JPH0749425A - Manufacture of refractive index distributed type plastic mold - Google Patents

Manufacture of refractive index distributed type plastic mold

Info

Publication number
JPH0749425A
JPH0749425A JP5211062A JP21106293A JPH0749425A JP H0749425 A JPH0749425 A JP H0749425A JP 5211062 A JP5211062 A JP 5211062A JP 21106293 A JP21106293 A JP 21106293A JP H0749425 A JPH0749425 A JP H0749425A
Authority
JP
Japan
Prior art keywords
monomer
polymer
refractive index
weight
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5211062A
Other languages
Japanese (ja)
Other versions
JP3263195B2 (en
Inventor
Yoshihiko Mishina
義彦 三品
Ryuji Murata
龍二 村田
Yoshihiro Uozu
吉弘 魚津
Masaaki Oda
正昭 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP21106293A priority Critical patent/JP3263195B2/en
Publication of JPH0749425A publication Critical patent/JPH0749425A/en
Application granted granted Critical
Publication of JP3263195B2 publication Critical patent/JP3263195B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To continuously produce an optical transmitter by combining a polymer with two kinds of monomers. CONSTITUTION:A composite formed by mutually dissolving and mixing a polymer A having a low refraction index N1; a highly volatile monomer C which provides a polymer B having a high refraction index N2; and a monomer E which provides a polymer D having a refraction index N3 higher than the polymer A and is more volatile than the monomer C is put in a cylinder 1. The composite is quantitatively extruded by a piston 4 while it is heated by a heater 3, homogeneously mixed in a kneading part 2, and then extruded by a nozzle to provide a stranded fiber. The stranded fiber is passed through a first volatilizing tower 7a to selectively volatilize the monomer C from the outer circumferential part of the strand fiber 6 under a fixed condition, and then passed through a second volatilizing tower 7b to volatilize also the monomer E, providing a continuous distribution from the surfaces of the monomers C, E in the strand fiber to the center, and the monomer mixture is then polymerized and solidified by an active beam irradiating part 8, and wound on a winding drum 11 through a nip roller 10 to provide an optical transmitter 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光集束性レンズ、光集束
性ファイバ等に利用される、プラスチック成形体の中心
から外周に向かって、あるいは、該成形物の一端面から
他端面に向かって連続的な屈折率分布を有するプラスチ
ック光伝送体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for a light converging lens, a light converging fiber, etc., from the center of a plastic molded product to the outer periphery, or from one end face to the other end face of the molded product. The present invention relates to a method for manufacturing a plastic optical transmission body having a continuous refractive index distribution.

【0002】[0002]

【従来の技術】成形体の中心から外周に向かって連続的
な屈折率分布を有する光伝送体は、すでに特公昭47−
816号公報においてガラス製のものが提案されてい
る。しかしながら、ガラス製の光伝送体は、生産性が低
く、高価なものとなり、かつ、耐衝撃性に乏しく、取扱
いにくいという問題点を有している。
2. Description of the Related Art An optical transmission body having a continuous refractive index distribution from the center to the outer periphery of a molded article has already been disclosed in Japanese Patent Publication No.
A glass-made one is proposed in Japanese Patent No. 816. However, the optical transmitter made of glass has the problems of low productivity, high cost, poor impact resistance, and difficulty in handling.

【0003】このようなガラス製光伝送体に対し、プラ
スチック製の光伝送体を製造する方法がいくつか提案さ
れている。これらの方法はプラスチック円柱状物の中心
から外周に向かって連続的な屈折率分布を有するプラス
チック光伝送体の製造方法であり、大別すると、イオ
ン架橋重合体よりなる合成樹脂円柱状物の中心軸よりそ
の表面に向かって金属イオン濃度を連続的に濃度変化を
もたせるようにしたもの(特公昭47−26913号公
報)、屈折率の異なる2種以上の透明な重合体の混合
物より製造された合成樹脂円柱体を特定の溶剤で処理
し、前記合成樹脂体の構成成分の少なくとも一方を部分
的に溶解除去することによって、円柱状物の中心から外
周に向かって2種の重合体の混合比を変化させて屈折率
分布をつけるもの(特公昭47−28059号公報)、
2種の屈折率の異なるモノマーの混合物を円筒状容器
に入れ、重合方法を工夫して、モノマーを重合させて円
柱状物のポリマーの組成比をその中心から表面に向かっ
て変え、屈折率分布ができるようにするもの(特公昭5
4−30301号公報)、円柱状の架橋重合体の表面
より、該架橋重合体の屈折率よりも低い屈折率の重合体
を形成しうるモノマーを拡散させて、表面より内部にわ
たり、このモノマーの含有率が連続的に変化するように
配置した後に該モノマーを重合して屈折率分布をもたせ
た光伝送体とするもの(特公昭52−5857号公報、
特公昭56−37521号公報)、および反応性を有
する円柱状の重合体の表面より、該重合体よりも低い屈
折率を有し、該反応性重合体と反応しうる基を有する低
分子化合物を拡散、反応させて、該円柱状重合体の表面
より内部にわたり連続的に低分子化合物の濃度を変化さ
せ、屈折率分布をもたせるようにしたもの(特公昭57
−29682号公報)等である。
For such a glass optical transmission medium, several methods for manufacturing a plastic optical transmission medium have been proposed. These methods are methods for producing a plastic optical transmission body having a continuous refractive index distribution from the center of the plastic columnar body to the outer periphery. When roughly classified, the center of the synthetic resin columnar body made of an ionic cross-linked polymer is used. One in which the metal ion concentration is continuously changed from the axis toward the surface thereof (Japanese Patent Publication No. 47-26913), and it is prepared from a mixture of two or more transparent polymers having different refractive indexes. By mixing the synthetic resin columnar body with a specific solvent to partially dissolve and remove at least one of the constituent components of the synthetic resin body, the mixing ratio of the two polymers from the center to the outer periphery of the cylindrical body To change the refractive index distribution (Japanese Patent Publication No. 47-28059),
Put a mixture of two kinds of monomers with different refractive index into a cylindrical container, devise a polymerization method, polymerize the monomer, and change the composition ratio of the polymer of the cylindrical object from the center to the surface to obtain the refractive index distribution. What makes it possible
4-30301), a monomer capable of forming a polymer having a refractive index lower than that of the crosslinked polymer is diffused from the surface of the columnar crosslinked polymer, and the monomer of the monomer is spread from the surface to the inside. An optical transmission body having a refractive index distribution obtained by polymerizing the monomer after arranging so that the content rate changes continuously (Japanese Patent Publication No. 52-5857).
JP-B-56-37521), and a low molecular weight compound having a group having a refractive index lower than that of a reactive cylindrical polymer and capable of reacting with the reactive polymer. Is allowed to diffuse and react to continuously change the concentration of the low molecular weight compound from the surface of the columnar polymer to the inside thereof so as to have a refractive index distribution (JP-B-57
No. 29682).

【0004】[0004]

【発明が解決しようとする課題】これら従来法の共通し
た課題としては、プラスチック製円柱体への屈折率分布
付与化合物の拡散あるいは抽出などの工程に長時間を要
することや、得られる屈折率分布型光伝送体の長さが限
定されることなどから、その生産工程はバッチ式生産方
法であり、バッチ毎に得られる光伝送体の特性が変わる
という難点があるとともに、その生産性が極めて悪く、
工業化技術としては多くの改善されるべき点を有してい
る。
The problems common to these conventional methods are that the process of diffusing or extracting the compound for providing the refractive index distribution into the plastic cylindrical body takes a long time, and the obtained refractive index distribution is Since the length of the optical transmission medium is limited, the production process is a batch-type production method, and there is the drawback that the characteristics of the optical transmission medium obtained for each batch change, and the productivity is extremely poor. ,
As an industrialized technology, there are many points to be improved.

【0005】[0005]

【課題を解決するための手段】本発明は、上記従来技術
が抱えていた断続的な生産工程による屈折率分布型プラ
スチック成形体の不合理性を解決し、ガラスあるいはプ
ラスチック光ファイバと同様な連続的な生産を可能とす
るものであり、その要旨とするところは、低屈折率N1の
重合体(A) と、重合体(A) よりも高い屈折率N2の重合体
(B) を与える揮発性の高い単量体(C) および重合体(A)
よりも高い屈折率N3の重合体(D) を与え、かつ、単量体
(C) よりも揮発性の低い単量体(E) との溶解混合組成物
を所望の形に成形し、該成形物の表面よりまず単量体
(C) を揮発させ、その後、単量体(E) を揮発する条件に
おくことによって該成形物の内部から表面に向かって、
あるいは、その片端面から他端面に向かって単量体(C),
(E) の連続的な濃度分布をつけた状態で、該成形体中の
未重合の単量体(C),(E) を重合せしめることを特徴とす
る屈折率分布型プラスチック成形体の製造方法にある。
DISCLOSURE OF THE INVENTION The present invention solves the irrationality of the gradient index plastic molded product by the intermittent production process, which the above-mentioned conventional technique has, and it is similar to a glass or plastic optical fiber. The purpose of this is to provide a polymer (A) having a low refractive index N1 and a polymer having a refractive index N2 higher than that of the polymer (A).
Highly volatile monomer (C) and polymer (A) giving (B)
Gives a polymer (D) with a higher refractive index N3 than
(C) A monomer mixture (E) having a lower volatility than that of (C) is molded into a desired mixture, and the monomer is first mixed on the surface of the molded product.
(C) is volatilized, then, by placing the monomer (E) under the condition of volatilizing, from the inside of the molded article toward the surface,
Alternatively, from one end surface to the other end monomer (C),
Manufacture of a gradient index plastic molded product characterized by polymerizing the unpolymerized monomers (C) and (E) in the molded product with a continuous concentration distribution of (E) On the way.

【0006】本発明において用いられる重合体(A) と単
量体(C) および単量体(E) との組合せは、単量体(C),
(E) が重合硬化後生成する重合体と重合体(A) とよりな
る組成物が透明となる組合せであれば、どのようなもの
でも用いることができる。
The combination of the polymer (A) and the monomer (C) and the monomer (E) used in the present invention is a monomer (C),
Any combination can be used as long as (E) is a combination in which the composition formed by polymerization and curing and the polymer (A) becomes transparent.

【0007】本発明の大きな特徴は、重合体(A) と単量
体(C) 、単量体(E) の組合せ方法により、所望とする屈
折率分布を有する光伝送体とすることができること、お
よびその賦形方法を選定することにより、ファイバ状
物、板状物等、所望の形状の屈折率分布型光伝送体とす
ることができる点にある。
A major feature of the present invention is that an optical transmission material having a desired refractive index distribution can be obtained by a combination method of the polymer (A), the monomer (C) and the monomer (E). , And a shaping method thereof, it is possible to obtain a refractive index distribution type optical transmission body having a desired shape such as a fiber-shaped material or a plate-shaped material.

【0008】本発明で、より有意義な形状および屈折率
分布は、断面形状が円の繊維状であり、屈折率がその中
心より周辺に向かって連続的に小さくなっており、光集
束性機能あるいは凸レンズ機能、光ファイバ機能がある
ものである。この場合、円柱状物の中心から周辺になる
ほど重合体(A) の混合比が小さくさせることによって該
円柱状物に屈折率分布を付与することができる。とくに
望ましくは、円柱状物の中心軸に垂直な断面での屈折率
分布Nが、中心部の屈折率N0、中心軸より半径方向の距
離をrとしたとき、[数1]で示される分布に近い分布
で与えられる場合である。
In the present invention, the more significant shape and refractive index distribution is that the cross-sectional shape is a fibrous shape with a circular shape, and the refractive index is continuously smaller from the center toward the periphery, and the light focusing function or It has a convex lens function and an optical fiber function. In this case, the refractive index distribution can be imparted to the columnar material by decreasing the mixing ratio of the polymer (A) from the center to the periphery. Particularly preferably, the refractive index distribution N in a cross section perpendicular to the central axis of the cylindrical body is expressed by [Equation 1], where r 0 is the refractive index of the central portion and r is the radial distance from the central axis. This is the case when the distribution is close to the distribution.

【数1】 [Equation 1]

【0009】本発明の屈折率分布型光伝送体の製造方法
の一例を示すと図1のようになる。低屈折率N1の重合体
(A) と重合体(A) よりも高屈折率N2の重合体(B) を与え
る揮発性の高い単量体(C) および重合体(A) よりも高屈
折率N3の重合体(D) を与え、かつ、単量体(C) よりも揮
発性の低い単量体(E) とを溶解混合してなる組成物をシ
リンダー1に仕込み、ヒーター3で加熱しながらピスト
ン4で定量的に押出し、混練部2で均質に混ぜ合わせた
後にノズルより押出し、ストランドファイバを得る。こ
のストランドファイバを第1揮発塔7aを通し、一定条件
のもと、単量体(C) を選択的にストランドファイバ6の
外周部より揮発させ、また、その後第2揮発塔7bを通
し、単量体(E) をも揮発させてストランドファイバ中の
単量体(C)、単量体(E) の表面から中心へ向かって連続
的な分布を付けた後に、次いで活性光線照射部8に導
き、単量体混合物を重合固化させて、ニップローラー10
を経て巻取りドラム11に巻取り、目的の光伝送体12を連
続的に得る。この時、保温塔7の温度コントロールを容
易にすることや、活性光線による重合を容易にする目的
で、ガス導入孔9より窒素、アルゴンガス等の不活性気
体を導入することが望ましい。
An example of the method of manufacturing the graded index optical transmission body of the present invention is shown in FIG. Polymer with low refractive index N1
(A) and a polymer (B) with a refractive index N2 higher than that of the polymer (A) .A highly volatile monomer (C) and a polymer (D) with a refractive index N3 higher than that of the polymer (A). ), And a composition obtained by dissolving and mixing a monomer (E) having a lower volatility than the monomer (C) is charged into the cylinder 1, and quantitatively with the piston 4 while heating with the heater 3. Then, the mixture is homogeneously mixed in the kneading section 2 and then extruded from a nozzle to obtain a strand fiber. The strand fiber is passed through the first volatilization tower 7a to selectively volatilize the monomer (C) from the outer peripheral portion of the strand fiber 6 under a certain condition, and thereafter, the monomer (C) is passed through the second volatilization tower 7b so as to be separated. After the monomer (E) is also volatilized to give a continuous distribution from the surface of the monomer (C) and the monomer (E) in the strand fiber toward the center, then the actinic ray irradiator 8 Guide, polymerize and solidify the monomer mixture, and nip roller 10
After that, it is wound on the winding drum 11 to continuously obtain the desired optical transmission body 12. At this time, it is desirable to introduce an inert gas such as nitrogen or argon gas through the gas introduction hole 9 for the purpose of facilitating the temperature control of the heat retention tower 7 and facilitating the polymerization by the actinic ray.

【0010】本発明の方法によって作られた屈折率分布
型光伝送体は最外周部近傍の屈折率分布が二次曲線に近
いものとなり、テーリングによる屈折率分布の乱れを著
しく改善したものとすることができる。
In the gradient index optical transmission body produced by the method of the present invention, the refractive index distribution in the vicinity of the outermost peripheral portion is close to a quadratic curve, and it is assumed that the disorder of the refractive index distribution due to tailing is remarkably improved. be able to.

【0011】また、本発明においてストランドファイバ
中の単量体の光重合を促進するための、従来公知の光重
合開始剤、あるいは促進剤、増感剤をストランドファイ
バ形成用樹脂組成物中に添加することは有効な手段であ
る。さらに前記組成物の貯蔵安定性を高めるために、お
よび組成物を繊維状に賦形するときの粘度変化、熱重合
を防止するために、従来公知の熱重合禁止剤を用いるの
が好ましい。このようにして得られた組成物は 100℃程
度の温度では熱重合反応は起さないが、均質な光伝送体
を得るには、前駆組成物を充分に均質に混練する必要が
ある。
Further, in the present invention, a conventionally known photopolymerization initiator, or an accelerator and a sensitizer for promoting the photopolymerization of the monomer in the strand fiber are added to the resin composition for forming the strand fiber. Doing is an effective means. Further, in order to increase the storage stability of the composition and to prevent the viscosity change and the thermal polymerization when the composition is shaped into a fiber, it is preferable to use a conventionally known thermal polymerization inhibitor. The composition thus obtained does not undergo a thermal polymerization reaction at a temperature of about 100 ° C., but the precursor composition needs to be sufficiently homogeneously kneaded in order to obtain a homogeneous light transmission body.

【0012】混練操作には、従来公知の混練装置が使用
できる。また、直径が 0.5〜5mm程度の繊維状の光伝送
体を得るには、とくにこのストランドファイバ形成用組
成物の押出し温度での粘度が重要であり、 1,000〜100,
000 ポイズ、好ましくは 5,000〜50,000ポイズの粘度範
囲にあるのがよい。
A conventionally known kneading device can be used for the kneading operation. Further, in order to obtain a fibrous optical transmission body having a diameter of about 0.5 to 5 mm, the viscosity of the composition for forming a strand fiber at the extrusion temperature is particularly important.
It should be in the viscosity range of 000 poise, preferably 5,000 to 50,000 poise.

【0013】本発明に用いる単量体重合用の活性光源と
しては、 150〜600nm の波長の光を放出する炭素アーク
灯、超高圧水銀灯、高圧水銀灯、低圧水銀灯、ケミカル
ランプ、キセノンランプ、レーザー光等が使用できる。
また場合によっては、電子線を照射して重合させても差
し支えない。さらに重合を完結させるために、あるいは
残留モノマーをできるだけ少なくするために、光重合を
2段階にする、あるいは熱重合法と光重合法とを併用す
るのが有効である。重合に引き続いて残留モノマーを熱
風等により乾燥してもよい。本発明の光伝送体に残留し
ている単量体はできるだけ少ない方が好ましく、5%以
下、さらには3%以下、さらに好ましくは 1.5%以下で
あり、上述の方法により達成することが可能である。
As the active light source for monomer polymerization used in the present invention, a carbon arc lamp, a super high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a chemical lamp, a xenon lamp, a laser beam, etc., which emits light having a wavelength of 150 to 600 nm, etc. Can be used.
In some cases, electron beams may be irradiated to cause polymerization. Further, in order to complete the polymerization or to reduce the residual monomer as much as possible, it is effective to carry out the photopolymerization in two stages or to use the thermal polymerization method and the photopolymerization method in combination. Following the polymerization, the residual monomer may be dried with hot air or the like. The amount of the monomer remaining in the optical transmission medium of the present invention is preferably as small as possible, and is 5% or less, further 3% or less, and further preferably 1.5% or less, which can be achieved by the above method. is there.

【0014】以下、実施例により本発明をさらに詳細に
説明する。
Hereinafter, the present invention will be described in more detail with reference to examples.

【0015】[0015]

【実施例】【Example】

[評価方法] 1.評価装置 レンズ性能の評価は図2に示すような評価装置を用いて
行った。 2.試料の調整 試作した屈折率分布型レンズを、通過するHe−Neレーザ
ー光線のうねりから判定した光線の周期(λ)のほぼ1/
4 の長さ(λ)となるように切断し、研磨機を用いて試
料の両端面が長軸に垂直な平行平面となるように研磨
し、評価試料とした。 3.測定方法 図2に示すように、光学ベンチ101 の上に配置された試
料台の上に試作した試料108 をセットし、絞り104 を調
節して光源102 からの光が集光用レンズ103 、絞り104
、ガラス板105 を通り、試料の端面全面に入射するよ
うにした後、試料108 およびポラロイドカメラ107 の位
置をポラロイドフィルム上にピントが合うように調節
し、正方形格子像を撮影し、格子の歪みを観察した。ガ
ラス板105 はフォトマスク用クロムメッキガラスのクロ
ム皮膜を0.1mm の正方形格子模様に精密加工したものを
用いた。 [屈折率分布の測定]カールツアイス社製インターファ
コ干渉顕微鏡を用いて公知の方法により測定した。
[Evaluation method] 1. Evaluation Device Evaluation of lens performance was performed using an evaluation device as shown in FIG. 2. Sample preparation Almost 1 / (1 /) of the period (λ) of the light beam judged from the swell of the He-Ne laser beam passing through the prototype gradient index lens
The sample was cut to a length of 4 (λ) and polished using a polishing machine so that both end faces of the sample were parallel planes perpendicular to the long axis, to give an evaluation sample. 3. Measurement method As shown in FIG. 2, the sample 108 is set on the sample table placed on the optical bench 101, and the diaphragm 104 is adjusted so that the light from the light source 102 is condensed by the condenser lens 103 and the diaphragm. 104
After passing through the glass plate 105 and the entire end face of the sample, adjust the positions of the sample 108 and the polaroid camera 107 so that they are in focus on the polaroid film, take a square lattice image, and distort the lattice. Was observed. As the glass plate 105, a chrome film of chrome-plated glass for a photomask, which was precisely processed into a 0.1 mm square lattice pattern, was used. [Measurement of Refractive Index Distribution] The refractive index distribution was measured by a known method using an Interfaco interference microscope manufactured by Carl Zeiss.

【0016】[0016]

【実施例1】塊状重合により得たポリ−(2,2,3,3-テト
ラフルオロプロピルメタクリレート)(単独重合体の屈
折率nD=1.420、[η]=2.285、25℃のMEK 中で測定)50
重量部、メチルメタクリレート(単独重合体の屈折率nD
=1.498、沸点 100℃)32重量部、tert−ブチルメタクリ
レート(単独重合体の屈折率nD=1.483、沸点67℃/70mm
Hg)18重量部、1-ヒドロキシシクロヘキシルフェニルケ
トン 0.1重量部、ハイドロキノン 0.1重量部を図1のシ
リンダー11に仕込み、70℃に加熱し、混練部を通して、
径が2.0mm のノズルより押出した。この時、この前駆体
組成物の押出し時の粘度は1×104 ポイズであった。続
いてこの押出したファイバを50℃に加熱され、窒素ガス
が10リットル/min の速度で流れる揮発部を8分で通過さ
せ、引続き80℃に加熱され、窒素ガスが10リットル/min の
速度で流れる揮発部を6分で通過させて6本の円状に等
間隔に設置された 500Wの超高圧水銀灯の中心にファイ
バを通過させ、0.5 分間光を照射し、20cm/min の速度
でニップローラーで引き取った。得られたファイバの直
径は1.00mmであり、インターファコ干渉顕微鏡により測
定した屈折率分布は、中心が1.448 、周辺部が1.431 で
あり、中心部から周辺部に向かって連続的に減少してい
た。
Example 1 Poly- (2,2,3,3-tetrafluoropropylmethacrylate) obtained by bulk polymerization (refractive index of homopolymer n D = 1.420, [η] = 2.285, in MEK at 25 ° C.) Measurement) 50
Parts by weight, methyl methacrylate (refractive index of homopolymer n D
= 1.498, boiling point 100 ° C) 32 parts by weight, tert-butyl methacrylate (refractive index of homopolymer n D = 1.483, boiling point 67 ° C / 70mm
Hg) 18 parts by weight, 1-hydroxycyclohexyl phenyl ketone 0.1 parts by weight, and hydroquinone 0.1 parts by weight were charged into the cylinder 11 of FIG. 1, heated to 70 ° C., passed through the kneading part,
It was extruded from a nozzle having a diameter of 2.0 mm. At this time, the viscosity of this precursor composition at the time of extrusion was 1 × 10 4 poise. Subsequently, the extruded fiber was heated to 50 ° C, passed through a volatilization section in which nitrogen gas flows at a rate of 10 liter / min in 8 minutes, and subsequently heated to 80 ° C, and nitrogen gas was fed at a rate of 10 liter / min. The fiber is passed through the center of 500 W ultra-high pressure mercury lamps, which are installed in 6 circles at equal intervals, by passing through the flowing volatile part in 6 minutes, irradiating light for 0.5 minutes, and nip roller at a speed of 20 cm / min. I took it in. The diameter of the obtained fiber was 1.00 mm, and the refractive index profile measured by an interferco interference microscope was 1.448 at the center and 1.431 at the peripheral part, which decreased continuously from the central part to the peripheral part. It was

【0017】なお、得られたファイバのNMRによる組
成分析の結果は、中心部にはポリ−(2,2,3,3-テトラフ
ルオロプロピルメタクリレート)が56重量%、周辺部に
は83重量%含まれていた。またメチルメタクリレートは
中心部には30重量%、周辺部には4重量%含まれてお
り、tert−ブチルメタクリレートは中心部で14重量%、
周辺部で13重量%であった。単量体の残留分は全体とし
て 1.0%であった。また先述のレンズ性能の測定を行っ
た結果、正方形格子の像は歪が少ないものであった。
The results of the composition analysis by NMR of the obtained fiber showed that poly- (2,2,3,3-tetrafluoropropylmethacrylate) was 56% by weight in the central portion and 83% by weight in the peripheral portion. Was included. Methyl methacrylate is 30% by weight in the center and 4% by weight in the periphery, and tert-butyl methacrylate is 14% by weight in the center.
It was 13% by weight in the peripheral portion. The residual monomer content was 1.0% overall. As a result of the above-mentioned measurement of the lens performance, the image of the square lattice has little distortion.

【0018】[0018]

【実施例2】塊状重合により製造した2,2,3,3-テトラフ
ルオロプロピルメタクリレート90重量%とメチルメタク
リレート10重量%とからなる共重合体(nD=1.423)53重
量部、メチルメタクリレート32重量部、iso-ブチルメタ
クリレート(単独重合体の屈折率nD=1.426、沸点 155
℃)15重量部、1-ヒドロキシシクロヘキシルフェニルケ
トン 0.1重量部、ハイドロキノン 0.1重量部とを図1の
装置に仕込み、実施例1と同様にして直径 1,000μmの
ファイバを得た。ただし、第2揮発部の温度は70℃とす
る以外は実施例1と全く同様にして屈折率分布型光伝送
体を作った。得られた光伝送体をインターファコ干渉顕
微鏡により測定した屈折率分布は、中心が1.452 、周辺
部が1.435 であり、中心部から周辺部に向かって連続的
に減少していた。2,2,3,3-テトラフルオロプロピルメタ
クリレート共重合体の光伝送体中での組成比は、光伝送
体の中心部で49重量%、周辺部で80重量%であり、メチ
ルメタクリレート組成比は中心部で28重量%、周辺部で
5重量%であり、iso-ブチルメタクリレートは中心部で
22重量%、周辺部で13重量%であった。レンズ性能の測
定を行った結果、像は歪が少なく、また明るくなった。
Example 2 53 parts by weight of a copolymer (n D = 1.423) composed of 90% by weight of 2,2,3,3-tetrafluoropropylmethacrylate and 10% by weight of methylmethacrylate produced by bulk polymerization, and 32% of methylmethacrylate. Parts by weight, iso-butyl methacrylate (refractive index of homopolymer n D = 1.426, boiling point 155
15 parts by weight, 0.1 part by weight of 1-hydroxycyclohexyl phenyl ketone and 0.1 part by weight of hydroquinone were charged into the apparatus shown in FIG. 1 and a fiber having a diameter of 1,000 μm was obtained in the same manner as in Example 1. However, a gradient index optical transmission member was produced in exactly the same manner as in Example 1 except that the temperature of the second volatilization part was 70 ° C. The refractive index distribution of the obtained optical transmission medium measured by an interphaco interference microscope was 1.452 at the center and 1.435 at the peripheral portion, and it continuously decreased from the central portion to the peripheral portion. The composition ratio of 2,2,3,3-tetrafluoropropylmethacrylate copolymer in the light transmitter is 49% by weight in the central part of the light transmitter and 80% by weight in the peripheral part. Is 28% by weight in the central part and 5% by weight in the peripheral part, and iso-butyl methacrylate is in the central part.
It was 22% by weight and 13% by weight in the peripheral portion. As a result of measuring the lens performance, the image has little distortion and is bright.

【0019】[0019]

【実施例3】実施例1で得たポリ−(2,2,3,3-テトラフ
ルオロプロピルメタクリレート)(nD=1.420、[η]=
2.285 、25℃、MEK 中で測定)45重量部、メチルメタク
リレート30重量部、ベンジルメタクリレート(単独重合
体の屈折率nD=1.568、沸点 160℃/100mmHg )25重量
部、1-ヒドロキシシクロヘキシルフェニルケトン 0.1重
量部、ハイドロキノン 0.1重量部とを図1の装置に仕込
み、実施例1と同様にして賦形し、ストランドファイバ
よりの単量体の揮散および単量体の重合を行わしめ、直
径 995μmのファイバを得た。ただし、第2揮発部の温
度は 100℃にて行った。得られた屈折率分布型光伝送体
を評価した結果、中心部の屈折率nDは1.467 、周辺部の
屈折率nDは1.444 であり、中心から周辺部に向かってnD
が連続的に減少していた。また、ポリ−(2,2,3,3-テト
ラフルオロプロピルメタクリレート)の光伝送体中での
組成比は、中心部で58重量%、周辺部で82重量%であ
り、メチルメタクリレートの組成比は、中心部で20重量
%、周辺部で3重量%であり、ベンジルメタクリレート
の組成比は、中心部で22重量%、周辺部で15重量%であ
り、メチルメタクリレートは中心部で75重量%、周辺部
で65重量%であった。レンズ性能の測定を行った結果、
実施例1、2のものよりは若干悪いものの、歪は少なか
った。
Example 3 Poly- (2,2,3,3-tetrafluoropropyl methacrylate) obtained in Example 1 (n D = 1.420, [η] =
2.285 at 25 ° C, measured in MEK) 45 parts by weight, methylmethacrylate 30 parts by weight, benzylmethacrylate (refractive index of homopolymer n D = 1.568, boiling point 160 ° C / 100 mmHg) 25 parts by weight, 1-hydroxycyclohexylphenylketone 1 part by weight and 0.1 part by weight of hydroquinone were charged into the apparatus shown in FIG. 1 and shaped in the same manner as in Example 1 to evaporate the monomer from the strand fiber and polymerize the monomer. Got fiber. However, the temperature of the second volatilization section was 100 ° C. The results obtained were evaluated refractive index distribution type optical transmission article, the refractive index n D of the central 1.467, the refractive index n D of the peripheral portion is 1.444, toward the periphery from the center n D
Was continuously decreasing. The composition ratio of poly- (2,2,3,3-tetrafluoropropyl methacrylate) in the optical transmission medium was 58% by weight in the central part and 82% by weight in the peripheral part. Is 20% by weight in the central portion and 3% by weight in the peripheral portion. The composition ratio of benzyl methacrylate is 22% by weight in the central portion and 15% by weight in the peripheral portion, and methylmethacrylate is 75% by weight in the central portion. The peripheral portion was 65% by weight. As a result of measuring the lens performance,
Although slightly worse than those of Examples 1 and 2, the strain was small.

【0020】[0020]

【発明の効果】本発明の製造方法により、従来技術が抱
えてした断続的な生産工程による不合理性を解決し、連
続的な光伝送体の生産が可能となった。
According to the manufacturing method of the present invention, it is possible to solve the absurdity of the prior art, which is caused by the intermittent production process, and to continuously produce the optical transmission body.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のプラスチック光伝送体の製造方法を実
施するための装置の一例を示す模式図である。
FIG. 1 is a schematic view showing an example of an apparatus for carrying out the method for producing a plastic optical transmission body of the present invention.

【図2】本発明のプラスチック光伝送体のレンズ性能を
評価するための装置の概念図である。
FIG. 2 is a conceptual diagram of an apparatus for evaluating the lens performance of the plastic optical transmission article of the present invention.

【符号の説明】[Explanation of symbols]

1 ………… シリンダー 2 ………… 混練部 3 ………… ヒーター 4 ………… ピストン 5 ………… ノズル 6 ………… ストランドファイバ 7a ………… 第1揮発塔 7b ………… 第2揮発塔 8 ………… 活性光線照射部 9 ………… ガス導入孔 10 ………… ニップローラー 11 ………… 巻取りドラム 12 ………… 光伝送体 101 ………… 光学ベンチ 102 ………… 光源 103 ………… 集光用レンズ 104 ………… 絞り 105 ………… フォトマスク用クロムメッキガラスのク
ロム皮膜を0.1mm の正方形格子模様に精密加工したガラ
ス板 106 ………… 試料台 107 ………… カメラ 108 ………… 評価用試料
1 ………… Cylinder 2 ………… Kneading part 3 ………… Heater 4 ………… Piston 5 ………… Nozzle 6 ………… Strand fiber 7a ………… First volatile tower 7b …… …… 2nd Volatilizer 8 ………… Actinic ray irradiation part 9 ………… Gas introduction hole 10 ………… Nip roller 11 ………… Winding drum 12 ………… Light transmitter 101 ………… … Optical bench 102 ………… Light source 103 ………… Condensing lens 104 ………… Aperture 105 ………… Glass with chrome film of chrome-plated glass for photomask precision processed into a square lattice pattern of 0.1 mm Plate 106 ………… Sample stand 107 ………… Camera 108 ………… Evaluation sample

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小田 正昭 広島県大竹市御幸町20番1号三菱レイヨン 株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaaki Oda 20-1 Miyukicho, Otake City, Hiroshima Prefecture Mitsubishi Rayon Co., Ltd. Central Research Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 低屈折率N1の重合体(A) と、重合体(A)
よりも高屈折率N2の重合体(B) を与える揮発性の高い単
量体(C) および重合体(A) よりも高屈折率N3の重合体
(D) を与え、かつ、単量体(C) よりも揮発性の低い単量
体(E) とを溶解混合した組成物を所望の形に成形し、該
成形物の表面よりまず単量体(C) を揮発させ、その後単
量体(E) をも揮発する条件におくことによって成形物の
内部から表面に向かって、または該成形物の一端面から
他端面に向かって単量体(C) および単量体(E) に連続的
な濃度分布をつけた状態で該成形体中の未重合の単量体
(C) および単量体(E) を重合せしめることを特徴とする
屈折率分布型プラスチック成形体の製法。
1. A polymer (A) having a low refractive index N1 and a polymer (A)
Polymers with higher refractive index N2 than those with higher volatility (C) and polymers with higher refractive index N3 than polymers (A)
(D) is given, and a composition obtained by dissolving and mixing the monomer (E) having a lower volatility than the monomer (C) is molded into a desired shape, and a single amount is first added from the surface of the molded product. By subjecting the body (C) to volatilization and then the monomer (E) to volatilize, the monomer is moved from the inside to the surface of the molded article, or from one end surface to the other end surface of the molded article. (C) and monomer (E) in the state where a continuous concentration distribution is provided, the unpolymerized monomer in the molded body
A process for producing a gradient index plastic molding, which comprises polymerizing (C) and a monomer (E).
JP21106293A 1993-08-04 1993-08-04 Manufacturing method of refractive index distribution type plastic molding Expired - Fee Related JP3263195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21106293A JP3263195B2 (en) 1993-08-04 1993-08-04 Manufacturing method of refractive index distribution type plastic molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21106293A JP3263195B2 (en) 1993-08-04 1993-08-04 Manufacturing method of refractive index distribution type plastic molding

Publications (2)

Publication Number Publication Date
JPH0749425A true JPH0749425A (en) 1995-02-21
JP3263195B2 JP3263195B2 (en) 2002-03-04

Family

ID=16599770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21106293A Expired - Fee Related JP3263195B2 (en) 1993-08-04 1993-08-04 Manufacturing method of refractive index distribution type plastic molding

Country Status (1)

Country Link
JP (1) JP3263195B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100942255B1 (en) * 2005-03-28 2010-02-16 가부시키가이샤 다이후쿠 Switching facility
KR200457780Y1 (en) * 2010-04-19 2012-01-06 홍은지 Battery enable to check remaing quantity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100942255B1 (en) * 2005-03-28 2010-02-16 가부시키가이샤 다이후쿠 Switching facility
KR200457780Y1 (en) * 2010-04-19 2012-01-06 홍은지 Battery enable to check remaing quantity

Also Published As

Publication number Publication date
JP3263195B2 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
US5807906A (en) Process for obtaining a transparent article with a refractive index gradient
KR950001049B1 (en) Optical transmission medium and process for producing the same
JP3263195B2 (en) Manufacturing method of refractive index distribution type plastic molding
JPS5986003A (en) Manufacture of synthetic resin body for transmitting image
JPH03192310A (en) Manufacture of plastic optical transmission body
JP2651582B2 (en) Plastic optical transmission body and method of manufacturing the same
JPH03290605A (en) Production of plastic optical transmission body
JPS62108208A (en) Plastic optical transmission body and its production
JPH0216505A (en) Plastic light transmission body and production thereof
JP2651584B2 (en) Plastic optical transmission body and method of manufacturing the same
JPH0364706A (en) Plastic optical transmission body
JP2860382B2 (en) Manufacturing method of plastic optical transmitter
JPH0342603A (en) Production of light transmission body made of plastic
JP3591851B2 (en) Graded-index optical transmitter
JP3066865B2 (en) Method for manufacturing plastic optical transmission body
JP3072116B2 (en) Manufacturing method of graded index plastic optical transmitter
JP2651583B2 (en) Plastic optical transmission body and method of manufacturing the same
JPH02109002A (en) Optical transmitting body and its production
JPH0233104A (en) Manufacture of plastic optical transmission body
JPH09230145A (en) Plastic optical fiber preform and its production
JP3328615B2 (en) Graded-index plastic optical transmitter
JPS63304204A (en) Plastic light transmission body and its production
JPH0381705A (en) Production of plastic optical transmission body
JPH0364705A (en) Production of plastic optical transmission body
JPH0381704A (en) Production of plastic optical transmission body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees