JPH07274544A - Driving gear using electromechanical transducer - Google Patents
Driving gear using electromechanical transducerInfo
- Publication number
- JPH07274544A JPH07274544A JP6081128A JP8112894A JPH07274544A JP H07274544 A JPH07274544 A JP H07274544A JP 6081128 A JP6081128 A JP 6081128A JP 8112894 A JP8112894 A JP 8112894A JP H07274544 A JPH07274544 A JP H07274544A
- Authority
- JP
- Japan
- Prior art keywords
- conversion element
- electro
- driving
- drive shaft
- driven member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Lens Barrels (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、電気−機械変換素子
を使用した駆動装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a driving device using an electro-mechanical conversion element.
【0002】[0002]
【従来の技術】カメラその他の精密機器を構成する部材
の駆動に、圧電素子を使用した駆動装置が提案されてい
る(特開平4−69070号公報、特開昭63−110
74号公報参照)。2. Description of the Related Art A driving device using a piezoelectric element has been proposed for driving a camera and other members constituting precision equipment (Japanese Patent Laid-Open No. 4-69070 and Japanese Patent Laid-Open No. 63-110).
74 publication).
【0003】図4はカメラに装着されたズ−ムレンズの
駆動に応用された駆動装置の一例であつて、被駆動部材
であるレンズの鏡筒71を支持する支持体72の摺動嵌
合部72a、72bが駆動軸73に摺動自在に摩擦接触
して嵌合している。また、駆動軸73は、フレ−ム77
の支持部75、76により軸方向に変位自在に支持され
ている。厚み方向に変位する圧電素子78の一端は駆動
軸73の軸方向端部に固定され、また、圧電素子78の
他の端部はフレ−ム77に固着され、圧電素子78の厚
み方向の変位により、駆動軸73は軸方向に変位する。FIG. 4 shows an example of a driving device applied to drive a zoom lens mounted on a camera, which is a sliding fitting portion of a support body 72 for supporting a lens barrel 71 of a lens which is a driven member. 72a and 72b are slidably in frictional contact with and fitted to the drive shaft 73. Further, the drive shaft 73 has a frame 77.
It is supported by the support portions 75 and 76 of the above so as to be displaceable in the axial direction. One end of the piezoelectric element 78 that is displaced in the thickness direction is fixed to the axial end portion of the drive shaft 73, and the other end portion of the piezoelectric element 78 is fixed to the frame 77, so that the piezoelectric element 78 is displaced in the thickness direction. As a result, the drive shaft 73 is displaced in the axial direction.
【0004】また、74は板ばねで、図示しない小ねじ
により支持体72の摺動嵌合部72a、72bに、図4
で下側から固定されている。板ばね74の中央部分には
上向きに屈曲した屈曲部74aが形成されているが、こ
れは屈曲部74aが駆動軸73に圧接し、適当な摩擦力
を接触部に発生させるためのものである。Reference numeral 74 is a leaf spring, which is attached to the sliding fitting portions 72a and 72b of the support 72 by means of a small screw (not shown).
It is fixed from below. A bent portion 74a that is bent upward is formed in the central portion of the leaf spring 74. This is for the bent portion 74a to press against the drive shaft 73 and to generate an appropriate frictional force at the contact portion. .
【0005】図4に示す駆動機構において、図5で示す
ような急速な立ち上がり部とこれに続く緩やかな立ち下
がり部からなる波形の駆動パルスを圧電素子78に印加
すると、駆動パルスの急速な立ち上がり部では圧電素子
78は急速に厚み方向の伸び変位を生じ、駆動軸73は
軸方向に矢印aと反対方向へ急速に移動する。In the drive mechanism shown in FIG. 4, when a drive pulse having a waveform consisting of a rapid rising portion and a subsequent gentle falling portion as shown in FIG. 5 is applied to the piezoelectric element 78, the driving pulse rapidly rises. In the portion, the piezoelectric element 78 rapidly undergoes extension displacement in the thickness direction, and the drive shaft 73 rapidly moves in the axial direction in the direction opposite to the arrow a.
【0006】このとき、駆動軸73に摺動嵌合部72
a、72bで支持されている支持体72は、その慣性力
により駆動軸73と支持体72の摺動嵌合部72a、7
2bとの摩擦力、及び駆動軸73と板ばね74の屈曲部
74aとの摩擦力に打ち勝つてその位置に留まるので、
レンズ鏡筒71は移動しない。At this time, the sliding fitting portion 72 is attached to the drive shaft 73.
The support body 72 supported by a and 72b has a sliding fitting portion 72a, 7a between the drive shaft 73 and the support body 72 due to its inertial force.
2b and the frictional force between the drive shaft 73 and the bent portion 74a of the leaf spring 74 are overcome to stay at that position.
The lens barrel 71 does not move.
【0007】一方、駆動パルスの緩やかな立ち下がり部
では、圧電素子78は緩やかに厚み方向の縮み変位を生
じるので、駆動軸73は矢印a方向に緩やかに移動す
る。On the other hand, at the gradual falling edge of the drive pulse, the piezoelectric element 78 gradually contracts in the thickness direction, so that the drive shaft 73 moves gently in the direction of arrow a.
【0008】このとき、駆動軸73と支持体72の摺動
嵌合部72a、72bとの摩擦力、及び駆動軸73と板
ばね74の屈曲部74aとの摩擦力が、圧電素子78に
より駆動軸73に加えられた力以下であれば、支持体7
2は駆動軸73と摩擦結合した状態で駆動軸73と共に
矢印a方向に移動し、レンズ鏡筒71は矢印aで示す方
向に移動する。At this time, the piezoelectric element 78 drives the frictional force between the drive shaft 73 and the sliding fitting portions 72a and 72b of the support 72 and the frictional force between the drive shaft 73 and the bent portion 74a of the leaf spring 74. If it is less than the force applied to the shaft 73, the support 7
Reference numeral 2 moves in the direction of arrow a together with the drive shaft 73 while being frictionally coupled to the drive shaft 73, and the lens barrel 71 moves in the direction indicated by the arrow a.
【0009】上記波形のパルスを連続して圧電素子78
に印加することにより、レンズ鏡筒71を矢印aで示す
方向へ連続して移動させることができる。レンズ鏡筒7
1を矢印aと反対方向に移動させるには、緩やかな立ち
上がり部とこれに続く急速な立ち下がり部からなる波形
の駆動パルスを圧電素子78に印加することで達成する
ことができる。The pulse having the above waveform is continuously applied to the piezoelectric element 78.
, The lens barrel 71 can be continuously moved in the direction indicated by the arrow a. Lens barrel 7
The movement of 1 in the direction opposite to the arrow a can be achieved by applying to the piezoelectric element 78 a drive pulse having a waveform consisting of a gentle rising portion and a subsequent rapid falling portion.
【0010】[0010]
【発明が解決しようとする課題】ところで、上記したよ
うな圧電素子などの電気−機械変換素子を使用した駆動
装置では電気−機械変換素子の伸縮を利用しているか
ら、被駆動部材の移動速度は、電気−機械変換素子に印
加する駆動パルスの周波数と印加された駆動パルスによ
り生ずる電気−機械変換素子の変位量に関係し、印加さ
れた駆動パルスに対して電気−機械変換素子の変位量が
一定であるならば、駆動パルスの周波数を高めることで
被駆動部材の移動速度を高めることができるように思わ
れる。By the way, in the driving apparatus using the electro-mechanical conversion element such as the piezoelectric element as described above, since the expansion and contraction of the electro-mechanical conversion element is utilized, the moving speed of the driven member is increased. Is related to the frequency of the drive pulse applied to the electro-mechanical conversion element and the displacement amount of the electro-mechanical conversion element caused by the applied drive pulse, and the displacement amount of the electro-mechanical conversion element with respect to the applied drive pulse. If is constant, it seems that the moving speed of the driven member can be increased by increasing the frequency of the driving pulse.
【0011】電気−機械変換素子は印加される駆動パル
スの立上り部分で伸び、パルスの立下り部分で縮むが、
その伸縮速度比(伸びる速度/縮む速度)が十分大きい
場合(実験では2〜3以上)は、被駆動部材の移動量は
印加される駆動パルスの1周期の間に生ずる電気−機械
変換素子の変位量に近い値となる。The electromechanical conversion element extends at the rising portion of the applied drive pulse and contracts at the falling portion of the pulse,
When the expansion / contraction speed ratio (expansion speed / contraction speed) is sufficiently large (2 to 3 or more in the experiment), the amount of movement of the driven member is equal to that of the electro-mechanical conversion element generated during one cycle of the applied drive pulse. The value is close to the displacement amount.
【0012】しかしながら、電気−機械変換素子は、駆
動パルスを印加してからある時間だけ遅れて変位が生じ
る「応答遅れ」と呼ばれる物理的特性を有しているた
め、電気−機械変換素子に印加する駆動パルスの周波数
を高めてゆくと、伸び変位と縮み変位が重なり、次第に
伸縮速度比が低下する。図2は電気−機械変換素子に印
加する駆動パルスの周波数と被駆動部材の移動速度との
関係を示すもので、印加する駆動パルスの周波数を高め
てゆくと、始めは被駆動部材の移動速度は次第に速くな
るが、ある周波数以上になると逆に被駆動部材の移動速
度は低下し、伸縮速度比が1になると駆動パルスの1周
期の間に生ずる被駆動部材の移動量は0となり、駆動す
ることができなくなる。However, since the electro-mechanical conversion element has a physical characteristic called "response delay" in which displacement is delayed by a certain time after the drive pulse is applied, the electro-mechanical conversion element is applied to the electro-mechanical conversion element. When the frequency of the driving pulse to be increased is increased, the extension displacement and the contraction displacement overlap, and the expansion / contraction speed ratio gradually decreases. FIG. 2 shows the relationship between the frequency of the drive pulse applied to the electro-mechanical conversion element and the moving speed of the driven member. When the frequency of the applied drive pulse is increased, the moving speed of the driven member is initially increased. However, when the frequency exceeds a certain frequency, the moving speed of the driven member decreases, and when the expansion / contraction speed ratio becomes 1, the moving amount of the driven member that occurs during one cycle of the driving pulse becomes 0. Can not do.
【0013】前記した電気−機械変換素子の物理的特性
である応答遅れは、図3(a)(b)に示すように、電
気−機械変換素子に固定される駆動軸の重量に大きく影
響され、駆動軸の重量が大きい程応答遅れは大きくな
る。The response delay, which is the physical characteristic of the electro-mechanical conversion element, is greatly influenced by the weight of the drive shaft fixed to the electro-mechanical conversion element, as shown in FIGS. The larger the weight of the drive shaft, the larger the response delay.
【0014】また、駆動軸の弾性率が大きい場合は応答
遅れは小さく、弾性率が小さい程応答遅れは大きくなる
ことが実験により確認された。また、電気−機械変換素
子の応答遅れが小さくても駆動軸の弾性率が小さけれ
ば、駆動軸自体で応答遅れが生じ、被駆動部材は駆動軸
上の位置によつて速度変動を起こし、場合によつては動
かなくなる。It was also confirmed by experiments that the response delay is small when the elastic modulus of the drive shaft is large, and the response delay becomes larger as the elastic modulus is smaller. In addition, even if the response delay of the electro-mechanical conversion element is small, if the elastic modulus of the drive shaft is small, the response delay occurs in the drive shaft itself, and the driven member causes speed fluctuation depending on the position on the drive shaft. It will not work.
【0015】この発明の第1の目的は、より高速で被駆
動部材を駆動することができる電気−機械変換素子を使
用した駆動装置を提供することにある。A first object of the present invention is to provide a driving device using an electromechanical conversion element capable of driving a driven member at a higher speed.
【0016】この発明の第2の目的は、駆動軸を含む電
気−機械変換素子の応答遅れを小さくして、より高速で
被駆動部材を駆動することができる電気−機械変換素子
を使用した駆動装置を提供することにある。A second object of the present invention is to reduce the response delay of the electro-mechanical conversion element including the drive shaft and to drive the driven member at a higher speed by using the electro-mechanical conversion element. To provide a device.
【0017】この発明の第3の目的は、駆動部材の材料
の選択により駆動軸を含む電気−機械変換素子の応答遅
れを小さくして、より高速で被駆動部材を駆動すること
ができる電気−機械変換素子を使用した駆動装置を提供
することにある。A third object of the present invention is to reduce the response delay of the electro-mechanical conversion element including the drive shaft by selecting the material of the driving member, so that the driven member can be driven at a higher speed. It is to provide a drive device using a mechanical conversion element.
【0018】[0018]
【課題を解決するための手段】この発明は上記課題を解
決するもので、電気−機械変換素子と、前記電気−機械
変換素子に結合して変換素子と共に変位する駆動部材
と、前記駆動部材に摩擦結合した被駆動部材を備え、前
記電気−機械変換素子に印加される駆動パルスによる前
記電気−機械変換素子の伸びと縮みの速度を異ならせる
ことにより、被駆動部材が駆動部材との摩擦結合により
駆動部材と共に実質的に移動する状態と、被駆動部材が
駆動部材との摩擦結合に打勝つて実質的に移動しない状
態とをとり得る電気−機械変換素子を使用した駆動装置
において、前記電気−機械変換素子に結合した駆動部材
を繊維強化樹脂複合体で構成したことを特徴とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems by providing an electro-mechanical conversion element, a drive member coupled to the electro-mechanical conversion element and displaced together with the conversion element, and the drive member. The driven member is frictionally coupled to the drive member by providing a driven member frictionally coupled to the electro-mechanical transducer, and varying the speeds of expansion and contraction of the electro-mechanical transducer by a drive pulse applied to the electro-mechanical transducer. In the driving device using the electro-mechanical conversion element, the driven member can be moved substantially together with the driving member and the driven member can overcome the frictional coupling with the driving member so as not to move substantially. The drive member connected to the mechanical conversion element is made of a fiber-reinforced resin composite.
【0019】[0019]
【作用】電気−機械変換素子に印加される駆動パルスに
より、駆動部材が緩やかに変位するときは、駆動部材に
摩擦結合した被駆動部材は駆動部材と共に実質的に移動
する。また、電気−機械変換素子にに印加される駆動パ
ルスにより、駆動部材が急速に変位するときは、被駆動
部材は慣性力により駆動部材との摩擦結合に打勝ち、実
質的に移動しない。When the driving member is gently displaced by the driving pulse applied to the electro-mechanical conversion element, the driven member frictionally coupled to the driving member substantially moves together with the driving member. Further, when the driving member is rapidly displaced by the driving pulse applied to the electro-mechanical conversion element, the driven member overcomes the frictional coupling with the driving member due to the inertial force and does not substantially move.
【0020】駆動部材を繊維強化樹脂複合体で構成した
ので、従来の金属等からなる駆動部材と比較して必要な
弾性率を維持したまま軽量化でき、より高速で被駆動部
材を駆動することができる。Since the driving member is composed of the fiber reinforced resin composite, it is possible to reduce the weight while maintaining the required elastic modulus as compared with the conventional driving member made of metal or the like, and to drive the driven member at a higher speed. You can
【0021】[0021]
【実施例】以下、この発明の実施例について説明する。
図1はこの発明の実施例を示すもので、ズ−ムレンズの
駆動機構に応用された電気−機械変換素子を使用した駆
動装置を示す。Embodiments of the present invention will be described below.
FIG. 1 shows an embodiment of the present invention and shows a driving device using an electro-mechanical conversion element applied to a driving mechanism of a zoom lens.
【0022】図1において、11は被駆動部材であるズ
−ムレンズの鏡筒、12は摩擦板、13は駆動軸、14
は圧接ばねで、圧接ばね14は小ねじ14aによりズ−
ムレンズ鏡筒11に固定されるが、このとき圧接ばね1
4の中央に設けた湾曲部14bが摩擦板12を下側に押
圧するように構成されている。また、15、16は摩擦
板12が駆動軸13の軸方向にずれないようにする押さ
え板で、小ねじ15aによりズ−ムレンズ鏡筒11に固
定されている。In FIG. 1, 11 is a zoom lens barrel which is a driven member, 12 is a friction plate, 13 is a drive shaft, and 14 is a drive shaft.
Is a pressure contact spring, and the pressure contact spring 14 is displaced by a small screw 14a.
It is fixed to the mullens barrel 11, but at this time the pressure contact spring 1
The curved portion 14b provided at the center of the pressure plate 4 is configured to press the friction plate 12 downward. Reference numerals 15 and 16 denote pressing plates that prevent the friction plate 12 from shifting in the axial direction of the drive shaft 13, and are fixed to the zoom lens barrel 11 by machine screws 15a.
【0023】駆動軸13はズ−ムレンズ鏡筒11と摩擦
板12との間を貫通しており、圧接ばね14により摩擦
板12が駆動軸13をズ−ムレンズ鏡筒11との間に挟
む方向に押圧されているので、駆動軸13はズ−ムレン
ズ鏡筒11及び摩擦板12と面接触し、接触面に適当な
摩擦力を発生させる。駆動軸13は繊維強化樹脂複合体
で構成されており、金属等からなる駆動軸と比較して弾
性率は変わらないが軽量化されている。The drive shaft 13 penetrates between the zoom lens barrel 11 and the friction plate 12, and a direction in which the friction plate 12 sandwiches the drive shaft 13 with the zoom lens barrel 11 by the pressure contact spring 14. Since the drive shaft 13 is pressed against the surface of the zoom lens barrel 11 and the friction plate 12, the drive shaft 13 generates an appropriate frictional force on the contact surface. The drive shaft 13 is made of a fiber-reinforced resin composite, and has a smaller elastic modulus than the drive shaft made of metal or the like, but is lighter.
【0024】21はフレ−ム、22及び23はフレ−ム
21に設けられた支持板で、駆動軸13を軸方向に移動
自在に支持する。また18は厚み方向に変位する圧電素
子であつて、その一端は駆動軸13の端部に固着され、
他の端部はフレ−ム21に設けられた支持板24に固着
されている。Reference numeral 21 is a frame, and 22 and 23 are support plates provided on the frame 21, which support the drive shaft 13 movably in the axial direction. Reference numeral 18 denotes a piezoelectric element that is displaced in the thickness direction, one end of which is fixed to the end of the drive shaft 13,
The other end is fixed to a support plate 24 provided on the frame 21.
【0025】なお、ズ−ムレンズ鏡筒11が駆動軸13
の回りに回転することを防ぐため、駆動軸13に並行な
図示しない支持軸を設け、ズ−ムレンズ鏡筒11を駆動
軸13と支持軸とにより支持するようにするとよい。The zoom lens barrel 11 has the drive shaft 13
In order to prevent the drive shaft 13 from rotating around, a support shaft (not shown) parallel to the drive shaft 13 may be provided so that the zoom lens barrel 11 is supported by the drive shaft 13 and the support shaft.
【0026】次に、駆動装置の動作を説明する。まず、
ズ−ムレンズ鏡筒11を矢印a方向に移動する場合を説
明する。図5に示すような急速な立ち上がり部とこれに
続く緩やかな立ち下がり部からなる駆動パルスを圧電素
子18に印加すると、駆動パルスの急速な立ち上がり部
では、圧電素子18は急速に厚み方向の伸び変位を生じ
るので、駆動軸13は軸方向に矢印aと反対方向に急速
に移動する。このとき、ズ−ムレンズ鏡筒11及び摩擦
板12は、その慣性力により駆動軸13とズ−ムレンズ
鏡筒11及び摩擦板12との間の摩擦力に打ち勝つて実
質的にその位置に留まるので、移動しない。Next, the operation of the drive device will be described. First,
A case where the zoom lens barrel 11 is moved in the direction of arrow a will be described. When a drive pulse composed of a rapid rising portion and a gentle falling portion subsequent thereto as shown in FIG. 5 is applied to the piezoelectric element 18, the piezoelectric element 18 rapidly expands in the thickness direction at the rapid rising portion of the driving pulse. Due to the displacement, the drive shaft 13 rapidly moves in the axial direction in the direction opposite to the arrow a. At this time, the zoom lens barrel 11 and the friction plate 12 overcome the frictional force between the drive shaft 13 and the zoom lens barrel 11 and the friction plate 12 due to the inertial force thereof, and substantially remain at that position. , Don't move.
【0027】一方、駆動パルスの緩やかな立ち下がり部
では圧電素子18が緩やかに厚み方向の縮み変位を生
じ、駆動軸13は軸方向に矢印aで示す方向へ緩やかに
移動する。このとき、ズ−ムレンズ鏡筒11は、摩擦板
12が圧接ばね14により押圧され、駆動軸13とズ−
ムレンズ鏡筒11及び摩擦板12とが面接触して接触面
に発生する摩擦力により結合しているので、実質的に駆
動軸13と共に矢印a方向に移動する。On the other hand, at the gradual fall portion of the drive pulse, the piezoelectric element 18 causes a gradual contraction displacement in the thickness direction, and the drive shaft 13 gently moves in the axial direction in the direction indicated by the arrow a. At this time, in the zoom lens barrel 11, the friction plate 12 is pressed by the pressure contact spring 14, and the zoom shaft is disengaged from the drive shaft 13.
Since the mullens lens barrel 11 and the friction plate 12 are in surface contact with each other and are coupled by the frictional force generated on the contact surface, they substantially move in the direction of the arrow a together with the drive shaft 13.
【0028】なお、ここでいう実質的とは、矢印a方向
と、これと反対方向のいずれにおいてもズ−ムレンズ鏡
筒11及び摩擦板12が駆動軸13との間に滑りを生じ
つつ追動し、駆動時間の差によつて全体として矢印a方
向に移動するものも含むことを意味している。どのよう
な移動形態になるかは、与えられた摩擦条件に応じて決
定される。The term "substantially" means that the zoom lens barrel 11 and the friction plate 12 follow the drive shaft 13 while slipping in both the arrow a direction and the opposite direction. However, it is meant to include those that move in the direction of arrow a as a whole due to the difference in driving time. The form of movement is determined according to the given friction conditions.
【0029】上記波形の駆動パルスを連続して圧電素子
18に印加することにより、ズ−ムレンズ鏡筒11を矢
印aで示す方向へ連続して移動させることができる。By continuously applying the drive pulse having the above waveform to the piezoelectric element 18, the zoom lens barrel 11 can be continuously moved in the direction indicated by the arrow a.
【0030】ズ−ムレンズ鏡筒11を矢印aと反対方向
に移動させるには、緩やかな立ち上がり部とこれに続く
急速な立ち下がり部からなる波形の駆動パルスを圧電素
子18に印加することで達成することができる。The movement of the zoom lens barrel 11 in the direction opposite to the arrow a is achieved by applying to the piezoelectric element 18 a drive pulse having a waveform consisting of a gentle rising portion and a subsequent rapid falling portion. can do.
【0031】次に、駆動軸の材料と被駆動部材の移動速
度について説明する。表1は駆動軸の材料としてJIS
規格SUS304のステンレス鋼、ABS樹脂、及び繊
維強化合成樹脂複合体としてカ−ボンフアイバ−50体
積パ−セント含有の繊維強化エポキシ樹脂を選び、それ
ぞれについて物性、重量、軸弾性、被駆動部材の移動速
度について試験を行つた結果を示したものである。Next, the material of the drive shaft and the moving speed of the driven member will be described. Table 1 shows JIS as the material of the drive shaft.
Standard SUS304 stainless steel, ABS resin, and fiber reinforced epoxy resin containing carbon fiber 50 volume percent are selected as the fiber reinforced synthetic resin composite, and physical properties, weight, axial elasticity, and moving speed of driven member are selected for each. The results of tests conducted on the above are shown.
【0032】[0032]
【表1】 駆動軸の材料としてJIS規格SUS304のステンレ
ス鋼を使用したもの、及びABS樹脂を使用したものは
被駆動部材を移動させることができなかつた。これは、
JIS規格SUS304のステンレス鋼を使用した軸で
は重量が重過ぎて圧電素子の変位に大きな応答遅れが生
じ、またABS樹脂では弾性率が低いため軸自体に大き
な応答遅れが生じて被駆動部材を移動させることができ
なかつたものと推定される。[Table 1] It was impossible to move the driven member in the case where the stainless steel of JIS standard SUS304 was used as the material of the drive shaft and the case where the ABS resin was used. this is,
A shaft using JIS standard SUS304 stainless steel is too heavy and causes a large response delay in the displacement of the piezoelectric element, and ABS resin has a low elastic modulus and causes a large response delay in moving the driven member. It is presumed that it could not be done.
【0033】繊維強化エポキシ樹脂は重量が軽く、且つ
弾性率も大きいため圧電素子の変位や軸自体に大きな応
答遅れが生じることがなかつた。また、繊維強化エポキ
シ樹脂は自己潤滑性があるため動きが滑らかで、駆動軸
と被駆動部材の接触面において摩擦振動による「鳴き」
が発生することもなかつた。結論として、駆動軸の材料
としてカ−ボンフアイバ−50体積パ−セント含有の繊
維強化エポキシ樹脂が最適の材料であつた。Since the fiber-reinforced epoxy resin is light in weight and has a large elastic modulus, the displacement of the piezoelectric element and the axis itself do not cause a large response delay. In addition, the fiber-reinforced epoxy resin has a self-lubricating property, so the movement is smooth and "squealing" occurs due to frictional vibration at the contact surface between the drive shaft and the driven member.
It never happened. In conclusion, the fiber reinforced epoxy resin containing carbon fiber 50 volume percent was the optimum material for the drive shaft.
【0034】繊維強化合成樹脂複合体に使用できる合成
樹脂材料としては、エポキシ樹脂のほか、不飽和ポリエ
ステル、ポリイミド、ビスマレイミド、ポリアミドイミ
ド、ポリエ−テルイミド、ポリエ−テルエ−テルケト
ン、ポリエ−テルスルホン、芳香族ポリイミド、ポリカ
−ボネ−トなどが使用可能である。また、強化繊維とし
ては、カ−ボンフアイバ−のほか、ガラスフアイバ−、
カ−ボンウイスカ−、チタン酸カリウムウイスカ−など
が使用可能である。Examples of synthetic resin materials that can be used for the fiber-reinforced synthetic resin composite include epoxy resins, unsaturated polyesters, polyimides, bismaleimides, polyamideimides, polyetherimides, polyetheretherketones, polyethersulfones, and fragrances. Group polyimide, polycarbonate, etc. can be used. Further, as the reinforcing fiber, in addition to carbon fiber, glass fiber,
Carbon whiskers, potassium titanate whiskers and the like can be used.
【0035】[0035]
【発明の効果】以上説明したように、この発明によれ
ば、電気−機械変換素子を使用した駆動装置において、
駆動部材を繊維強化樹脂複合体で構成したので、従来の
金属等からなる駆動部材と比較して必要な弾性率を維持
したまま軽量化することができ、電気−機械変換素子の
応答遅れを小さくしてより高速で被駆動部材を駆動する
ことができる。As described above, according to the present invention, in the driving device using the electro-mechanical conversion element,
Since the drive member is made of a fiber-reinforced resin composite, it can be made lighter in weight while maintaining the required elastic modulus as compared to a conventional drive member made of metal or the like, and the response delay of the electromechanical conversion element can be reduced. Thus, the driven member can be driven at a higher speed.
【図1】この発明を適用した電気−機械変換素子を使用
した駆動装置の構成を示す斜視図。FIG. 1 is a perspective view showing the configuration of a drive device using an electro-mechanical conversion element to which the present invention is applied.
【図2】電気−機械変換素子に印加する駆動パルスの周
波数と被駆動部材の移動速度との関係を示す図。FIG. 2 is a diagram showing the relationship between the frequency of a drive pulse applied to an electro-mechanical conversion element and the moving speed of a driven member.
【図3】駆動軸を含む電気−機械変換素子の応答遅れを
説明する図。FIG. 3 is a diagram illustrating a response delay of an electro-mechanical conversion element including a drive shaft.
【図4】従来の電気−機械変換素子を使用した駆動装置
の構成を示す斜視図。FIG. 4 is a perspective view showing a configuration of a drive device using a conventional electro-mechanical conversion element.
【図5】電気−機械変換素子に印加する駆動パルス波形
の一例を示す図。FIG. 5 is a diagram showing an example of a drive pulse waveform applied to an electro-mechanical conversion element.
11 ズ−ムレンズ鏡筒 12 摩擦板 13 駆動軸 14 圧接ばね 18 圧電素子 21 フレ−ム 22、23、24 支持板 11 zoom lens barrel 12 friction plate 13 drive shaft 14 pressure contact spring 18 piezoelectric element 21 frame 22, 23, 24 support plate
Claims (1)
変換素子に結合して変換素子と共に変位する駆動部材
と、前記駆動部材に摩擦結合した被駆動部材を備え、前
記電気−機械変換素子に印加される駆動パルスによる前
記電気−機械変換素子の伸びと縮みの速度を異ならせる
ことにより、被駆動部材が駆動部材との摩擦結合により
駆動部材と共に実質的に移動する状態と、被駆動部材が
駆動部材との摩擦結合に打勝つて実質的に移動しない状
態とをとり得る電気−機械変換素子を使用した駆動装置
において、 前記電気−機械変換素子に結合した駆動部材を繊維強化
樹脂複合体で構成したことを特徴とする電気−機械変換
素子を使用した駆動装置。1. An electro-mechanical conversion element, comprising: an electro-mechanical conversion element; a driving member coupled to the electro-mechanical conversion element and displaced together with the conversion element; and a driven member frictionally coupled to the driving member. A state in which the driven member substantially moves together with the driving member due to frictional coupling with the driving member by making the speed of expansion and contraction of the electro-mechanical conversion element different by the driving pulse applied to the driven member; In a drive device using an electro-mechanical conversion element, the drive member connected to the electro-mechanical conversion element is a fiber-reinforced resin composite. A driving device using an electro-mechanical conversion element.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08112894A JP3180557B2 (en) | 1994-03-29 | 1994-03-29 | Driving device using electro-mechanical conversion element |
US08/404,240 US5589723A (en) | 1994-03-29 | 1995-03-15 | Driving apparatus using transducer |
EP95104144A EP0675589B1 (en) | 1994-03-29 | 1995-03-21 | Driving apparatus using transducer |
DE69522027T DE69522027T2 (en) | 1994-03-29 | 1995-03-21 | Drive device using a converter |
US08/947,806 US6111336A (en) | 1994-03-29 | 1997-10-09 | Driving apparatus using transducer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08112894A JP3180557B2 (en) | 1994-03-29 | 1994-03-29 | Driving device using electro-mechanical conversion element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07274544A true JPH07274544A (en) | 1995-10-20 |
JP3180557B2 JP3180557B2 (en) | 2001-06-25 |
Family
ID=13737763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08112894A Expired - Lifetime JP3180557B2 (en) | 1994-03-29 | 1994-03-29 | Driving device using electro-mechanical conversion element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3180557B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5869918A (en) * | 1994-08-24 | 1999-02-09 | Nikon Corporation | Actuator which controls voltage level and voltage level increase time of an electromechanical converting element drive signal |
US6774538B2 (en) | 2001-07-23 | 2004-08-10 | Minolta Co., Ltd. | Multi-degree-of-freedom drive mechanism |
US6836057B2 (en) | 2000-09-14 | 2004-12-28 | Minolta Co., Ltd. | Drive mechanism employing electromechanical transducer |
WO2006114947A1 (en) * | 2005-04-22 | 2006-11-02 | Konica Minolta Opto, Inc. | Drive device |
JP2007121679A (en) * | 2005-10-28 | 2007-05-17 | Konica Minolta Opto Inc | Optical member drive device |
US7808729B2 (en) | 2007-11-15 | 2010-10-05 | Nidec Copal Corporation | Driving device |
US7868520B2 (en) | 2007-11-29 | 2011-01-11 | Nidec Copal Corporation | Driving apparatus |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080093882A (en) | 2007-04-17 | 2008-10-22 | 미쓰미덴기가부시기가이샤 | Driving device |
KR20080093877A (en) | 2007-04-17 | 2008-10-22 | 미쓰미덴기가부시기가이샤 | Driving device |
KR20080093880A (en) | 2007-04-17 | 2008-10-22 | 미쓰미덴기가부시기가이샤 | Driving device |
KR20080093885A (en) | 2007-04-18 | 2008-10-22 | 미쓰미덴기가부시기가이샤 | Driving device |
KR20080094572A (en) | 2007-04-19 | 2008-10-23 | 미쓰미덴기가부시기가이샤 | Driving device |
US7956513B2 (en) | 2007-04-20 | 2011-06-07 | Mitsumi Electric Co., Ltd. | Method of driving a driving device |
US7759634B2 (en) | 2007-04-24 | 2010-07-20 | Mitsumi Electric Co., Ltd. | Position detecting device capable of improving detection accuracy |
-
1994
- 1994-03-29 JP JP08112894A patent/JP3180557B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5869918A (en) * | 1994-08-24 | 1999-02-09 | Nikon Corporation | Actuator which controls voltage level and voltage level increase time of an electromechanical converting element drive signal |
US6836057B2 (en) | 2000-09-14 | 2004-12-28 | Minolta Co., Ltd. | Drive mechanism employing electromechanical transducer |
US6774538B2 (en) | 2001-07-23 | 2004-08-10 | Minolta Co., Ltd. | Multi-degree-of-freedom drive mechanism |
WO2006114947A1 (en) * | 2005-04-22 | 2006-11-02 | Konica Minolta Opto, Inc. | Drive device |
JP2007121679A (en) * | 2005-10-28 | 2007-05-17 | Konica Minolta Opto Inc | Optical member drive device |
US7808729B2 (en) | 2007-11-15 | 2010-10-05 | Nidec Copal Corporation | Driving device |
US7868520B2 (en) | 2007-11-29 | 2011-01-11 | Nidec Copal Corporation | Driving apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP3180557B2 (en) | 2001-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07274544A (en) | Driving gear using electromechanical transducer | |
EP0675589B1 (en) | Driving apparatus using transducer | |
US6188161B1 (en) | Driving apparatus using transducer | |
US6717329B2 (en) | Drive mechanism employing electromechanical transducer and method for controlling the drive mechanism | |
EP1605529A1 (en) | Piezoelectric actuator | |
JPH06123830A (en) | Driving mechanism using piezoelectric actuator | |
WO2006114947A1 (en) | Drive device | |
JP3788053B2 (en) | Actuator using electromechanical transducer | |
JP2005099549A5 (en) | ||
JP2007049875A (en) | Actuator | |
JP3454026B2 (en) | Driving device using electromechanical transducer | |
JP3141714B2 (en) | Driving device using electromechanical transducer | |
US5994819A (en) | Driving apparatus using transducer | |
JP2007049873A (en) | Actuator | |
JPH07274545A (en) | Driving method of driving gear using electromechanical transducer | |
JP2008289347A (en) | Drive device | |
JPH11103583A (en) | Drive unit using electro-mechanical converter and drive pulse generator adapted to its drive | |
JP2005354829A (en) | Actuator and its control method | |
JP2019103371A (en) | Vibration wave motor and lens driving apparatus using vibration wave motor | |
JP2007049880A (en) | Actuator | |
JPH07274543A (en) | Driving gear using electromechanical transducer | |
JP3539117B2 (en) | Driving device using electromechanical transducer | |
JP2007049877A (en) | Actuator | |
JP6257281B2 (en) | Ultrasonic actuator | |
JPH10225150A (en) | Driver |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090420 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090420 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100420 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100420 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110420 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120420 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130420 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140420 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term |