinh=21のものを得た。 PPBT−PPOT−50=25/75の割合でポリマー
濃度3.5%の溶液を作成した。相転移温度は82℃
であり、20℃冷却の異方性出現時間は約20秒で準
異方性を呈していた。 オリフイス(温度90℃)から吐出し、温水延
伸,熱延伸することで高分子複合体の繊維を得
た。繊維性能は、直径(μm)/モジユラス
(GPa)/伸度(%)/強度(GPa)=41/65/
2.3/1.1であり、PPBTのηinhの小さいものに比
べ劣つていた。
[Table] Example 6, Comparative Example 5 As a reinforcing polymer, PPBT was polymerized according to the method of Example 1 to obtain one with ηinh of 7.3. this
The ratio of PPBT to the matrix polymer PPOT-50 obtained in Example 1 was 25/75, and the mixture was dissolved in methanesulfonic acid so that the total polymer concentration was 6%. The transition temperature of the polymer solution was 62°C, and when it was rapidly cooled to 20°C, the time for anisotropy to appear was 60 seconds or more, indicating quasi-anisotropy. The polymer solution was extruded through a slit die of 10 mm x 0.1 mm, stretched with hot water,
Thickness (μm)/
Modulus (GPa) / Elongation (%) / Strength (GPa)
= 51/82/3.5/1.1 was obtained. On the other hand, a film with a total polymer concentration of 4% does not exhibit a quasi-anisotropic state, and a film formed from an isotropic solution has a thickness (μm)/modulus (GPa)/elongation (%)/strength (GPa). )=52/
53/2.6/0.8, which was not good. Comparative Example 7 PPBT as a reinforcing polymer was polymerized according to the method of Example 1, and a polymer having ηinh=21 was obtained. A solution with a polymer concentration of 3.5% was prepared at a ratio of PPBT-PPOT-50 = 25/75. Phase transition temperature is 82℃
, and the anisotropy appearance time after cooling to 20°C was approximately 20 seconds, exhibiting quasi-anisotropy. A polymer composite fiber was obtained by discharging from an orifice (temperature: 90°C), hot water stretching, and hot stretching. Fiber performance is diameter (μm) / modulus (GPa) / elongation (%) / strength (GPa) = 41 / 65 /
2.3/1.1, which was inferior to PPBT with small ηinh.

Claims (1)

【特許請求の範囲】[Claims] 1 実質的に棒状骨格を有するポリアゾールから
なる補強高分子(A)と融着性を有するマトリツクス
高分子(B)とを主として含有する高分子溶液を、ダ
イ又はオリフイスから気体中に押し出し、次いで
凝固浴中に導入し、しかして連続的に引取ること
からなる高分子複合体の製造法において、当該高
分子溶液が光学的等方性を示す温度領域と光学的
準異方性を示す温度領域とを有するものであり、
当該ダイ又はオリフイスの温度は当該高分子溶液
が光学的等方性を示す温度領域内にあるように保
持され、当該気体及び/又は凝固浴の温度は当該
高分子溶液が光学的準異方性を示す温度領域内に
あるように保持されており、かつ当該補強高分子
(A)の固有粘度が15以下であることを特徴とする高
分子複合体の製造法。
1 A polymer solution mainly containing a reinforcing polymer (A) consisting of a polyazole having a substantially rod-shaped skeleton and a matrix polymer (B) having fusibility is extruded into a gas through a die or orifice, and then solidified. In a method for producing a polymer composite, which involves introducing the polymer solution into a bath and then continuously taking it out, the temperature range in which the polymer solution exhibits optical isotropy and the temperature range in which it exhibits optical quasi-anisotropy is determined. and
The temperature of the die or orifice is maintained within a temperature range in which the polymer solution exhibits optical isotropy, and the temperature of the gas and/or coagulation bath is maintained such that the polymer solution exhibits optical quasi-anisotropy. and the reinforcing polymer
A method for producing a polymer composite characterized in that (A) has an intrinsic viscosity of 15 or less.
JP61047191A 1986-03-06 1986-03-06 Production of polymer composite Granted JPS62205128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61047191A JPS62205128A (en) 1986-03-06 1986-03-06 Production of polymer composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61047191A JPS62205128A (en) 1986-03-06 1986-03-06 Production of polymer composite

Publications (2)

Publication Number Publication Date
JPS62205128A JPS62205128A (en) 1987-09-09
JPH0450333B2 true JPH0450333B2 (en) 1992-08-14

Family

ID=12768218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61047191A Granted JPS62205128A (en) 1986-03-06 1986-03-06 Production of polymer composite

Country Status (1)

Country Link
JP (1) JPS62205128A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749528B2 (en) * 1988-12-03 1995-05-31 工業技術院長 Polymer composite manufacturing method
TWI340773B (en) * 2008-07-07 2011-04-21 Univ Taipei Medical Method of fabricating nano-fibers by electrospinning

Also Published As

Publication number Publication date
JPS62205128A (en) 1987-09-09

Similar Documents

Publication Publication Date Title
US5286833A (en) Polybenzazole fiber with ultra-high physical properties
JPS61255831A (en) Manufacture of molded shape and film from thermotropic polymer
KR880001262B1 (en) Process for the preparation of polyvinyl alcohol articles of high strength and modulus
US5011643A (en) Process for making oriented, shaped articles of para-aramid/thermally-consolidatable polymer blends
US4749753A (en) Intimate mixture containing aromatic polyazole and aromatic copolyamide and process for its production
JPH0353336B2 (en)
KR0126128B1 (en) Process for preparation of fibers of stereoregular polystyrene
JPH0450333B2 (en)
JPH01287167A (en) Production of high polymer composite material
JPH09241924A (en) Drawn polyamide fiber and its production
JPH0749528B2 (en) Polymer composite manufacturing method
KR100270090B1 (en) Process for preparing polyamideimide resin polymer composite
JPS63308040A (en) Production of polymer composite
JPH0625266B2 (en) Method for producing polyazole biaxially oriented film
JP7570514B2 (en) Undrawn monofilament yarn and method for producing monofilament
JPH0476055A (en) Polymer composite and its preparation
JPH02281077A (en) Production of polymer composite material
CN106480519B (en) Electrospinning nylon66 fiber/PVA/ boric acid nanofibers and preparation method thereof
JPH0136785B2 (en)
Hwang Processing and properties of rigid rod polymers and their molecular composites
JPH04146946A (en) Polymer composition
JPS5834498B2 (en) Polyamide material
JPS6157346B2 (en)
JPH03152211A (en) Polyimide molecular conjugate yarn and production thereof
JPS58125744A (en) Optically anisotropic dope of polyamide

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term