JPH0749442A - Driving device using frictionally anisotropic material - Google Patents

Driving device using frictionally anisotropic material

Info

Publication number
JPH0749442A
JPH0749442A JP5212139A JP21213993A JPH0749442A JP H0749442 A JPH0749442 A JP H0749442A JP 5212139 A JP5212139 A JP 5212139A JP 21213993 A JP21213993 A JP 21213993A JP H0749442 A JPH0749442 A JP H0749442A
Authority
JP
Japan
Prior art keywords
driving
driven member
driving member
frictional
arrowed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5212139A
Other languages
Japanese (ja)
Inventor
Masahiko Adachi
雅彦 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP5212139A priority Critical patent/JPH0749442A/en
Publication of JPH0749442A publication Critical patent/JPH0749442A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a driving device formed from a frictional anisotropic material in which the frictional coefficient between a driving member and a driven member is differed in positive and reversed vibrating directions of the driving member. CONSTITUTION:A driving member 12 consisting of a frictional anisotropic material is cut from a fiber-contained material in which a carbon fiber (f) is axially inclined, and electro polished to slightly expose the head part of the fiber (f) to the surface. The upper half of a driven member 13 makes frictional contact with the driving member 12, and the lower half is gently fitted to the driving member 12. When a sine wave alternate current is applied to a piezoelectric element 14, it is contractively and expansively displaced, and a driving shaft 11 fixed and connected thereto is also axially vibrated. In the arrowed directional (b) movement of the driving shaft 11, the arrowed directional (b) frictional resistance with the driven member 13 is small, and the arrowed directional (c) frictional resistance is large because the exposing direction of the fiber (f) in the driving member 12 is the arrowed direction (b), so that the driven member 13 is moved in an arrowed direction P together with the driving member 12, but in the arrowed directional (b) movement of the driving shaft 11, the driven member 13 is stayed in the position by the inertial force.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、駆動装置に関し、特
にカメラその他の精密機器を構成する部材の駆動に適し
た、摩擦異方性素材を使用した駆動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a driving device, and more particularly to a driving device using a friction anisotropic material suitable for driving a member constituting a camera or other precision equipment.

【0002】[0002]

【従来の技術】カメラその他の精密機器を構成する部材
の駆動に、圧電素子を使用した駆動装置が提案されてい
る(特開平4−69070号公報、特開昭63−110
74号公報参照)。
2. Description of the Related Art A driving device using a piezoelectric element has been proposed for driving a camera and other members constituting precision equipment (Japanese Patent Laid-Open No. 4-69070 and Japanese Patent Laid-Open No. 63-110).
74 publication).

【0003】図7はその一例で、カメラに装着されたズ
−ムレンズの駆動に応用されたもので、レンズの鏡筒7
1を支持する支持体72の摺動嵌合部72a、72bが
駆動軸73に摺動自在に嵌合している。また、駆動軸7
3はフレ−ム77の支持部75、76により軸方向に摺
動自在に支持されており、駆動軸73の軸方向端部に
は、厚み方向に変位する圧電素子78が配置されて、そ
の両端部はそれぞれフレ−ム77及び駆動軸73と固着
されている。
FIG. 7 shows an example thereof, which is applied to driving a zoom lens mounted on a camera, and a lens barrel 7 of the lens.
The sliding fitting portions 72a and 72b of the support body 72 that supports the sliding member 1 are slidably fitted to the drive shaft 73. Also, the drive shaft 7
3 is axially slidably supported by supporting portions 75 and 76 of the frame 77, and a piezoelectric element 78 that is displaced in the thickness direction is arranged at the axial end of the drive shaft 73. Both ends are fixed to the frame 77 and the drive shaft 73, respectively.

【0004】図8で示すような、緩やかな立ち上がり部
とこれに続く急速な立ち下がり部からなるパルス電圧を
圧電素子78に印加すると、パルス電圧の緩やかな立ち
上がり部では、圧電素子78は緩やかに厚み方向の伸び
変位を生じるので、駆動軸73は軸方向に矢印aで示す
方向へ緩やかに移動する。これに伴い、駆動軸73に対
し摺動嵌合部72a、72bで支持されている支持体7
2も、摺動嵌合部72a、72bの摩擦力により駆動軸
73に結合しているので、矢印a方向に移動し、レンズ
鏡筒71は矢印aで示す方向に移動する。
When a pulse voltage composed of a gentle rising portion and a rapid falling portion following it as shown in FIG. 8 is applied to the piezoelectric element 78, the piezoelectric element 78 is gently moved at the gentle rising portion of the pulse voltage. Since the expansion displacement occurs in the thickness direction, the drive shaft 73 gently moves in the axial direction in the direction indicated by the arrow a. Along with this, the support body 7 supported by the sliding fitting portions 72a and 72b with respect to the drive shaft 73.
2 is also coupled to the drive shaft 73 by the frictional force of the sliding fitting portions 72a and 72b, and therefore moves in the direction of arrow a, and the lens barrel 71 moves in the direction indicated by arrow a.

【0005】一方、パルス電圧の急速な立ち下がり部で
は、圧電素子78は急速に厚み方向の縮み変位を生じる
ので、駆動軸73は軸方向に矢印aと反対方向に急速に
移動する。このとき、駆動軸73に摺動嵌合部72a、
72bで支持されている支持体72は、その慣性力によ
り摺動嵌合部72a、72bの摩擦抵抗力に打ち勝つて
その位置に留まるので、レンズ鏡筒71は移動しない。
On the other hand, at the rapid falling portion of the pulse voltage, the piezoelectric element 78 rapidly contracts in the thickness direction, so that the drive shaft 73 moves axially in the direction opposite to the arrow a. At this time, the sliding fitting portion 72a on the drive shaft 73,
Since the support body 72 supported by 72b overcomes the frictional resistance force of the sliding fitting portions 72a and 72b by its inertial force and stays in that position, the lens barrel 71 does not move.

【0006】上記波形のパルスを連続して圧電素子78
に印加することにより、レンズ鏡筒71を矢印aで示す
方向へ連続して移動させることができる。レンズ鏡筒7
1を矢印aと反対方向に移動させるには、急速な立ち上
がり部とこれに続く緩やかな立ち下がり部からなる波形
のパルス電圧を圧電素子78に印加することで達成する
ことができる。
The pulse having the above waveform is continuously applied to the piezoelectric element 78.
, The lens barrel 71 can be continuously moved in the direction indicated by the arrow a. Lens barrel 7
The movement of 1 in the direction opposite to the arrow a can be achieved by applying to the piezoelectric element 78 a pulse voltage having a waveform having a rapid rising portion and a gentle falling portion following the rising portion.

【0007】[0007]

【発明が解決しようとする課題】ところで、上記したよ
うな圧電素子を使用した駆動装置では、圧電素子に結合
された駆動軸と被駆動部材との間の摩擦による結合力と
被駆動部材の慣性力、即ち質量を利用しているから、駆
動軸と被駆動部材との間に十分な摩擦による結合力が確
保できない場合、例えば駆動軸と被駆動部材との間に潤
滑剤が入る構成や、他の部材との関係で、被駆動部材の
表面を鏡面仕上げしなければならない状況等では、十分
な駆動力を得ることができない。
By the way, in the driving device using the piezoelectric element as described above, the coupling force due to the friction between the driving shaft coupled to the piezoelectric element and the driven member and the inertia of the driven member. Since force, i.e., mass is used, if sufficient coupling force due to friction cannot be secured between the drive shaft and the driven member, for example, a configuration in which a lubricant enters between the drive shaft and the driven member, Due to the relationship with other members, sufficient driving force cannot be obtained when the surface of the driven member has to be mirror-finished.

【0008】また、被駆動部材が軽量な部材の場合も、
被駆動部材の慣性力を十分利用できず、結果として被駆
動部材を移動させることができない。
Also, when the driven member is a lightweight member,
The inertial force of the driven member cannot be fully utilized, and as a result, the driven member cannot be moved.

【0009】さらに、被駆動部材の駆動方向を切り換え
るときは、先に説明したように、圧電素子に印加するパ
ルス電圧の波形を切り換える必要があるので、パルス発
振器の構成を複雑なものとしている。この発明は上記課
題を解決することを目的とするものである。
Further, when switching the driving direction of the driven member, as described above, it is necessary to switch the waveform of the pulse voltage applied to the piezoelectric element, which complicates the configuration of the pulse oscillator. The present invention is intended to solve the above problems.

【0010】[0010]

【課題を解決するための手段】この発明は上記課題を解
決するもので、軸方向に振動する駆動部材と、該駆動部
材に摩擦接触する被駆動部材を備えた駆動装置におい
て、駆動部材及び被駆動部材は、駆動部材と被駆動部材
との間の摩擦係数が駆動部材の振動方向の正方向と逆方
向で異なる摩擦異方性素材で構成されたことを特徴とす
る。
SUMMARY OF THE INVENTION The present invention is to solve the above-mentioned problems, and provides a driving device including a driving member that vibrates in the axial direction and a driven member that makes frictional contact with the driving member. The driving member is characterized by being made of a friction anisotropic material in which a friction coefficient between the driving member and the driven member differs in a positive direction and a reverse direction of a vibration direction of the driving member.

【0011】[0011]

【作用】軸方向に振動する駆動部材とその駆動部材に摩
擦接触する被駆動部材を、両者間の摩擦係数が駆動部材
の振動方向の正方向と逆方向で異なる摩擦異方性素材で
構成するので、圧電素子に正弦波交流を印加して駆動部
材を振動するのみで被駆動部材を所定方向に駆動するこ
とができる。
The driving member that vibrates in the axial direction and the driven member that makes frictional contact with the driving member are made of a friction anisotropic material whose friction coefficient differs between the positive direction and the reverse direction of the vibration direction of the driving member. Therefore, the driven member can be driven in the predetermined direction only by applying a sinusoidal alternating current to the piezoelectric element and vibrating the driving member.

【0012】[0012]

【実施例】以下、この発明の実施例について説明する。Embodiments of the present invention will be described below.

【0013】まず、摩擦異方性素材について説明する。
摩擦異方性素材は、その表面の摩擦係数が方向により異
なる素材であつて、ここでは基材に繊維素材を一定の方
向を定めて配合して製造した複合材料から、繊維素材の
方向が所定方向に対し傾斜するように切り出したもので
ある。
First, the friction anisotropic material will be described.
Friction anisotropic material is a material whose surface friction coefficient differs depending on the direction.Here, the direction of the fiber material is specified from the composite material manufactured by mixing the base material with the fiber material in a fixed direction. It is cut out so as to be inclined with respect to the direction.

【0014】以下、摩擦異方性素材の製造法を説明す
る。基材はアルミニウム系合金、銅系合金、鉄系合金等
の金属材料、熱硬化性合成樹脂、熱可塑性合成樹脂、或
いはセラミツクス等適宜の材料を使用することができ
る。また、繊維材料としてはカ−ボン繊維、アルミナ繊
維、ガラス繊維、アラミド繊維、ポリアリレ−ト繊維等
の各種繊維を使用することができるが、基材との関係に
おいて、加工時に溶融その他障害の生じない材料を選択
する。
The method for producing the friction anisotropic material will be described below. As the base material, a metal material such as an aluminum alloy, a copper alloy, an iron alloy, a thermosetting synthetic resin, a thermoplastic synthetic resin, or an appropriate material such as ceramics can be used. Further, as the fiber material, various fibers such as carbon fiber, alumina fiber, glass fiber, aramid fiber, polyarylate fiber, etc. can be used. Select a material that does not exist.

【0015】次に、基材にアルミニウム系合金を、繊維
材料としてカ−ボン繊維を使用した摩擦異方性素材の製
造法の一例を、図1により説明する。
Next, an example of a method for producing a friction anisotropic material using an aluminum alloy as a base material and carbon fiber as a fiber material will be described with reference to FIG.

【0016】図1において、1は溶融槽、2はカ−ボン
繊維供給部、3は圧延ロ−ル、4はカツタ−、5、6、
7、8は案内ロ−ルを示す。まず、アルミニウム合金A
Lを溶融させた溶融槽1の一端から多数のカ−ボン繊維
fを並行に配置した繊維束を供給し、溶融槽の中を潜ら
せて繊維の表面にアルミニウム合金ALを付着させる。
この繊維束を配合したシ−ト状のアルミニウム合金を圧
延ロ−ル3により圧延し、カツタ−4で裁断して、アル
ミニウムシ−トSを製造する。
In FIG. 1, 1 is a melting tank, 2 is a carbon fiber supply section, 3 is a rolling roll, 4 is a cutter, 5, 6,
Reference numerals 7 and 8 denote guide rolls. First, aluminum alloy A
A fiber bundle in which a large number of carbon fibers f are arranged in parallel is supplied from one end of the melting tank 1 in which L is melted, and the aluminum alloy AL is adhered to the surface of the fiber by making it dive in the melting tank.
A sheet-shaped aluminum alloy containing this fiber bundle is rolled by a rolling roll 3 and cut by a cutter-4 to produce an aluminum sheet S.

【0017】次に、図2に示すように、カ−ボン繊維f
の方向を揃えて前記アルミニウムシ−トSを積層し、こ
れをアルミニウム合金の溶融温度付近に加熱した状態で
加圧し、ブロツクBに形成する。
Next, as shown in FIG. 2, carbon fiber f
The aluminum sheets S are laminated in the same direction, and pressed in a state of being heated to around the melting temperature of the aluminum alloy to form blocks B.

【0018】次に、図2に示す前記ブロツクBをそのカ
−ボン繊維fの方向に対して角度αだけ傾斜して裁断
し、これを電解研磨して表面付近のアルミニウム合金A
Lを溶出すると、図3に示すように、表面にカ−ボン繊
維fの頭部が僅かに露出した棒状の摩擦異方性素材Tを
得ることができる。なお、その断面は駆動装置の構成に
応じて方形、円形など任意の形状に整える。
Next, the block B shown in FIG. 2 is cut at an angle α with respect to the direction of the carbon fiber f, and is cut, and this is electrolytically polished to form an aluminum alloy A near the surface.
When L is eluted, as shown in FIG. 3, a rod-shaped friction anisotropic material T in which the head of the carbon fiber f is slightly exposed can be obtained. The cross section is arranged in an arbitrary shape such as a square or a circle according to the configuration of the driving device.

【0019】なお、ブロツクBから摩擦異方性素材Tを
裁断する角度αを幾らに設定するかにより素材Tの軸方
向に対するカ−ボン繊維fの角度を変え、摩擦係数を所
望の値に選択調整することができる。また、ここではア
ルミニウム合金を使用しているが、酸化被膜の形成など
表面処理を施すことにより、耐磨耗性を高めることも可
能である。
The angle of the carbon fiber f with respect to the axial direction of the material T is changed by selecting the angle α for cutting the friction anisotropic material T from the block B, and the friction coefficient is selected to a desired value. Can be adjusted. Further, although an aluminum alloy is used here, it is also possible to enhance the wear resistance by applying a surface treatment such as formation of an oxide film.

【0020】図3は棒状の摩擦異方性素材Tの構成を示
す横断面図で、表面から僅かに露出したカ−ボン繊維f
は、棒状の摩擦異方性素材Tの軸方向に対して角度αだ
け傾斜しているので、矢印b方向と、これと逆の矢印c
方向とでは摩擦係数が異なる。このため、摩擦異方性素
材Tの表面に摩擦接触する部材が矢印b方向に移動する
ときは小さい摩擦抵抗力を受けるが、矢印c方向に移動
するときは大きい摩擦抵抗力を受けることになる。
FIG. 3 is a cross-sectional view showing the structure of the rod-shaped friction anisotropic material T. Carbon fiber f slightly exposed from the surface.
Is inclined by an angle α with respect to the axial direction of the rod-shaped friction anisotropic material T, the arrow b direction and the opposite arrow c
The coefficient of friction differs from the direction. For this reason, when the member in frictional contact with the surface of the anisotropic friction material T moves in the direction of arrow b, it receives a small frictional resistance force, but when it moves in the direction of arrow c, it receives a large frictional resistance force. .

【0021】次に、摩擦異方性素材を使用した駆動装置
について説明する。図4、図5及び図6は、ズ−ムレン
ズの駆動などに応用できる直線駆動装置で、図4は構成
の概略を示す斜視図、図5及び図6は動作を説明する断
面図である。
Next, a drive device using a friction anisotropic material will be described. 4, 5 and 6 are linear driving devices applicable to driving a zoom lens, etc., FIG. 4 is a perspective view showing the outline of the configuration, and FIGS. 5 and 6 are sectional views for explaining the operation.

【0022】図4、図5及び図6において、11は駆動
軸、12は駆動軸11に同軸に嵌合固定された摩擦異方
性素材からなる駆動部材、13はズ−ムレンズの鏡筒等
の駆動すべき部材が適宜の手段で取り付けられる被駆動
部材である。被駆動部材13に設けられた孔部13a
は、その上半分が駆動部材12に摩擦接触し、下半分は
駆動部材12に接触しないよう上下方向に僅かに長い長
円形に構成されて駆動部材12に緩く嵌合されている。
14は厚み方向に変位する圧電素子であつて、その一端
は駆動軸11の端部に固着され、他の端部は歯車17に
固着されている。また、被駆動部材13は案内軸20に
より駆動軸11の軸方向、即ち矢印P方向及び矢印Q方
向には移動可能で、且つ駆動軸11の回りには回転しな
いように支持されている。
In FIGS. 4, 5 and 6, 11 is a drive shaft, 12 is a drive member made of a friction anisotropic material coaxially fitted and fixed to the drive shaft 11, and 13 is a lens barrel of a zoom lens. The member to be driven is a driven member which is attached by an appropriate means. Hole 13a provided in driven member 13
Has an oval shape slightly longer in the vertical direction so that the upper half thereof comes into frictional contact with the drive member 12 and the lower half does not come into contact with the drive member 12, and is loosely fitted to the drive member 12.
Reference numeral 14 denotes a piezoelectric element that is displaced in the thickness direction, one end of which is fixed to the end of the drive shaft 11 and the other end of which is fixed to the gear 17. The driven member 13 is supported by the guide shaft 20 so as to be movable in the axial direction of the drive shaft 11, that is, the arrow P direction and the arrow Q direction, and not to rotate around the drive shaft 11.

【0023】駆動軸11及び摩擦異方性素材からなる駆
動部材12は軸受け15、16により回転自在に支持さ
れており、図示しないモ−タその他の駆動源から軸1
9、歯車18を経て歯車17を駆動することにより圧電
素子14を介して180°回転可能とされている。
A drive shaft 11 and a drive member 12 made of a friction anisotropic material are rotatably supported by bearings 15 and 16, and the shaft 1 is driven by a motor or other drive source (not shown).
By driving the gear 17 via the gear 18 and the gear 18, it is possible to rotate 180 ° via the piezoelectric element 14.

【0024】摩擦異方性素材からなる駆動部材12は、
前記製造法により製造したブロツクBから断面円形に削
り出したものを、電解研磨して表面にカ−ボン繊維fの
頭部が僅かに露出させてある。
The drive member 12 made of a friction anisotropic material is
The block B manufactured by the above-described manufacturing method, which is cut into a circular cross section, is electropolished to slightly expose the head of the carbon fiber f on the surface.

【0025】次に、駆動装置の動作を説明する。まず、
被駆動部材13を矢印P方向(図4参照)に移動する場
合は、図5に示すように、図示しないモ−タにより歯車
18を経て歯車17を駆動し、圧電素子14を介して駆
動軸11を回転し、駆動軸11に同軸に嵌合固定された
摩擦異方性素材からなる駆動部材12のカ−ボン繊維f
の頭部の露出方向が、矢印b方向に向くように設定す
る。
Next, the operation of the driving device will be described. First,
When the driven member 13 is moved in the direction of arrow P (see FIG. 4), as shown in FIG. 5, the gear 17 is driven by the motor (not shown) via the gear 18, and the drive shaft is driven via the piezoelectric element 14. Carbon fiber f of the drive member 12 made of a friction anisotropic material that is coaxially fitted and fixed to the drive shaft 11 by rotating 11
The exposure direction of the head is set to face the direction of arrow b.

【0026】圧電素子14に正弦波交流電圧を印加する
と、圧電素子14は厚み方向に伸縮変位し、圧電素子1
4に固着結合している駆動軸11も軸方向に振動する。
駆動軸11の軸方向の振動において、駆動軸11が矢印
b方向(圧電素子の伸び方向)に移動するときは、駆動
部材12のカ−ボン繊維fの露出方向が矢印b方向に向
いているので、駆動部材12と被駆動部材13との間の
矢印b方向の摩擦抵抗力が小さく、矢印c方向の摩擦抵
抗力が大きいため、被駆動部材13は駆動部材12と共
に矢印P方向(図4参照)に移動する。
When a sinusoidal AC voltage is applied to the piezoelectric element 14, the piezoelectric element 14 expands and contracts in the thickness direction, and the piezoelectric element 1
The drive shaft 11 fixedly connected to the motor 4 also vibrates in the axial direction.
In the vibration of the drive shaft 11 in the axial direction, when the drive shaft 11 moves in the direction of arrow b (the extending direction of the piezoelectric element), the carbon fiber f of the drive member 12 is exposed in the direction of arrow b. Therefore, since the frictional resistance force between the driving member 12 and the driven member 13 in the arrow b direction is small and the frictional resistance force in the arrow c direction is large, the driven member 13 together with the driving member 12 is in the arrow P direction (see FIG. See).

【0027】なお、先に駆動装置の構成で説明したとお
り、被駆動部材13はその孔部13aの上半分で駆動部
材12と摩擦接触し、孔部13aの下半分は駆動部材1
2と接触していない。前記した駆動部材12と被駆動部
材13との間の摩擦抵抗力とは、この摩擦接触部分にお
ける摩擦抵抗力を指す。この点は、以下の記載において
も同じである。
As described above with reference to the structure of the driving device, the driven member 13 is in frictional contact with the driving member 12 in the upper half of the hole 13a, and the lower half of the hole 13a is in the driving member 1.
Not in contact with 2. The above-mentioned frictional resistance force between the driving member 12 and the driven member 13 refers to the frictional resistance force at this frictional contact portion. This point is the same in the following description.

【0028】駆動軸11が矢印c方向(圧電素子の縮み
方向)に移動するときは、駆動部材12と被駆動部材1
3との間の矢印b方向の摩擦抵抗力が小さく、矢印c方
向の摩擦抵抗力が大きいため、被駆動部材13はその位
置に留まる。したがつて、圧電素子14に正弦波交流電
圧を印加し続けると、被駆動部材13は矢印P方向(図
4参照)への移動を継続する。
When the drive shaft 11 moves in the direction of arrow c (the contraction direction of the piezoelectric element), the drive member 12 and the driven member 1 are moved.
Since the frictional resistance force with respect to 3 in the arrow b direction is small and the frictional resistance force in the arrow c direction is large, the driven member 13 remains at that position. Therefore, if the sinusoidal AC voltage is continuously applied to the piezoelectric element 14, the driven member 13 continues to move in the arrow P direction (see FIG. 4).

【0029】次に、被駆動部材13を矢印Q方向(図4
参照)方向に移動する場合は、図6に示すように、駆動
軸11を先に説明した図5に示す位置から180°回転
し、駆動部材12のカ−ボン繊維fの露出方向が先に説
明した図5に示す方向とは反対の矢印d方向に向くよう
に設定する。
Next, the driven member 13 is moved in the direction of arrow Q (see FIG. 4).
6), the drive shaft 11 is rotated 180 ° from the position shown in FIG. 5 described above, and the carbon fiber f of the drive member 12 is exposed first. It is set so as to face the arrow d direction opposite to the direction shown in FIG.

【0030】圧電素子14に正弦波交流電圧を印加する
と、圧電素子14は厚み方向に伸縮変位し、駆動軸11
も軸方向に振動する。駆動軸11の軸方向の振動におい
て、駆動軸11が矢印d方向(圧電素子の縮み方向)に
移動するときは、駆動部材12のカ−ボン繊維fの露出
方向が矢印d方向に向いているので、駆動部材12と被
駆動部材13との間の矢印d方向の摩擦抵抗力が小さ
く、矢印e方向の摩擦抵抗力が大きいので、被駆動部材
13は駆動部材12と共に矢印Q方向(図4参照)に移
動する。
When a sinusoidal AC voltage is applied to the piezoelectric element 14, the piezoelectric element 14 expands and contracts in the thickness direction, and the drive shaft 11
Also vibrates in the axial direction. In the axial vibration of the drive shaft 11, when the drive shaft 11 moves in the direction of arrow d (the contraction direction of the piezoelectric element), the carbon fiber f of the drive member 12 is exposed in the direction of arrow d. Therefore, since the frictional resistance force between the driving member 12 and the driven member 13 in the arrow d direction is small and the frictional resistance force in the arrow e direction is large, the driven member 13 together with the driving member 12 in the arrow Q direction (see FIG. See).

【0031】駆動軸11が矢印e方向(圧電素子の伸び
方向)に移動するときは、駆動部材12と被駆動部材1
3との間の矢印d方向の摩擦抵抗力が小さく、矢印e方
向の摩擦抵抗力が大きいため、被駆動部材13はその位
置に留まる。したがつて、圧電素子14に正弦波交流電
圧を印加し続けると、被駆動部材13は矢印Q方向(図
4参照)への移動を継続する。
When the drive shaft 11 moves in the direction of arrow e (the extending direction of the piezoelectric element), the drive member 12 and the driven member 1
Since the frictional resistance force with respect to 3 in the direction of arrow d is small and the frictional resistance force in the direction of arrow e is large, the driven member 13 remains at that position. Therefore, when the sinusoidal AC voltage is continuously applied to the piezoelectric element 14, the driven member 13 continues to move in the arrow Q direction (see FIG. 4).

【0032】前記実施例では駆動部材を摩擦異方性素材
で構成し、被駆動部材は通常の素材で構成したが、これ
に代えて被駆動部材又は被駆動部材の駆動部材との接触
面部分を摩擦異方性素材で構成し、駆動部材を通常の素
材で構成しても前記のものと同様に駆動することができ
る。
In the above embodiment, the driving member is made of a friction anisotropic material and the driven member is made of a usual material. Instead of this, the driven member or the contact surface portion of the driven member with the driving member is used. Can be driven in the same manner as described above even if is made of a friction anisotropic material and the driving member is made of a normal material.

【0033】また、駆動部材、被駆動部材の両方を摩擦
異方性素材で構成するときは、駆動部材、被駆動部材間
の摩擦摩擦抵抗力を特に大きくすることができる。
Further, when both the driving member and the driven member are made of friction anisotropic material, the frictional friction resistance between the driving member and the driven member can be made particularly large.

【0034】さらに、前記実施例では、駆動部材の断面
を円形としたが、駆動部材の断面を方形とすれば、被駆
動部材との間の接触面積を増大して摩擦摩擦抵抗力を大
きくすることができる。
Further, in the above embodiment, the driving member has a circular cross section. However, if the driving member has a rectangular cross section, the contact area with the driven member is increased and the frictional friction resistance is increased. be able to.

【0035】また、摩擦異方性素材の基材として金属材
料を使用したものは、高負荷、耐久性、高温の環境等で
使用される駆動装置に適する。また、基材として合成樹
脂材料を使用したものは、重量の軽いことを要求される
駆動装置に適する。基材としてセラミツク材料を使用し
たものは、耐久性や寸法精度が要求される駆動装置に適
する。
Further, the one using a metal material as the base material of the friction anisotropic material is suitable for a driving device used in a high load, durability, high temperature environment and the like. Further, the one using a synthetic resin material as the base material is suitable for a driving device which is required to be light in weight. The one using a ceramic material as the base material is suitable for a driving device which requires durability and dimensional accuracy.

【0036】[0036]

【発明の効果】以上説明したように、この発明は、軸方
向に振動する駆動部材とその駆動部材に摩擦接触する被
駆動部材を備えた駆動装置において、駆動部材及び被駆
動部材を、駆動部材と被駆動部材との間の摩擦係数が駆
動部材の振動方向の正方向と逆方向で異なる摩擦異方性
素材で構成するので、圧電素子に正弦波交流を印加して
駆動部材を振動するのみで被駆動部材を所定方向に駆動
することができる。
As described above, according to the present invention, in a drive device including a driving member that vibrates in the axial direction and a driven member that makes frictional contact with the driving member, the driving member and the driven member are Since the friction coefficient between the driven member and the driven member is different in the positive and reverse directions of the vibration direction of the driving member, frictional anisotropic material is applied, so that only sinusoidal alternating current is applied to the piezoelectric element to vibrate the driving member. The driven member can be driven in the predetermined direction.

【0037】さらに、圧電素子には正弦波交流を印加す
るのみでよいから、従来の装置のように特殊な波形の電
圧を発生するパルス発振器等を必要としない。
Further, since it is only necessary to apply a sinusoidal alternating current to the piezoelectric element, there is no need for a pulse oscillator or the like which generates a voltage with a special waveform as in the conventional device.

【図面の簡単な説明】[Brief description of drawings]

【図1】摩擦異方性素材の製造法の一例を示す概念図。FIG. 1 is a conceptual diagram showing an example of a method for producing a friction anisotropic material.

【図2】摩擦異方性素材の製造工程におけるブロツクの
構成を示す断面図。
FIG. 2 is a cross-sectional view showing the structure of a block in the process of manufacturing a friction anisotropic material.

【図3】摩擦異方性素材の構成を示す断面図。FIG. 3 is a cross-sectional view showing the structure of an anisotropic friction material.

【図4】この発明による直線駆動装置の構成の概略を示
す斜視図。
FIG. 4 is a perspective view showing a schematic configuration of a linear drive device according to the present invention.

【図5】図4に示す直線駆動装置の動作を説明する断面
図。
5 is a cross-sectional view explaining the operation of the linear drive device shown in FIG.

【図6】図4に示す直線駆動装置の動作を説明する断面
図。
6 is a cross-sectional view explaining the operation of the linear drive device shown in FIG.

【図7】圧電素子を使用した従来の駆動装置の一例を示
す斜視図。
FIG. 7 is a perspective view showing an example of a conventional drive device using a piezoelectric element.

【図8】図7に示す従来の駆動装置において圧電素子に
印加するパルス電圧波形の一例を示す波形図。
8 is a waveform diagram showing an example of a pulse voltage waveform applied to a piezoelectric element in the conventional driving device shown in FIG.

【符号の説明】[Explanation of symbols]

11 駆動軸 12 摩擦異方性素材からなる駆動部材 13 被駆動部材 14 圧電素子 15、16 軸受 T 棒状の摩擦異方性素材 f 繊維素材 11 Drive Shaft 12 Drive Member Made of Friction Anisotropic Material 13 Driven Member 14 Piezoelectric Element 15, 16 Bearing T Rod-like Friction Anisotropic Material f Fiber Material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 軸方向に振動する駆動部材と、該駆動部
材に摩擦接触する被駆動部材を備えた駆動装置におい
て、 駆動部材及び被駆動部材は、駆動部材と被駆動部材との
間の摩擦係数が駆動部材の振動方向の正方向と逆方向で
異なる摩擦異方性素材で構成されたことを特徴とする摩
擦異方性素材を使用した駆動装置。
1. A drive device comprising an axially vibrating drive member and a driven member frictionally contacting the drive member, wherein the drive member and the driven member are friction between the drive member and the driven member. A drive device using a friction anisotropic material, wherein the coefficient is made of a friction anisotropic material that is different in the positive direction and the reverse direction of the vibration direction of the driving member.
JP5212139A 1993-08-05 1993-08-05 Driving device using frictionally anisotropic material Pending JPH0749442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5212139A JPH0749442A (en) 1993-08-05 1993-08-05 Driving device using frictionally anisotropic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5212139A JPH0749442A (en) 1993-08-05 1993-08-05 Driving device using frictionally anisotropic material

Publications (1)

Publication Number Publication Date
JPH0749442A true JPH0749442A (en) 1995-02-21

Family

ID=16617541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5212139A Pending JPH0749442A (en) 1993-08-05 1993-08-05 Driving device using frictionally anisotropic material

Country Status (1)

Country Link
JP (1) JPH0749442A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121679A (en) * 2005-10-28 2007-05-17 Konica Minolta Opto Inc Optical member drive device
EP1983586A2 (en) 2007-04-17 2008-10-22 Mitsumi Electric Co., Ltd. Driving device capable of transferring vibrations generated by an electro-mechanical transducer to a vibration friction portion with a high degree of efficiency
US7633209B2 (en) 2007-04-17 2009-12-15 Mitsumi Electric Co., Ltd. Driving device capable of obtaining a stable frequency characteristic
US7652407B2 (en) 2007-04-17 2010-01-26 Mitsumi Electric Co., Ltd. Driving device capable of improving a shock and vibration resistance thereof
US7732982B2 (en) 2007-04-19 2010-06-08 Mitsumi Electric Co., Ltd. Driving device capable of reducing height thereof
US7755252B2 (en) 2007-04-18 2010-07-13 Mitsumi Electric Co., Ltd. Driving device having suitable stationary member as material
US7759634B2 (en) 2007-04-24 2010-07-20 Mitsumi Electric Co., Ltd. Position detecting device capable of improving detection accuracy
US7956513B2 (en) 2007-04-20 2011-06-07 Mitsumi Electric Co., Ltd. Method of driving a driving device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121679A (en) * 2005-10-28 2007-05-17 Konica Minolta Opto Inc Optical member drive device
EP1983586A2 (en) 2007-04-17 2008-10-22 Mitsumi Electric Co., Ltd. Driving device capable of transferring vibrations generated by an electro-mechanical transducer to a vibration friction portion with a high degree of efficiency
EP1983586A3 (en) * 2007-04-17 2009-09-30 Mitsumi Electric Co., Ltd. Driving device capable of transferring vibrations generated by an electro-mechanical transducer to a vibration friction portion with a high degree of efficiency
US7633209B2 (en) 2007-04-17 2009-12-15 Mitsumi Electric Co., Ltd. Driving device capable of obtaining a stable frequency characteristic
US7633208B2 (en) 2007-04-17 2009-12-15 Mitsumi Electric Co., Ltd. Driving device capable of transferring vibrations generated by an electro-mechanical transducer to a vibration friction portion with a high degree of efficiency
US7652407B2 (en) 2007-04-17 2010-01-26 Mitsumi Electric Co., Ltd. Driving device capable of improving a shock and vibration resistance thereof
US7755252B2 (en) 2007-04-18 2010-07-13 Mitsumi Electric Co., Ltd. Driving device having suitable stationary member as material
US7732982B2 (en) 2007-04-19 2010-06-08 Mitsumi Electric Co., Ltd. Driving device capable of reducing height thereof
US7956513B2 (en) 2007-04-20 2011-06-07 Mitsumi Electric Co., Ltd. Method of driving a driving device
US7759634B2 (en) 2007-04-24 2010-07-20 Mitsumi Electric Co., Ltd. Position detecting device capable of improving detection accuracy

Similar Documents

Publication Publication Date Title
US5132582A (en) Recording medium transferring apparatus and vibrating element used therein
US6397008B2 (en) Driving system with elastically supporting units
JPH1090584A (en) Lens device
EP0437319A1 (en) Vibration wave driven motor apparatus
JPH0749442A (en) Driving device using frictionally anisotropic material
WO2006020499A2 (en) Mechanism comprised of ultrasonic lead screw motor
JP2005099549A5 (en)
JPS6096183A (en) Surface wave motor
JP2008289347A (en) Drive device
EP1784875B1 (en) Mechanism comprised of ultrasonic lead screw motor
JPH07274544A (en) Driving gear using electromechanical transducer
JPH10337055A (en) Driving device
JP2004506526A (en) Walking actuator
KR950020479A (en) Method of manufacturing an elastic support member provided in the objective lens driving device and the objective lens driving device
JP3124514B2 (en) Ultrasonic motors, electronic devices, and analog watches
JP2007049880A (en) Actuator
US20090309457A1 (en) Piezo drive system
JPH07274546A (en) Driving gear using electro-mechanical transducer
JPH10225150A (en) Driver
JPH07274543A (en) Driving gear using electromechanical transducer
JP4073512B2 (en) Drive device
JPH0819939B2 (en) Feed guide mechanism
SU573829A1 (en) Electric drive
KR100380821B1 (en) Angular moving apparatus having piezo-electric element
JP3425162B2 (en) Micro-moving device using impact force caused by thermal deformation of thermal deformation element