JPH0749485A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH0749485A
JPH0749485A JP5211026A JP21102693A JPH0749485A JP H0749485 A JPH0749485 A JP H0749485A JP 5211026 A JP5211026 A JP 5211026A JP 21102693 A JP21102693 A JP 21102693A JP H0749485 A JPH0749485 A JP H0749485A
Authority
JP
Japan
Prior art keywords
liquid crystal
refractive index
electrode
pdlc
black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5211026A
Other languages
Japanese (ja)
Inventor
Shinya Kyozuka
信也 経塚
Shigeru Yamamoto
滋 山本
Naoki Hiji
直樹 氷治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP5211026A priority Critical patent/JPH0749485A/en
Publication of JPH0749485A publication Critical patent/JPH0749485A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To brighten the white display at no application of voltage, and improve illuminance and contrast by nipping a polymer dispersed liquid crystal by a transparent electrode and a black electrode absorbing light, and providing a low refraction factor layer between the polymer dispersed liquid crystal and the black electrode. CONSTITUTION:A black electrode 22 formed on a first glass base and a transparent electrode 6 formed on a second glass base 7 are constituted in such a manner as to nip a polymer dispersed liquid crystal PDLC 5, and a low refraction factor layer 3 is provided between the PDLC 5 and the black electrode 22. Since the PDLC 5 is laid in transparent state when a voltage is applied, and light straightly advances, the low refraction factor layer 3 is useless, and the light is absorbed by the black electrode 22 to provide a black display. The light scattered by the PDLC 5 when no voltage is applied is incident to the critical surface at an angle larger than an incident angle theta=sin<-1>(n/nLC), when the refraction factor of the PDLC 5 is nLC, and the refraction factor of the low refraction factor layer 3 is (n), and fully reflected and returned to the incident side, so that a bright display can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、反射型の液晶表示装置
に係り、特に黒色表示時に視角依存性がなく、白色表示
時に明るく、輝度及びコントラストが高い液晶表示装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflection type liquid crystal display device, and more particularly to a liquid crystal display device which has no viewing angle dependency in black display, is bright in white display, and has high brightness and contrast.

【0002】[0002]

【従来の技術】高分子分散液晶(PDLC)、高分子ネ
ットワーク液晶(PNLC)等の散乱型液晶を用いた液
晶表示装置は、液晶層に電圧が印加されない場合には、
液晶の屈折率(nLC)と高分子マトリクスの屈折率(n
P )の不一致によって光散乱が生じ白濁するものであ
る。また、電圧が印加されている場合には、液晶は電界
方向に配向するため、液晶の屈折率nLCと高分子マトリ
クスの屈折率nP は、ほぼ一致して透明状態となる。
2. Description of the Related Art A liquid crystal display device using a scattering type liquid crystal such as a polymer dispersed liquid crystal (PDLC) and a polymer network liquid crystal (PNLC) is used when a voltage is not applied to a liquid crystal layer.
Liquid crystal refractive index (n LC ) and polymer matrix refractive index (n
Due to the disagreement of P ), light scattering occurs and it becomes cloudy. In addition, when a voltage is applied, the liquid crystal is aligned in the direction of the electric field, so that the refractive index n LC of the liquid crystal and the refractive index n P of the polymer matrix are substantially the same and are in a transparent state.

【0003】これらの散乱型液晶を反射型ディスプレイ
に用いた従来例として、散乱型液晶にPDLCを用いた
場合について具体的に説明する。図3は、従来の反射型
液晶表示装置の断面説明図である。
As a conventional example in which these scattering type liquid crystals are used in a reflection type display, a case where PDLC is used in the scattering type liquid crystals will be specifically described. FIG. 3 is a cross-sectional explanatory view of a conventional reflective liquid crystal display device.

【0004】図3に示すように、従来の液晶表示装置
は、ガラス基板1上に形成された反射電極21と、ガラ
ス基板7上に形成された透明電極6でPDLC5を挟持
した構成となっている。尚、図3中のPDLC5におい
て、球状のものが液晶で、液晶間に満たされているもの
が高分子マトリクスである。そして、その動作は、反射
電極21と透明電極6との両電極間に印加する電圧によ
りPDLC5の白濁状態及び透過状態を制御するもので
ある。
As shown in FIG. 3, the conventional liquid crystal display device has a structure in which a PDLC 5 is sandwiched between a reflective electrode 21 formed on a glass substrate 1 and a transparent electrode 6 formed on a glass substrate 7. There is. In the PDLC 5 in FIG. 3, the spherical one is a liquid crystal and the one filled between the liquid crystals is a polymer matrix. The operation is to control the white turbid state and the transmissive state of the PDLC 5 by the voltage applied between the reflective electrode 21 and the transparent electrode 6.

【0005】このように、PDLCをディスプレイに用
いると偏光子が不要なため、従来のツイストネマティッ
ク(TN)、スーパーツイストネマティック(STN)
方式に比べて明るい表示が可能となるものである。
As described above, when a PDLC is used for a display, a polarizer is unnecessary, so that conventional twist nematic (TN) and super twist nematic (STN) are used.
The display can be brighter than that of the system.

【0006】しかしながら、電圧無印加時にはPDLC
5が光を散乱するので白色表示が得られるが、電圧印加
時にはPDLC5は透明となり、PDLC5の下層の反
射電極21が表示されてしまい、鏡をみているようにな
り非常に見づらいという問題があった。
However, when no voltage is applied, the PDLC
Since 5 scatters light, white display can be obtained, but when voltage is applied, the PDLC 5 becomes transparent and the reflective electrode 21 below the PDLC 5 is displayed, which makes it look like a mirror and is very difficult to see. .

【0007】この問題を解決するために反射電極を黒色
化する方法が検討されている。この従来の技術として
は、特開平4−250425号公報に反射電極に黒色電
極として真空蒸着カーボンを用いる反射型液晶表示デバ
イスが開示され、また、特開平4−248519号公報
においては反射電極上に誘電体多層膜を配して干渉効果
によって黒色化する液晶電気光学素子が開示されてい
る。
In order to solve this problem, a method of blackening the reflective electrode has been studied. As this conventional technique, Japanese Patent Application Laid-Open No. 4-250425 discloses a reflective liquid crystal display device in which vacuum-deposited carbon is used as a black electrode for the reflective electrode, and Japanese Patent Application Laid-Open No. 4-248519 discloses a reflective electrode on the reflective electrode. Disclosed is a liquid crystal electro-optical element in which a dielectric multilayer film is arranged and blackened by an interference effect.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、特開平
4−250425号公報記載の反射型液晶表示デバイス
では、PLDC本来の特性から電圧無印加時におけるP
DLCのディスプレイ表面への後方散乱が十分でなく、
また、ディスプレイ背面へ前方散乱した光は真空蒸着カ
ーボンを用いた黒色電極により吸収されるため白表示が
暗くなり、輝度及びコントラストが低下するという問題
点があった。
However, in the reflection type liquid crystal display device described in Japanese Patent Laid-Open No. 4-250425, the P characteristic when no voltage is applied is due to the inherent characteristics of PLDC.
DLC does not have enough backscatter on the display surface,
Further, since the light scattered forward to the back surface of the display is absorbed by the black electrode using the vacuum-deposited carbon, there is a problem that the white display becomes dark and the brightness and the contrast decrease.

【0009】また、特開平4−248519号公報記載
の液晶電気光学素子では、前方散乱した光は反射電極に
よって反射されて入射側に戻ってくるため白表示におけ
る輝度の低下は起こらないが、黒色表示を干渉効果によ
って行っているため、視角方向によっては黒色が紫黒色
又は緑黒色に着色してしまい、コントラストが低下する
という問題点があった。
In the liquid crystal electro-optical element described in Japanese Patent Laid-Open No. 4-248519, forward scattered light is reflected by the reflective electrode and returns to the incident side, so that the brightness in white display does not decrease, but black. Since the display is performed by the interference effect, there is a problem in that black is colored purple black or green black depending on the viewing angle direction, and the contrast is lowered.

【0010】本発明は上記実情に鑑みて為されたもの
で、電圧無印加時の白色表示を明るくして、輝度及びコ
ントラストが高くし、視角依存性のない反射型の液晶表
示装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a reflective liquid crystal display device which brightens white display when no voltage is applied, has high brightness and contrast, and has no viewing angle dependency. The purpose is to

【0011】[0011]

【課題を解決するための手段】上記従来例の問題点を解
決するための請求項1記載の発明は、液晶表示装置にお
いて、第1の基板上に光を吸収する黒色電極と、低屈折
率の透明な低屈折率透明層とが順に形成され、第2の基
板上に透明電極が形成され、前記黒色電極と前記透明電
極とを対向させて高分子分散液晶を挟むように前記第1
の基板と前記第2の基板を配置したことを特徴としてい
る。
According to a first aspect of the present invention for solving the problems of the conventional example, a liquid crystal display device has a black electrode for absorbing light on a first substrate and a low refractive index. A transparent low refractive index transparent layer are sequentially formed, a transparent electrode is formed on a second substrate, and the black electrode and the transparent electrode are opposed to each other so that the polymer dispersed liquid crystal is sandwiched therebetween.
The substrate and the second substrate are arranged.

【0012】上記従来例の問題点を解決するための請求
項2記載の発明は、液晶表示装置において、第1の基板
上に光を吸収する光吸収層と、低屈折率の透明な低屈折
率透明層と、第1の透明電極とが順に形成され、第2の
基板上に第2の透明電極が形成され、前記第1の透明電
極と前記第2の透明電極とを対向させて高分子分散液晶
を挟むように前記第1の基板と前記第2の基板を配置し
たことを特徴としている。
According to a second aspect of the present invention for solving the above-mentioned problems of the conventional example, in a liquid crystal display device, a light absorbing layer for absorbing light on a first substrate, and a transparent low refractive index having a low refractive index. The transparent layer and the first transparent electrode are sequentially formed, the second transparent electrode is formed on the second substrate, and the first transparent electrode and the second transparent electrode are opposed to each other to form a high transparent layer. It is characterized in that the first substrate and the second substrate are arranged so as to sandwich the molecule-dispersed liquid crystal.

【0013】[0013]

【作用】請求項1記載の発明によれば、高分子分散液晶
を透明電極と光を吸収する黒色電極とで挟持し、更に高
分子分散液晶と黒色電極との間に低屈折率層を設けた液
晶表示装置としているので、電極への電圧無印加時に高
分子分散液晶で散乱された光が低屈折率層に入射する場
合に、高分子分散液晶の屈折率より低屈折率層の屈折率
が低いため、全反射の角度が小さくなり、入射光の多く
を全反射させることができるため、電圧無印加時の白色
表示を明るくでき、しかも、干渉効果で黒色表示を行わ
ないため、視角に依存せず黒色素直に表示させることが
できる。
According to the first aspect of the invention, the polymer dispersed liquid crystal is sandwiched between the transparent electrode and the light absorbing black electrode, and a low refractive index layer is provided between the polymer dispersed liquid crystal and the black electrode. Since it is a liquid crystal display device, when the light scattered by the polymer dispersed liquid crystal enters the low refractive index layer when no voltage is applied to the electrodes, the refractive index of the low refractive index layer is higher than that of the polymer dispersed liquid crystal. Is low, the angle of total reflection is small, and most of the incident light can be totally reflected, so that white display can be made bright when no voltage is applied, and black is not displayed due to the interference effect. It is possible to display the black dye directly without depending on it.

【0014】請求項2記載の発明によれば、高分子分散
液晶を第1の透明電極と第2の透明電極とで挟持し、更
に第1の透明電極と第1の基板との間に第1の透明電極
側に低屈折率層を、第1の基板側に光吸収層を設けた液
晶表示装置としているので、電極への電圧無印加時に高
分子分散液晶で散乱された光が低屈折率層に入射する場
合に、高分子分散液晶の屈折率より低屈折率層の屈折率
が低いため、全反射の角度が小さくなり、入射光の多く
を全反射させることができるため、電圧無印加時の白色
表示を明るくでき、しかも、干渉効果で黒色表示を行わ
ないため、視角に依存せず黒色素直に表示させることが
できる。
According to the second aspect of the invention, the polymer-dispersed liquid crystal is sandwiched between the first transparent electrode and the second transparent electrode, and further the first transparent electrode and the first substrate are sandwiched between the first transparent electrode and the second transparent electrode. Since the liquid crystal display device has a low refractive index layer on the transparent electrode side of No. 1 and a light absorption layer on the first substrate side, light scattered by the polymer dispersed liquid crystal when no voltage is applied to the electrode has low refraction index. When incident on the refractive index layer, since the refractive index of the low refractive index layer is lower than that of the polymer dispersed liquid crystal, the angle of total reflection is small, and most of the incident light can be totally reflected. It is possible to make the white display bright when the image is added and to display the black pigment directly without depending on the viewing angle because the black display is not performed due to the interference effect.

【0015】[0015]

【実施例】本発明の一実施例について図面を参照しなが
ら説明する。図1は、本発明の一実施例に係る反射型液
晶表示装置の断面説明図である。尚、図3と同様の構成
をとる部分については同一の符号を付して説明する。本
実施例(本実施例1)の反射型液晶表示装置は、図1に
示すように、第1のガラス基板1と、光を吸収して電極
にも用いられる黒色電極22と、屈折率が低い低屈折率
透明層3と、高分子分散液晶(PDLC)5と、透明電
極6と、第2のガラス基板7とから構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a sectional explanatory view of a reflective liquid crystal display device according to an embodiment of the present invention. It should be noted that parts having the same configuration as in FIG. As shown in FIG. 1, the reflective liquid crystal display device of the present embodiment (this embodiment 1) has a first glass substrate 1, a black electrode 22 that absorbs light and is also used as an electrode, and a refractive index of It is composed of a low low refractive index transparent layer 3, a polymer dispersed liquid crystal (PDLC) 5, a transparent electrode 6, and a second glass substrate 7.

【0016】具体的には、実施例1の反射型液晶表示装
置は、第1のガラス基板1上に形成された黒色電極22
と、第2のガラス基板7上に形成された透明電極6とが
PDLC5を挟むように構成され、更にPDLC5と黒
色電極22との間に低屈折率透明層3が設けられた構造
となっている。
Specifically, in the reflective liquid crystal display device of the first embodiment, the black electrode 22 formed on the first glass substrate 1 is used.
And the transparent electrode 6 formed on the second glass substrate 7 sandwiches the PDLC 5, and the low refractive index transparent layer 3 is provided between the PDLC 5 and the black electrode 22. There is.

【0017】次に、実施例1の反射型液晶表示装置の製
造方法について説明する。図1に示す実施例1の反射型
液晶表示装置の製造方法は、厚さ0.7〜1.1mmの第
1のガラス基板1上にカーボンを真空蒸着して厚さ約
0.5μmの黒色電極22を形成し、その上に低屈折率
透明層3としてMgF2 (屈折率n=1.38)を厚さ
2μm程度にスパッタ法により形成する。尚、低屈折率
透明層3の膜厚は薄いと干渉による着色が生じ、厚いと
駆動電圧が高くなるので、1μm〜5μm程度が望まし
い。
Next, a method of manufacturing the reflective liquid crystal display device of Example 1 will be described. In the method of manufacturing the reflective liquid crystal display device of Example 1 shown in FIG. 1, carbon is vacuum-deposited on the first glass substrate 1 having a thickness of 0.7 to 1.1 mm to form a black film having a thickness of about 0.5 μm. The electrode 22 is formed, and MgF 2 (refractive index n = 1.38) is formed thereon as the low refractive index transparent layer 3 to a thickness of about 2 μm by the sputtering method. If the film thickness of the low-refractive-index transparent layer 3 is thin, coloring due to interference occurs, and if it is thick, the driving voltage becomes high, so about 1 μm to 5 μm is desirable.

【0018】次に、厚さ0.7〜1.1μmの第2のガ
ラス基板7上に透明電極6としてIndium−Tin
−Oxide(ITO:酸化インジウム・スズ)をスパ
ッタ法により厚さ約0.1μm程度形成する。
Next, an Indium-Tin film is formed as a transparent electrode 6 on the second glass substrate 7 having a thickness of 0.7 to 1.1 μm.
-Oxide (ITO: indium tin oxide) is formed to a thickness of about 0.1 μm by a sputtering method.

【0019】そして、2枚の基板をセルギャップが約1
0μmとなるように貼り合わせた後、ネマティック液晶
とアクリル系の紫外線硬化樹脂の混合物を真空注入し、
その後、紫外線を照射してPDLC5を形成する。
The two substrates have a cell gap of about 1
After bonding so as to have a thickness of 0 μm, a mixture of nematic liquid crystal and acrylic ultraviolet curing resin is vacuum-injected,
After that, ultraviolet rays are irradiated to form PDLC 5.

【0020】実施例1の反射型液晶表示装置では、電圧
印加時にはPDLC5は透明状態となり光は直進するた
め、低屈折率層3は用をなさず、黒色電極22で光が吸
収されて表示は黒色となる。また、電圧無印加時にPD
LC5によって散乱された光は、PDLC5と黒色電極
22の間に低屈折率層3が存在するため、PDLC5の
屈折率をnLC、低屈折率層3の屈折率をnとすると、入
射角θi =sin-1(n/nLC)より大きな角度でPD
LC5と低屈折率層3の界面に入射した光は全反射し、
入射側に戻ってくるので明るい白色表示が得られること
になる。
In the reflection type liquid crystal display device of Example 1, since the PDLC 5 is in a transparent state and the light travels straight when a voltage is applied, the low refractive index layer 3 is useless and the black electrode 22 absorbs the light to display the image. It becomes black. When no voltage is applied, PD
The light scattered by the LC5 has the low refractive index layer 3 between the PDLC 5 and the black electrode 22. Therefore, when the refractive index of the PDLC 5 is n LC and the refractive index of the low refractive index layer 3 is n, the incident angle θi = PD at a larger angle than sin -1 (n / n LC ).
Light incident on the interface between the LC 5 and the low refractive index layer 3 is totally reflected,
Since it returns to the incident side, a bright white display can be obtained.

【0021】実施例1では、PDLC5の屈折率nLC
1.5〜1.7であるので、例えば、nLC=1.5と
し、低屈折率層3の屈折率n=1.38として、入射角
θi の計算を行うとθi =74.4゜となり、この入射
角より大きい角度で入射する光は全反射することにな
る。
In Example 1, the refractive index of the PDLC 5 n LC =
Since 1.5 to 1.7, for example, when n LC = 1.5 and the refractive index n of the low refractive index layer 3 is 1.38, the incident angle θi is calculated, then θ i = 74.4 °. Therefore, light incident at an angle larger than this incident angle is totally reflected.

【0022】実施例1の反射型液晶表示装置では、低屈
折率透明層3がない時に比べると白色表示時の輝度が3
3%向上して白色表示を明るくでき、また、黒色表示時
において干渉効果を利用していないため視角依存性がな
く、視角方向による着色は見られず、輝度及びコントラ
ストを高くできる効果がある。
In the reflection type liquid crystal display device of Example 1, the brightness in white display is 3 as compared with the case where the low refractive index transparent layer 3 is not provided.
There is an effect that the white display can be made brighter by 3% and the interference effect is not utilized at the time of black display, there is no dependence on the viewing angle, coloring due to the viewing direction is not seen, and the brightness and contrast can be increased.

【0023】次に、本発明の別の実施例(実施例2)に
ついて図2を使って説明する。図2は、本発明の別の実
施例(実施例2)に係る反射型液晶表示装置の断面説明
図である。尚、図1の反射型液晶表示装置と同様の構成
をとる部分については同一の符号を付して説明する。実
施例2の反射型液晶表示装置は、第1のガラス基板1
と、光を吸収する光吸収層23と、低屈折率透明層3′
と、第1の透明電極4と、PDLC5と、第2の透明電
極6′と、第2のガラス基板7とから構成されている。
Next, another embodiment (second embodiment) of the present invention will be described with reference to FIG. FIG. 2 is a sectional explanatory view of a reflective liquid crystal display device according to another embodiment (Embodiment 2) of the present invention. It should be noted that portions having the same configuration as the reflection type liquid crystal display device of FIG. The reflective liquid crystal display device of Example 2 includes the first glass substrate 1
A light absorbing layer 23 for absorbing light, and a low refractive index transparent layer 3 '.
, The first transparent electrode 4, the PDLC 5, the second transparent electrode 6 ', and the second glass substrate 7.

【0024】具体的には、実施例2の反射型液晶表示装
置は、第1のガラス基板1上に光吸収層23と低屈折率
層3′を介して形成された第1の透明電極4と、第2の
ガラス基板7上に形成された第2の透明電極6′とがP
DLC5を挟むように構成されている。
Specifically, in the reflective liquid crystal display device of Example 2, the first transparent electrode 4 formed on the first glass substrate 1 via the light absorption layer 23 and the low refractive index layer 3 '. And the second transparent electrode 6'formed on the second glass substrate 7 is P
It is configured to sandwich the DLC 5.

【0025】次に、実施例2の反射型液晶表示装置の製
造方法について説明する。実施例2の反射型液晶表示装
置の製造方法は、厚さ0.7〜1.1mmの第1のガラス
基板1上にカーボンを含有したアクリル系樹脂を厚さ約
1μm程度にスピン塗布し、その後に焼成して光吸収層
23を形成し、その上に低屈折率透明層3′として屈折
率n=1.34のフッソ系樹脂を厚さ約2μm程度スピ
ン塗布し、その後に焼成して形成し、更にその上にIT
Oをスパッタ法により厚さ約0.1μm形成してフォト
リソエッチングで第1の透明電極4をパターニングす
る。その他の部分の形成は実施例1と同様であるので省
略する。
Next, a method of manufacturing the reflection type liquid crystal display device of Example 2 will be described. In the method for manufacturing the reflective liquid crystal display device of Example 2, the acrylic resin containing carbon is spin-coated on the first glass substrate 1 having a thickness of 0.7 to 1.1 mm to a thickness of about 1 μm, After that, the light absorption layer 23 is formed by baking, and a fluorine-based resin having a refractive index n = 1.34 as a low-refractive-index transparent layer 3'is spin-coated to a thickness of about 2 μm, and then baked. Form and then IT
O is formed to a thickness of about 0.1 μm by a sputtering method, and the first transparent electrode 4 is patterned by photolithography etching. The formation of the other portions is the same as that of the first embodiment, and the description thereof will be omitted.

【0026】実施例2の反射型液晶表示装置によれば、
低屈折率透明層3′の膜厚に関係なくPDLC5に印加
する駆動電圧を一定とすることができる効果がある。こ
こで、PDLC5の屈折率nLC=1.5、低屈折率透明
層3′の屈折率n=1.34として全反射する入射角θ
i を計算すると、θi =70.3゜となり、この入射角
より大きい角度で入射する光は全反射することになる。
According to the reflective liquid crystal display device of Example 2,
There is an effect that the driving voltage applied to the PDLC 5 can be made constant regardless of the film thickness of the low refractive index transparent layer 3 '. Here, the refractive index n LC of the PDLC 5 is 1.5 and the refractive index n of the low refractive index transparent layer 3 ′ is 1.34.
When i is calculated, θi = 70.3 °, and light incident at an angle larger than this incident angle is totally reflected.

【0027】実施例2の反射型液晶表示装置では、低屈
折率透明層3′がない時に比べると白色表示時の輝度が
36%向上して白色表示を明るくでき、また、黒色表示
時において干渉効果を利用していないため視角依存性が
なく、視角方向による着色はみられず、輝度及びコント
ラストを高くできる効果がある。
In the reflective liquid crystal display device of Example 2, the brightness at the time of white display is improved by 36% and the white display can be made brighter as compared with the case without the low refractive index transparent layer 3 ', and the interference at the time of black display. Since the effect is not utilized, there is no viewing angle dependency, coloring in the viewing angle direction is not seen, and there is an effect that brightness and contrast can be increased.

【0028】ここでは、散乱型液晶としてPDLCを用
いた場合について述べたが、これに限定されるものでは
なく、PNLC、Nematic Curvilinear Aligned Phase
(NCAP)、動的散乱モード、ネマティック−コレス
テリック相転移モードといった他の散乱型液晶を用いて
も同様な効果が得られる。
Here, the case where PDLC is used as the scattering type liquid crystal has been described, but the present invention is not limited to this. PNLC, Nematic Curvilinear Aligned Phase
Similar effects can be obtained by using other scattering type liquid crystals such as (NCAP), dynamic scattering mode and nematic-cholesteric phase transition mode.

【0029】従って、実施例1、2の反射型液晶表示装
置によれば、黒色表示を干渉効果に依っていないため視
角依存性がなく、また、白色表示時に低屈折率透明層
3、3′に入射する光の多くを全反射させることで明る
くすることができ、輝度及びコントラストを高くできる
効果がある。
Therefore, according to the reflective liquid crystal display devices of Examples 1 and 2, since black display does not depend on the interference effect, there is no viewing angle dependency, and the low refractive index transparent layers 3, 3'when white is displayed. It is possible to increase the brightness and contrast by totally reflecting most of the light incident on the.

【0030】[0030]

【発明の効果】請求項1記載の発明によれば、高分子分
散液晶を透明電極と光を吸収する黒色電極とで挟持し、
更に高分子分散液晶と黒色電極との間に低屈折率層を設
けた液晶表示装置としているので、電極への電圧無印加
時に高分子分散液晶で散乱された光が低屈折率層に入射
する場合に、高分子分散液晶の屈折率より低屈折率層の
屈折率が低いため、全反射の角度が小さくなり、入射光
の多くを全反射させることができるため、電圧無印加時
の白色表示を明るくでき、しかも、干渉効果で黒色表示
を行わないため、視角に依存せず黒色素直に表示させる
ことができ、輝度及びコントラストを向上させることが
できる効果がある。
According to the invention described in claim 1, the polymer dispersed liquid crystal is sandwiched between the transparent electrode and the black electrode which absorbs light,
Further, since the liquid crystal display device has a low refractive index layer provided between the polymer dispersed liquid crystal and the black electrode, the light scattered by the polymer dispersed liquid crystal enters the low refractive index layer when no voltage is applied to the electrodes. In this case, since the refractive index of the low refractive index layer is lower than that of the polymer dispersed liquid crystal, the angle of total reflection becomes small, and most of the incident light can be totally reflected, resulting in white display when no voltage is applied. In addition, since the black color is not displayed due to the interference effect, it is possible to display the black dye directly without depending on the viewing angle, and it is possible to improve the brightness and the contrast.

【0031】請求項2記載の発明によれば、高分子分散
液晶を第1の透明電極と第2の透明電極とで挟持し、更
に第1の透明電極と第1の基板との間に第1の透明電極
側に低屈折率層を、第1の基板側に光吸収層を設けた液
晶表示装置としているので、電極への電圧無印加時に高
分子分散液晶で散乱された光が低屈折率層に入射する場
合に、高分子分散液晶の屈折率より低屈折率層の屈折率
が低いため、全反射の角度が小さくなり、入射光の多く
を全反射させることができるため、電圧無印加時の白色
表示を明るくでき、しかも、干渉効果で黒色表示を行わ
ないため、視角に依存せず黒色素直に表示させることが
でき、輝度及びコントラストを向上させることができる
効果がある。
According to the second aspect of the present invention, the polymer-dispersed liquid crystal is sandwiched between the first transparent electrode and the second transparent electrode, and the first transparent electrode and the first substrate are provided with a first transparent electrode. Since the liquid crystal display device has a low refractive index layer on the transparent electrode side of No. 1 and a light absorption layer on the first substrate side, light scattered by the polymer dispersed liquid crystal when no voltage is applied to the electrode has low refraction index. When incident on the refractive index layer, since the refractive index of the low refractive index layer is lower than that of the polymer dispersed liquid crystal, the angle of total reflection is small, and most of the incident light can be totally reflected. Since the white display upon addition can be brightened and the black display is not performed due to the interference effect, it is possible to display the black pigment directly without depending on the viewing angle, and it is possible to improve the brightness and the contrast.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る反射型液晶表示装置
の断面説明図である。
FIG. 1 is a cross-sectional explanatory diagram of a reflective liquid crystal display device according to an embodiment of the present invention.

【図2】 別の実施例の反射型液晶表示装置の断面説明
図である。
FIG. 2 is a cross-sectional explanatory view of a reflective liquid crystal display device of another embodiment.

【図3】 従来の反射型液晶表示装置の断面説明図であ
る。
FIG. 3 is a cross-sectional explanatory diagram of a conventional reflective liquid crystal display device.

【符号の説明】[Explanation of symbols]

1…第1のガラス基板、 21…反射電極、 22…黒
色電極、 23…光吸収層、 3,3′…低屈折率透明
層、 4…第1の透明電極、 5…PDLC、6…透明
電極、 6′…第2の透明電極、 7…第2のガラス基
DESCRIPTION OF SYMBOLS 1 ... 1st glass substrate, 21 ... Reflective electrode, 22 ... Black electrode, 23 ... Light absorption layer, 3, 3 '... Low refractive index transparent layer, 4 ... 1st transparent electrode, 5 ... PDLC, 6 ... Transparent Electrode, 6 '... second transparent electrode, 7 ... second glass substrate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1の基板上に光を吸収する黒色電極
と、低屈折率の透明な低屈折率透明層とが順に形成さ
れ、第2の基板上に透明電極が形成され、前記黒色電極
と前記透明電極とを対向させて高分子分散液晶を挟むよ
うに前記第1の基板と前記第2の基板を配置したことを
特徴とする液晶表示装置。
1. A black electrode that absorbs light and a transparent low refractive index transparent layer having a low refractive index are sequentially formed on a first substrate, and a transparent electrode is formed on a second substrate. A liquid crystal display device, characterized in that the first substrate and the second substrate are arranged such that electrodes and the transparent electrode are opposed to each other and sandwich the polymer dispersed liquid crystal.
【請求項2】 第1の基板上に光を吸収する光吸収層
と、低屈折率の透明な低屈折率透明層と、第1の透明電
極とが順に形成され、第2の基板上に第2の透明電極が
形成され、前記第1の透明電極と前記第2の透明電極と
を対向させて高分子分散液晶を挟むように前記第1の基
板と前記第2の基板を配置したことを特徴とする液晶表
示装置。
2. A light absorbing layer that absorbs light, a transparent low refractive index transparent layer having a low refractive index, and a first transparent electrode are sequentially formed on a first substrate, and the light absorbing layer is formed on a second substrate. A second transparent electrode is formed, and the first substrate and the second substrate are arranged so that the first transparent electrode and the second transparent electrode face each other and sandwich the polymer dispersed liquid crystal therebetween. Liquid crystal display device characterized by.
JP5211026A 1993-08-04 1993-08-04 Liquid crystal display device Pending JPH0749485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5211026A JPH0749485A (en) 1993-08-04 1993-08-04 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5211026A JPH0749485A (en) 1993-08-04 1993-08-04 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH0749485A true JPH0749485A (en) 1995-02-21

Family

ID=16599134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5211026A Pending JPH0749485A (en) 1993-08-04 1993-08-04 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH0749485A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1079261A2 (en) * 1999-08-24 2001-02-28 Eastman Kodak Company Forming a display having conductive image areas over a light modulating layer
KR100309052B1 (en) * 1998-09-14 2001-11-05 가타오카 마사타카 Reflective type liquid crystal display device for improving chroma
EP1168044A2 (en) * 2000-06-26 2002-01-02 Eastman Kodak Company Method of forming a liquid crystal display
US6624858B2 (en) * 1997-08-01 2003-09-23 Citizen Watch Co., Ltd. Light scattering type liquid crystal display panel for timepiece
JP2006058393A (en) * 2004-08-17 2006-03-02 Sony Corp Liquid crystal display device and panel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6624858B2 (en) * 1997-08-01 2003-09-23 Citizen Watch Co., Ltd. Light scattering type liquid crystal display panel for timepiece
KR100309052B1 (en) * 1998-09-14 2001-11-05 가타오카 마사타카 Reflective type liquid crystal display device for improving chroma
EP1079261A2 (en) * 1999-08-24 2001-02-28 Eastman Kodak Company Forming a display having conductive image areas over a light modulating layer
JP2001091966A (en) * 1999-08-24 2001-04-06 Eastman Kodak Co Formation of display device having conductive picture region on optical modulation layer
EP1079261A3 (en) * 1999-08-24 2002-05-15 Eastman Kodak Company Forming a display having conductive image areas over a light modulating layer
EP1168044A2 (en) * 2000-06-26 2002-01-02 Eastman Kodak Company Method of forming a liquid crystal display
EP1168044A3 (en) * 2000-06-26 2002-07-17 Eastman Kodak Company Method of forming a liquid crystal display
JP2006058393A (en) * 2004-08-17 2006-03-02 Sony Corp Liquid crystal display device and panel

Similar Documents

Publication Publication Date Title
US5526149A (en) Reflection type liquid crystal display device
JP2793076B2 (en) Reflective liquid crystal display device and method of manufacturing the same
JPH11242226A (en) Liquid crystal display device
JP3310569B2 (en) Reflective liquid crystal display
JP3244055B2 (en) Reflective liquid crystal display
KR100306648B1 (en) Reflective liquid crystal display device
JP2892913B2 (en) Reflective liquid crystal display
JP3240125B2 (en) Reflective liquid crystal display
JP3172706B2 (en) Reflective liquid crystal display
JP3187385B2 (en) Liquid crystal display
JPH06235940A (en) Reflection type liquid crystal display device
JPH08166605A (en) Liquid crystal display device
US6297863B1 (en) Reflective liquid crystal display device
JPH0749485A (en) Liquid crystal display device
JP2882965B2 (en) Reflective liquid crystal display
JP3526250B2 (en) Liquid crystal display
JP2002372710A (en) Liquid crystal display device
JP3219733B2 (en) Reflective liquid crystal display
JPH0743708A (en) Reflection type liquid crystal display device
JP2000111912A (en) Reflection type liquid crystal display device
JP3740805B2 (en) Reflective liquid crystal display element
JP2002333624A (en) Liquid crystal display device
JP3044799B2 (en) Liquid crystal device
JP2002333624A5 (en)
JP2000029021A (en) Reflective liquid crystal display device