JPH0749343A - Method of measuring amount of wear and tear of refractory material - Google Patents

Method of measuring amount of wear and tear of refractory material

Info

Publication number
JPH0749343A
JPH0749343A JP19231893A JP19231893A JPH0749343A JP H0749343 A JPH0749343 A JP H0749343A JP 19231893 A JP19231893 A JP 19231893A JP 19231893 A JP19231893 A JP 19231893A JP H0749343 A JPH0749343 A JP H0749343A
Authority
JP
Japan
Prior art keywords
refractory
molded
wear
slag
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19231893A
Other languages
Japanese (ja)
Other versions
JP2743783B2 (en
Inventor
Tatsuto Takahashi
達人 高橋
Motonobu Kobayashi
基伸 小林
Hideji Yamamoto
秀治 山本
Hisaki Kato
久樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP5192318A priority Critical patent/JP2743783B2/en
Publication of JPH0749343A publication Critical patent/JPH0749343A/en
Application granted granted Critical
Publication of JP2743783B2 publication Critical patent/JP2743783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To easily measure an amount of wear and tear of a molded refractory material by a method wherein the molded refractory material is thrown in a molten material housed in a molten metal smelting furnace or a holding vessel and after withdrawing it, dimension before throwing and after withdrawing are compared with each other. CONSTITUTION:A molded refractory material like a mug carbon refractory material is cut off to a prescribed shape and the surfaces are treated with an abrasive process. After that, a length of each side is measured up to two digits below the decimal point by 5mm interval. After molten iron is housed in a converter, in order to avoid heat spalling in an initial period of time after throwing, the molded refractory material, which is wrapped as a whole by about 5mm sized corrugated board for forming a packing carton, is thrown in the converter from a sublance opening of an entrance section thereof. After prescribed blowing is applied in the furnace, it is inclined to discharge the slag and to withdraw the refractory material. And the refractory material is cooled in the graphite powder to be measured again so that an amount of wear and tear of the refractory material is obtained from the difference between initial dimension before throwing and the measured dimension. In addition, the speed of wear and tear is calculated from the amount of wear and tear, slag and the residence time of the molten iron. At that time, the amount of wear and tear is measured by the accuracy of 0.01mm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶融金属精錬炉または
溶融金属保持容器内に溶融金属が滞留している場合にス
ラグ及び/又は溶融金属による耐火物の損耗速度の測定
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to measurement of a wear rate of a refractory due to slag and / or molten metal when the molten metal is retained in a molten metal refining furnace or a molten metal holding container.

【0002】[0002]

【従来の技術】炉体及び保持容器の損耗速度を測定する
方法として以下の方法がある。 (1)レーザーによる炉体測定(AGA) 実公昭60−27924号公報には、レーザー光を用い
た炉体測定により処理又は精錬ごとの残存煉瓦寸法を求
め、これに基づき耐火物の損耗速度を求めるAGA装置
が開示されている。 (2)炉体解体調査 炉体を使用した後に残存煉瓦寸法を調査し、これと使用
開始前の煉瓦寸法との差から煉瓦の損耗速度を求める。
2. Description of the Related Art There are the following methods for measuring the wear rate of a furnace body and a holding container. (1) Measurement of furnace body by laser (AGA) In Japanese Utility Model Publication No. 60-27924, the dimensions of the remaining bricks for each treatment or refining are obtained by measuring the furnace body using a laser beam, and the wear rate of the refractory is determined based on this. The required AGA device is disclosed. (2) Furnace dismantling survey After the furnace body is used, the size of the remaining bricks is investigated, and the wear rate of the bricks is calculated from the difference between this and the size of the bricks before the start of use.

【0003】また、煉瓦の損耗速度を測定する方法とし
ては、実炉ではなく下記の模擬試験を用いた実験室的検
討によっている。 (3)スラグ侵食試験 煉瓦、耐火物の損耗速度を知る方法として、回転式スラ
グ侵食試験炉、高周波誘導炉による煉瓦、耐火物張り分
け試験がある。回転式スラグ侵食試験炉は円筒ドラムの
中に試験煉瓦、あるいは耐火物を内張りとして張り分
け、このドラムの中でバーナーあるいは電極により加熱
し、スラグを溶融させ、スラグと煉瓦、あるいは耐火物
の反応による侵食の度合いを調べる。また、高周波誘導
炉による試験は、誘導炉の内張りを試験煉瓦あるいは耐
火物により張り分け金属及びスラグを溶解し、スラグ、
溶融金属、スラグ−溶融金属界面の煉瓦の耐火物損耗を
調べる。
As a method of measuring the wear rate of bricks, a laboratory study using the following simulated test is used instead of the actual furnace. (3) Slag erosion test As a method of knowing the wear rate of bricks and refractories, there are rotary slag erosion test furnaces, bricks by high-frequency induction furnace, and refractory partitioning tests. The rotary slag erosion test furnace is divided into test drums or refractory linings in a cylindrical drum, and the slag is melted by heating with a burner or an electrode in this drum to react the slag with bricks or refractories. Examine the degree of erosion by. In addition, in the test using a high-frequency induction furnace, the lining of the induction furnace is divided with test bricks or refractories to melt the metal and slag,
Examine the refractory wear of the molten metal and bricks at the slag-molten metal interface.

【0004】[0004]

【発明が解決しようとする課題】しかしながらAGA装
置においては、煉瓦表面に付着したスラグの厚みを煉瓦
厚みとともに測定してしまうので、煉瓦のみの損耗速度
を正確に測定することができない。また、AGA装置に
よれば基準点の設定で誤差を生じやすいのでミリメート
ル単位の測定は不可能である。
However, in the AGA apparatus, since the thickness of the slag attached to the brick surface is measured together with the brick thickness, the wear rate of only the brick cannot be accurately measured. Further, according to the AGA device, an error is likely to occur in the setting of the reference point, so that it is impossible to measure in millimeters.

【0005】また、炉体解体調査法においては、炉代を
通しての平均損耗量および平均損耗速度は求まるが、処
理ごとの温度、スラグ組成、吹錬条件等の製鋼条件にお
ける損耗速度を知ることはできない。
Further, in the furnace dismantling investigation method, the average amount of wear and the average wear rate through the furnace cost can be obtained, but it is not possible to know the wear rate under the steelmaking conditions such as the temperature, the slag composition and the blowing condition for each treatment. Can not.

【0006】さらに、模擬試験法においては処理雰囲
気、スラグ成分、スラグ量、溶鉄量、攪拌条件などが一
定範囲に限られることから実炉又は溶融金属保持容器内
の損傷環境を正確にシュミレートしているとはいえな
い。このため、これら実験室的検討から直ちに実炉での
損耗速度を求めることはできない。
Further, in the simulated test method, the treatment atmosphere, slag component, slag amount, molten iron amount, stirring condition, etc. are limited to a certain range, so that the damage environment in the actual furnace or the molten metal holding container can be accurately simulated. It cannot be said that there is. Therefore, it is not possible to immediately determine the wear rate in the actual furnace from these laboratory studies.

【0007】本発明は上記の事情に鑑みてなされたもの
であり、実炉でのチャージ間、及び種々の精錬条件、す
なわち温度、温度変化、スラグ成分、成分変化、攪拌強
度等の差による損耗量の変化などを適格に把握すること
ができる耐火物損耗量の測定方法を提供することを目的
とする。
The present invention has been made in view of the above circumstances, and wear due to differences between charging in an actual furnace and various refining conditions, that is, temperature, temperature change, slag component, component change, stirring strength, etc. It is an object of the present invention to provide a method for measuring the amount of wear of a refractory material, which can appropriately grasp changes in the amount of refractory materials.

【0008】[0008]

【課題を解決するための手段】発明者らは、実炉内、又
は溶融金属保持容器内に煉瓦を投入し、回収後損耗速度
を測定することを実現するために障害となる点を種々検
討した結果、下記(イ)乃至(ニ)の知見を得た。 (イ)煉瓦、耐火物を炉内に投入するときに生じる熱ス
ポールにより投入した煉瓦に割れが発生し、所定の煉瓦
の形状を保つことができない。 (ロ)投入した煉瓦、耐火物が晒される環境は、炉体に
内張りされている煉瓦より厳しく、完全に損耗して、消
滅してしまう懸念がある。 (ハ)投入した煉瓦、耐火物は1200℃〜1600℃
のスラグ中に入り、この煉瓦、耐火物を回収すること
は、極めて高温であるという温度の面から、一般的には
容易ではなく、危険を伴う作業である。 (ニ)多量の溶融スラグ中で小さな煉瓦を探し出すこと
自体容易ではない。
DISCLOSURE OF THE INVENTION The inventors of the present invention have made various investigations on the obstacles for putting a brick into an actual furnace or a molten metal holding container to measure the wear rate after recovery. As a result, the following findings (a) to (d) were obtained. (B) The bricks put into the furnace are cracked by the heat spall generated when the bricks and refractory are put into the furnace, and it is impossible to maintain the predetermined brick shape. (B) The environment in which the bricks and refractory that are thrown in are exposed is more severe than the bricks lined in the furnace body, and there is a concern that they will be completely worn and disappear. (C) The bricks and refractories put in are 1200 ° C to 1600 ° C.
It is generally not easy and dangerous work to get into the slag and recover the brick and refractory from the viewpoint of the temperature being extremely high. (D) It is not easy to find small bricks in a large amount of molten slag.

【0009】これらの知見に基づき発明者らは鋭意研究
を進めた結果、煉瓦の投入という簡易な操作によって炉
内耐火物の損耗速度を容易に知る方法を見出だした。以
下、炉または保持容器内に投入される煉瓦及び形状を有
する耐火物を総称して「成形耐火物」と記す。
As a result of intensive studies based on these findings, the inventors have found a method of easily knowing the wear rate of the refractory in the furnace by a simple operation of charging bricks. Hereinafter, bricks and refractory materials having a shape to be put into the furnace or the holding container are collectively referred to as “molded refractory materials”.

【0010】本発明に係る耐火物損耗量の測定方法は、
成形耐火物の初期寸法を測定する工程と、溶融金属精錬
炉または溶融金属保持容器に収容された溶融物中に前記
成形耐火物を投入する工程と、投入した成形耐火物を前
記溶融物中から回収する工程と、回収した成形耐火物の
寸法を測定する工程と、この測定寸法と前記初期寸法と
に基づき成形耐火物の損耗量を算出する工程と、を有す
ることを特徴とする。 [耐火物の成形]成形耐火物の形状は、耐スポール性を
考慮して決定され、さらに精錬炉において精錬能を阻害
しないような形状であることが必要とされる。損耗量の
測定精度向上のためには成形耐火物の表面が平滑である
ことが必要になる。また、組織に特徴のある成形耐火物
においては、成形時に加圧力を印加する方向を特定する
必要がある。さらに、スラグ、溶融金属、又はスラグと
溶融金属界面における耐火物の損耗量のどれを求めるか
によって、成形耐火物の見掛けの比重を変化させること
も可能である。 [成形耐火物の大きさ]成形耐火物の体積は次の不等式
(1)を満たす必要がある。
The method for measuring the amount of refractory wear according to the present invention is
A step of measuring the initial dimensions of the molded refractory, a step of charging the molded refractory into the molten metal contained in a molten metal refining furnace or a molten metal holding container, and the molded refractory charged from the melt The method is characterized by including a step of collecting, a step of measuring the size of the collected molded refractory, and a step of calculating the amount of wear of the molded refractory based on the measured size and the initial size. [Molding of refractory material] The shape of the molded refractory material is determined in consideration of spall resistance, and is required to be a shape that does not impair the refining ability in the refining furnace. In order to improve the accuracy of measuring the amount of wear, the surface of the molded refractory must be smooth. Further, in a molded refractory having a characteristic structure, it is necessary to specify the direction in which the pressing force is applied during molding. Further, it is possible to change the apparent specific gravity of the formed refractory by determining which of the amount of wear of the refractory at the slag, the molten metal, or the interface between the slag and the molten metal is obtained. [Size of Molded Refractory] The volume of the molded refractory must satisfy the following inequality (1).

【0011】 1cm3 <V<90000cm3 …(1) ただし、Vは成形耐火物の体積[cm3 ]を示す。体積
Vが90000cm3 を上回ると、成形耐火物内部に発
生する熱応力が過大になり、スポーリングによって成形
耐火物に亀裂が生じる。ところで、成形耐火物の耐スポ
ール性を改善し、かつ体積Vを90000cm3 より大
きくすると、耐火物の熱容量が大きくなりすぎ、投入直
後に周囲のスラグや溶融金属から熱を奪って耐火物表面
に固化したスラグや金属の膜が形成されるので、これら
の固化スラグ等が直ちに溶解しない場合には、耐火物損
耗量を正確に測定することができない。一方、体積Vが
1cm3 を下回ると、成形耐火物は構造体としての耐火
物組織を維持することができなくなる。
[0011] 1cm 3 <V <90000cm 3 ... (1) However, V represents the volume of the molded refractory [cm 3]. If the volume V exceeds 90,000 cm 3 , the thermal stress generated inside the molded refractory becomes excessive, and spalling causes cracks in the molded refractory. By the way, if the spall resistance of the molded refractory is improved and the volume V is larger than 90,000 cm 3 , the heat capacity of the refractory becomes too large, and heat is taken from the surrounding slag and the molten metal immediately after charging to the refractory surface. Since a solidified slag or a metal film is formed, if the solidified slag or the like does not immediately dissolve, the amount of refractory wear cannot be accurately measured. On the other hand, when the volume V is less than 1 cm 3 , the molded refractory cannot maintain the refractory structure as a structure.

【0012】さらに、成形耐火物の最大外径Lは、通常
の内張り耐火物がおかれる環境を維持するために、次の
不等式(2)を満たすことが必要である。 (1/400)D<L<(1/3)D …(2) ただし、Lは成形耐火物の最大外径[cm]を示し、D
は炉又は保持容器の最小径あるいは距離[cm]を示
す。
Further, the maximum outer diameter L of the molded refractory material needs to satisfy the following inequality (2) in order to maintain the environment in which the normal lining refractory material is placed. (1/400) D <L <(1/3) D (2) where L represents the maximum outer diameter [cm] of the molded refractory, and D
Indicates the minimum diameter or distance [cm] of the furnace or holding container.

【0013】ここで、投入する成形耐火物の最大外径L
が(1/3)Dより大きくなると、精錬炉の場合では精
錬を阻害してしまうか、あるいは内張り耐火物がおかれ
る環境とは異なってしまう。一方、成形耐火物の最大外
径Lが(1/400)Dより小さくなると、成形耐火物
の回収が難しくなる。 [平面研削]少なくとも一つ以上の面と向きあう平行面
を平面研削することにより、成形耐火物の損耗量の測定
を容易にすることができる。また、成形耐火物表面のミ
クロ的な損耗速度を調べるためには、少なくとも一つ以
上の面を研削し、顕微鏡観察によって耐火物組織の骨材
及びマトリックスの損耗速度を求めることが可能であ
る。 [成形耐火物の特定及び製造時の方向性の特定方法]成
形耐火物を材質ごとにあるいは耐火物の前処理ごとに特
定するために次の(1) 〜(4) の方法が有効である。 (1) 成形耐火物の特定の方向の長さをある間隔に変える
ことにより、成形耐火物を材質ごとにあるいは前処理ご
とに特定することができる。例えば最大長さが400m
mの成形耐火物を特定するために、380mm、390
mm、400mmというように10mmずつ長さを変え
る。 (2) また、直方体形状の成形耐火物の端(コーナー部)
を斜めに角度を変えて切断することにより、同様に成形
耐火物を特定することができる。 (3) マグカーボン耐火物においては、一般に耐火物中の
鱗片状のグラファイトの配向方向により、耐火物面の損
耗速度が異なる傾向がある。このグラファイトの配向方
向は耐火物を製造する時の成形(加圧)方向によるもの
であり、このようなグラファイトの配向をもつマグカー
ボン耐火物の面を特定するには以下の方法が考えられ
る。
Here, the maximum outer diameter L of the molding refractory to be charged
Is larger than (1/3) D, refining is hindered in the case of a refining furnace, or the environment is different from the environment in which the refractory lining is placed. On the other hand, when the maximum outer diameter L of the molded refractory is smaller than (1/400) D, it becomes difficult to recover the molded refractory. [Surface grinding] By grinding the parallel surface facing at least one surface, it is possible to easily measure the amount of wear of the molded refractory. Further, in order to investigate the microscopic wear rate of the surface of the formed refractory, it is possible to grind at least one surface and observe the microscope to determine the wear rate of the aggregate and matrix of the refractory structure. [Method of identifying molded refractory and directionality during manufacturing] The following methods (1) to (4) are effective for identifying molded refractory by material or pretreatment of refractory. . (1) The molded refractory can be specified for each material or each pretreatment by changing the length of the molded refractory in a specific direction to a certain interval. For example, the maximum length is 400m
380 mm, 390 to identify m refractory
The length is changed by 10 mm such as mm and 400 mm. (2) In addition, the end (corner part) of a rectangular parallelepiped shaped refractory material
The molded refractory can be specified in the same manner by obliquely changing the angle and cutting. (3) In mag-carbon refractory, generally, the wear rate of the refractory surface tends to differ depending on the orientation direction of the scaly graphite in the refractory. The orientation direction of this graphite depends on the forming (pressurizing) direction when manufacturing the refractory, and the following method can be considered to identify the surface of the magcarbon refractory having such a graphite orientation.

【0014】直方体形状の成形耐火物の各辺(a,b,
c)を次式(3)のように規定し、それぞれの面を特定
することにより、成形時における加圧面を特定する。 a<b<c …(3) なお、これらの辺の長さを変えることによっても、回収
後においても成形耐火物の材質、熱処理ごとの履歴を特
定することができる。 (4) さらに上記(3) に加えて、直方体形状の成形耐火物
の長手方向の端(エッジ部)を斜めに角度を変えて切断
することにより、同様に成形耐火物の成形面を特定する
ことができる。 [成形耐火物の密度の変更]成形耐火物の見掛けの密度
を変えることにより、成形耐火物をスラグ層の深さ方向
の任意レベルに位置させることができる。例えば、成形
耐火物の内部に空洞を設けることにより見掛けの比重を
小さくし、成形耐火物をスラグ層の上面に常に位置させ
ると、スラグ表面でのスラグのスプラッシュ、揺動によ
る摩耗、炉内雰囲気による損耗を調べることができる。
また、成形耐火物の内部にタングステンカーバイド等の
密度の高い物質を埋め込むことにより、成形耐火物の見
掛けの比重を溶融金属のそれより大きくし、成形耐火物
を溶融金属中に浸漬させると、耐火物と溶融金属との反
応を調べることができる。さらに、成形耐火物の見掛け
の比重をスラグと溶融金属との中間に調整することによ
りスラグ及び溶融金属共存下における損耗速度を調べる
ことができる。 [成形耐火物の寸法の測定]成形耐火物の寸法の測定に
は通常のノギス等を利用する。ただし、損耗速度の遅い
耐火物については、少なくとも小数点以下二桁まで測定
できる機器が必要である。なお、耐火物を熱処理する場
合は、熱処理後において耐火物寸法を再度測定する必要
がある。 [成形耐火物の熱処理]不焼成耐火物、例えばマグカー
ボン耐火物の場合、耐火物製造時に、約300℃の温度
域で熱処理を行っている。このような成形耐火物を炉内
に投入すると、フェノール樹脂等のバインダー剤がガス
化し、炉内耐火物に悪影響を及ぼす可能性がある。とく
に、成形耐火物の寸法が大きくなるにしたがって発生ガ
ス量が増大し、炉内耐火物が多大な損傷を受けるおそれ
があるので、注意を要する。そこで、このような危険性
がある場合は、成形耐火物を予め熱処理しておき、ガス
が発生しないような状態にしておく必要がある。熱処理
は成形耐火物に即した方法で行う。例えばマグカーボン
耐火物の場合は、コークスブリーズ中か、又は非酸化ガ
ス雰囲気中で熱処理する。また、バインダー剤等がアル
ミナセメントのように水和物を形成するものは、熱処理
により、自由水を始めとして、結晶水を予め除くことが
でき、成形耐火物の爆裂を防止することができる。
Each side (a, b,
The pressure surface at the time of molding is specified by defining c) as in the following expression (3) and specifying each surface. a <b <c (3) By changing the lengths of these sides, the material of the molded refractory and the history of each heat treatment can be specified even after the collection. (4) Furthermore, in addition to the above (3), the molding surface of the molded refractory is similarly specified by cutting the longitudinal edges (edges) of the rectangular parallelepiped molded refractory at oblique angles. be able to. [Change of Density of Molded Refractory] By changing the apparent density of the molded refractory, the molded refractory can be positioned at any level in the depth direction of the slag layer. For example, if the apparent specific gravity is reduced by providing a cavity inside the molded refractory and the molded refractory is always positioned on the upper surface of the slag layer, the slag splashes on the slag surface, wear due to rocking, and the furnace atmosphere. It is possible to investigate the wear caused by.
Also, by embedding a dense substance such as tungsten carbide inside the molded refractory, the apparent specific gravity of the molded refractory is made larger than that of the molten metal, and when the molded refractory is immersed in the molten metal, the fire resistance The reaction between an object and a molten metal can be investigated. Furthermore, by adjusting the apparent specific gravity of the molded refractory material between the slag and the molten metal, the wear rate in the coexistence of the slag and the molten metal can be investigated. [Measurement of dimensions of molded refractory] Normal calipers and the like are used for measurement of dimensions of molded refractory. However, for refractory materials with a slow wear rate, a device capable of measuring at least two digits after the decimal point is required. When heat-treating a refractory, it is necessary to measure the refractory size again after the heat treatment. [Heat Treatment of Molded Refractory] In the case of an unfired refractory, for example, a magcarbon refractory, a heat treatment is performed in a temperature range of about 300 ° C. when manufacturing the refractory. When such a molded refractory material is charged into the furnace, the binder agent such as phenol resin is gasified, and the refractory material in the furnace may be adversely affected. In particular, caution is required because the amount of gas generated increases as the size of the molded refractory increases, and the refractory in the furnace may be greatly damaged. Therefore, if there is such a risk, it is necessary to heat-treat the molded refractory material in advance so that no gas is generated. The heat treatment is performed by a method suitable for the molded refractory. For example, in the case of a mag carbon refractory, heat treatment is performed in a coke breeze or in a non-oxidizing gas atmosphere. In addition, when the binder agent or the like forms a hydrate like alumina cement, it is possible to remove free water and crystallization water in advance by heat treatment, and it is possible to prevent explosion of the molded refractory.

【0015】なお、熱処理を行った場合に、成形耐火物
の寸法が変化する可能性が極めて高いので、熱処理後に
寸法を測定することを要する。また、熱処理により、成
形耐火物内に新たに化合物等が生成され、これが大気中
の水分等と反応する可能性がある場合には、熱処理後の
成形耐火物を周囲の雰囲気と遮断する必要がある。とく
にマグカーボン耐火物では、熱処理で耐火物内の添加剤
が炭化することにより、常温において、空気中の水分と
反応し、消化膨張を起す。そこで、この場合は、ガス非
透過袋の中に熱処理耐火物を真空封入して消化防止を行
うか、または真空下、乾燥雰囲気下に使用まで熱処理耐
火物を保管しておく。
When the heat treatment is performed, there is a high possibility that the dimensions of the molded refractory will change, so it is necessary to measure the dimensions after the heat treatment. In addition, if a compound or the like is newly formed in the molded refractory due to the heat treatment and this may react with moisture in the atmosphere, it is necessary to block the molded refractory from the surrounding atmosphere. is there. Particularly in the case of magcarbon refractory, carbonization of additives in the refractory during heat treatment causes reaction with moisture in the air at room temperature to cause digestive expansion. Therefore, in this case, the heat-treated refractory is vacuum-sealed in a gas-impermeable bag to prevent digestion, or the heat-treated refractory is stored under vacuum in a dry atmosphere until use.

【0016】[0016]

【作用】[Action]

[炉内への投入タイミング]精錬炉の場合は、精錬前お
よび精錬中等の任意の時期に成形耐火物を炉内に投入す
ることにより、回収までの任意の期間において耐火物の
損耗速度を求めることができる。 [熱スポーリングを避けるための方策]ダンボール等の
一定時間炉内で存在し、かつ存在しているときには断熱
性を発揮する部材で成形耐火物をくるみ、ある時間だけ
断熱の役目をさせ、投入初期における成形耐火物の急熱
を防止する。耐火物は急熱されると表面に圧縮応力、内
部に引っ張り応力が働き、一般に引っ張り応力に対し弱
い耐火物は容易に割れが発生するからである。このよう
な熱スポーリングを防止するためには、成形耐火物表面
に断熱層が必要になり、かつ投入時の割れを防止すると
いう目的を達成したあとは耐火物表面から除去されれ
ば、耐火物の損耗量を耐火物投入時の熱スポーリングに
よる崩壊なしに測定することができる。 [成形耐火物の回収]成形耐火物の回収は、極めて難し
いが、炉の大きさ、耐火物の比重等から以下の方法のう
ち、最も適した方法で行うことにより回収効率が向上す
る。 (イ)炉前からの回収 成形耐火物の見掛けの比重がスラグより軽い場合は、ス
ラグ上に浮かぶ成形耐火物をスコップ状の治具で回収す
ることができる。また、成形耐火物の見掛けの比重がス
ラグの比重より大きくかつ溶融金属の比重より小さい場
合は、スラグを静かに少量づつ排滓し、最後に排出され
る成形耐火物をその排出の直前で回収することができ
る。ただし、作業員が人力を用いて回収する場合は、炉
及び保持容器が小型であることが必要である。この場合
は、安全性も高く、回収率が高く、また大型の炉及び溶
融金属保持容器内からも回収することができる遠隔操作
の専用の回収機械を用いることが望ましい。 (ロ)スラグとともに排出し、スラグヤードで回収 溶融金属より耐火物の比重が小さい場合は、溶融金属を
排出した後に、成形耐火物をスラグと共にスラグポット
(滓パン)内に排滓し、スラグヤード(滓処理場)にお
いてスラグポットより排滓し回収する。この時、スラグ
ポットからスラグヤードへの排滓時に鋼鉄製の網(す
き)を介して排滓することにより耐火物回収の効率は向
上する。 (ハ)スラグ排滓時、炉下で耐火物回収受けで回収 溶融金属の比重より成形耐火物の見掛けの比重が小さい
場合は、溶融金属を排出後、炉及び溶融金属保持容器か
らのスラグの排出時に、鋼鉄製の網(すき)を介して排
滓することにより成形耐火物を回収する。 (ニ)スラグを少量残し、比重の重い耐火物とともに炉
下へ回収 成形耐火物の見掛けの比重がスラグ比重と溶融金属比重
との中間にある場合は、出鋼口より溶融金属を排出した
後に、残ったスラグを静かに少量づつ排滓し、最後に排
出される成形耐火物を残ったスラグとともに炉下に排滓
し、その中から成形耐火物を回収する。または、溶融金
属保持容器の場合は別の位置に排滓し、その中から成形
耐火物を回収してもよい。 (ホ)スラグを少量残し、比重の重い耐火物とともに炉
下へ回収 成形耐火物の見掛けの比重が溶融金属の比重より大きい
場合は、スラグを予め極力排出した後に、静かに溶融金
属を排出し、最後に残っている成形耐火物を残留してい
るスラグとともに炉下あるいは溶融金属保持容器の場合
は別の位置に排滓し、その中から成形耐火物を回収す
る。 [回収耐火物の冷却]カーボン含有耐火物(マグカーボ
ン耐火物等)の場合は、成形耐火物をグラファイト中で
冷却することで、耐火物中のカーボンの酸化消耗を防止
することができる。この場合は、回収後できるだけ速や
かに成形耐火物をグラファイト中に入れることが重要で
ある。なお、酸化防止の方法において、含有カーボンの
酸化を防止するために、グラファイト以外のカーボン源
でもよく、また空気を遮断することから、真空下、減圧
下あるいは不活性雰囲気中で冷却することも効果が認め
られる。
[Timing of charging into the furnace] In the case of a refining furnace, the wear rate of the refractory can be obtained in any period until recovery by charging the molded refractory into the furnace before and during refining at any time. be able to. [Measures for avoiding heat spalling] A molded refractory is wrapped in a member that exhibits heat insulation properties such as cardboard for a certain period of time, and when it is present, it is used as heat insulation for a certain time Prevents rapid heating of molded refractories in the initial stage. This is because when a refractory is rapidly heated, a compressive stress acts on the surface and a tensile stress acts on the inside, and a refractory which is generally weak against the tensile stress easily cracks. In order to prevent such heat spalling, a heat-insulating layer is required on the surface of the molded refractory, and if it is removed from the refractory surface after achieving the purpose of preventing cracking at the time of injection, it will The amount of material loss can be measured without disintegration due to thermal spalling when the refractory is charged. [Recovery of molded refractory material] Although it is extremely difficult to recover the molded refractory material, the recovery efficiency is improved by the most suitable method among the following methods in view of the size of the furnace and the specific gravity of the refractory material. (A) Recovery from the front of the furnace If the apparent specific gravity of the molded refractory is lighter than that of the slag, the molded refractory floating on the slag can be recovered with a scoop-shaped jig. If the apparent specific gravity of the molded refractory is larger than the specific gravity of the slag and smaller than the specific gravity of the molten metal, gently slag the slag in small amounts and collect the final molded refractory just before it is discharged. can do. However, when the workers use human power to collect, the furnace and holding container must be small. In this case, it is desirable to use a remote-control dedicated recovery machine that has high safety and a high recovery rate, and that can also recover from a large furnace and a molten metal holding container. (B) Discharge with slag and collect in slag yard If the specific gravity of the refractory is smaller than that of the molten metal, after discharging the molten metal, the molded refractory is discharged together with the slag into the slag pot (slag pan) to remove slag. Wastes are collected from the slag pot at the yard (slag treatment plant) and collected. At this time, when the slag is discharged from the slag pot to the slag yard, the slag is discharged through a steel net (plow) to improve the refractory recovery efficiency. (C) When slag is discharged, it is recovered by the refractory collection receiver under the furnace. If the apparent specific gravity of the formed refractory is smaller than the specific gravity of the molten metal, after discharging the molten metal, the slag from the furnace and the molten metal holding container is removed. When discharged, the molded refractory is recovered by discharging it through a steel net (plow). (D) A small amount of slag is left and recovered under the furnace together with the refractory having a high specific gravity. If the apparent specific gravity of the molded refractory is between the slag specific gravity and the molten metal specific gravity, after the molten metal is discharged from the tapping port. , The remaining slag is gently discharged little by little, and the molded refractory finally discharged is discharged under the furnace together with the remaining slag, and the molded refractory is recovered from it. Alternatively, in the case of the molten metal holding container, it may be discharged to another position and the molded refractory material may be recovered from it. (E) Collect a small amount of slag and collect it under the furnace together with a refractory with a heavy specific gravity. If the apparent specific gravity of the molded refractory is higher than the specific gravity of the molten metal, gently discharge the molten metal after discharging the slag as much as possible. The last remaining molded refractory is discharged together with the remaining slag under the furnace or in the case of a molten metal holding container to another position, and the molded refractory is recovered from it. [Cooling of collected refractory material] In the case of carbon-containing refractory material (such as mag carbon refractory material), cooling the molded refractory material in graphite can prevent the carbon in the refractory material from being consumed by oxidation. In this case, it is important to insert the molded refractory into graphite as soon as possible after recovery. In the method of preventing oxidation, a carbon source other than graphite may be used in order to prevent oxidation of the contained carbon, and since air is shut off, cooling under vacuum, reduced pressure, or in an inert atmosphere is also effective. Is recognized.

【0017】一方、酸化物系耐火物においても耐スポー
ル性に劣る耐火物に関しては徐冷が必要であり、グラフ
ァイト粉あるいはマグネシア粉等の中、または断熱材を
内張りした容器内で冷却することで、耐火物の冷却によ
る割れを防止することができる。この場合に、回収後で
きるだけ速やかに成形耐火物を粉あるいは断熱箱に入れ
ることが重要である。 [損耗量の測定]回収耐火物を切断し、切断面の寸法を
測定する。投入前の初期寸法と測定寸法との差分から耐
火物の損耗量を求め、さらに耐火物の損耗量、及び耐火
物のスラグ、溶融金属内滞留時間から損耗速度を算出す
る。この場合に耐火物の損耗量は0.01mmの精度で
測定可能である。
On the other hand, even in oxide-based refractory materials, refractory materials having poor spall resistance require gradual cooling. By cooling in graphite powder or magnesia powder, or in a container lined with a heat insulating material. It is possible to prevent cracking of refractory due to cooling. In this case, it is important to put the molded refractory into powder or an insulating box as soon as possible after collection. [Measurement of Amount of Wear] The collected refractory material is cut, and the dimensions of the cut surface are measured. The amount of wear of the refractory is calculated from the difference between the initial size before charging and the measured size, and the rate of wear is calculated from the amount of the wear of the refractory, the slag of the refractory, and the residence time in the molten metal. In this case, the amount of wear of the refractory can be measured with an accuracy of 0.01 mm.

【0018】損耗量の少ない耐火物に関しては、顕微鏡
観察により耐火物稼働面を調査することで、耐火物の骨
材とマトリックスの損耗量を知ることができる。なお、
回収耐火物の耐火物稼働面の顕微鏡SEM観察により、
耐火物とスラグとの反応機構を求めることができる。 [測定できる項目]下記の項目(イ)〜(ヘ)を耐火物
投入による方法を用いて測定することができる。
For refractories having a small amount of wear, the wear amount of the refractory aggregate and the matrix can be known by investigating the refractory working surface by microscopic observation. In addition,
By microscope SEM observation of the refractory working surface of the recovered refractory,
The reaction mechanism between the refractory and the slag can be determined. [Items that can be measured] The following items (a) to (f) can be measured using a method in which a refractory is added.

【0019】(イ)炉の処理ごと(チャージごと)の損
耗速度 (ロ)製錬、精錬条件(温度、スラグ成分、塩基度、時
間)による損耗速度への影響 (ハ)炉の処理中の損耗速度の変化(たとえば、耐火物
投入時期を処理の前期、中期、後期のように種々変えて
各時期における損耗状態を把握する) (ニ)耐火物の材質の損耗速度に与える影響 (ホ)耐火物内の骨材とマトリックスの損耗速度 (ヘ)耐火物の成形方向による損耗速度の差
(A) Wear rate for each furnace treatment (for each charge) (b) Effect of smelting and refining conditions (temperature, slag component, basicity, time) on wear rate (c) During furnace treatment Change of wear rate (for example, change the timing of refractory input in the early, middle, and late stages of processing to understand the wear state at each time) (d) Effect on wear rate of refractory material (e) Wear rate of aggregate and matrix in refractory (f) Difference in wear rate depending on molding direction of refractory

【0020】[0020]

【実施例】以下、添付の図面を参照して本発明の種々の
実施例について比較例をあげながら説明する。 実施例1 炉内径1.6mの精錬炉の吹錬中の耐火物の損耗を求め
るために、6種のマグカーボン耐火物、各1個を精錬開
始前に投入し、吹錬後にこれを回収して調べた。図1に
示すように、投入した成形耐火物は各辺の長さがa,
b,cの直方体である。表1に示すように、6個の成形
耐火物の各辺a,b,cの長さは不等式a<b<cを満
足する関係にある。この場合に、各成形耐火物の辺a,
bの長さをそれぞれ90mm、110mmと固定し、マ
グカーボン耐火物の作業時の加圧面が、b−c辺が作る
面となるようにした。(以下、辺bと辺cとが作る面及
びその面に平行な面をb−c面と呼ぶ。その他の面をa
−b面およびa−c面という。)そして、成形耐火物の
長手方向、すなわち最大辺cの長さを160mm〜26
0mmの範囲内で20mmごとに変えて、6種類の成形
耐火物を区別した。
EXAMPLES Various examples of the present invention will be described below with reference to the accompanying drawings with reference to the accompanying drawings. Example 1 In order to determine the wear of refractory during blowing of a refining furnace with an inner diameter of 1.6 m, 6 kinds of magcarbon refractory, one each, were charged before the start of refining and recovered after blowing. I looked it up. As shown in FIG. 1, the length of each side of the cast refractory is a,
It is a rectangular parallelepiped of b and c. As shown in Table 1, the lengths of the sides a, b, and c of the six molded refractories satisfy the inequality a <b <c. In this case, each molded refractory side a,
The lengths of b were fixed to 90 mm and 110 mm, respectively, so that the pressing surface at the time of working the magcarbon refractory material was the surface formed by the bc side. (Hereinafter, a plane formed by the sides b and c and a plane parallel to the plane are referred to as a bc plane. The other planes are a.
They are referred to as -b plane and ac plane. ) And, in the longitudinal direction of the molded refractory, that is, the length of the maximum side c is 160 mm to 26 mm.
Six types of molded refractories were distinguished by changing every 20 mm within a range of 0 mm.

【0021】6種類の成形耐火物は、あらかじめグラフ
ァイトの量、骨材の種類により表1に示すようにオイル
プレスで成形したものを加工代を残して所定形状に切断
した。耐火物の面間の平行度と耐火物の表面を平滑にす
るために耐火物表面を平面研削加工機を用いて、JIS
規格表示で表面アラサ三角記号▽▽まで加工した。加工
後の最終的な各耐火物の厚みa,b,cを小数点以下2
桁まで、ノギスを用いて長さ方向に5mmごとに測定し
た。
The six types of molded refractories, which were molded in advance by an oil press as shown in Table 1 depending on the amount of graphite and the type of aggregate, were cut into a predetermined shape leaving a machining allowance. In order to make the surface of the refractory parallel and the surface of the refractory smooth, a JIS
It is processed to the surface roughness triangular symbol ▽▽ by the standard display. The final thickness of each refractory after processing, a, b, and c is below the decimal point 2
Up to the digit, the length was measured every 5 mm using a caliper.

【0022】各成形耐火物を投入初期の熱スポールを避
けるため5mm厚さの梱包箱作成用ダンボール紙で全面
を包んだ。成形耐火物は、転炉に溶鉄を収容した後に、
炉入部サブランス開口部から炉内に投入した。投入後所
定の吹錬を行った。57分後、吹錬終了により、炉を傾
倒しスラグを徐々に排出し、スラグ排出末期に成形耐火
物を炉前より人力で一つづつ回収した。回収耐火物は赤
熱しており、酸化を防止するために直ちにグラファイト
粉中に入れて冷却した。ここでは、すべて6個の成形耐
火物の回収に成功した。
Each molded refractory was wrapped all over with a cardboard paper for making a 5 mm thick packaging box in order to avoid thermal spalls in the initial stage. Molded refractories, after containing molten iron in the converter,
It was charged into the furnace through the sublance opening of the furnace entrance. After the charging, predetermined blowing was performed. Fifty-seven minutes later, upon completion of blowing, the furnace was tilted and the slag was gradually discharged, and at the end of the slag discharge, the molded refractories were manually collected one by one from the front of the furnace. The recovered refractory was glowing red and was immediately placed in graphite powder and cooled to prevent oxidation. Here, all 6 molded refractories were successfully recovered.

【0023】常温程度に冷えた成形耐火物には表面にス
ラグが付着していたため直ちに残存厚みを測定すること
ができない。そこで、辺c方向の長さを測定し成形耐火
物8個の長さを順位付け成形耐火物を特定した後に、成
形耐火物をb−c面に平行に耐火物中央部を切断し、こ
れにより成形耐火物が通常使用されるa−b面とa−c
面との損耗を得ることができた。
Since the slag is attached to the surface of the molded refractory that has cooled to room temperature, the remaining thickness cannot be measured immediately. Therefore, after measuring the length in the direction of side c and ranking the lengths of the eight molded refractories to identify the molded refractory, the molded refractory is cut at the center of the refractory parallel to the b-c plane. The molded refractory is normally used in accordance with ab surface and ac surface.
The wear with the surface could be obtained.

【0024】切断面観察の結果では、回収耐火物に熱ス
ポールによる亀裂の発生、剥落、割れは起っていなかっ
た。辺b及び辺cの回収後の寸法を5mmごとに測定し
た。耐火物の角部は三面加熱およびスラグとの反応によ
り他の部分より損耗が著しい。また辺c方向の長さは矩
形の中で一番長い辺であり、スラグの付着により測定が
難しい。損耗の程度が安定している半裁部の辺b方向の
残存寸法距離の内、辺cの中央部を中心として辺cの長
さの2/3の部位の残存寸法(辺b方向の厚さ)を耐火
物の代表値とした。耐火物投入前の寸法からこの残存寸
法を引き損耗量を求め、これを炉内滞留時間で割り損耗
速度を求めた。これを表2に示す。
As a result of the observation of the cut surface, the recovered refractory did not show cracks, flakes, or cracks due to the heat spall. The dimensions of the side b and the side c after collection were measured every 5 mm. The corners of the refractory wear more markedly than other parts due to heating on the three sides and reaction with the slag. Further, the length in the side c direction is the longest side in the rectangle, and it is difficult to measure due to the adhesion of slag. Of the remaining dimension distance in the side b direction of the half-cut part where the degree of wear is stable, the remaining dimension (the thickness in the side b direction) of the part of the length c of the side c with the center of the side c as the center ) Was made into the typical value of the refractory material. This residual size was subtracted from the size before the refractory was added to obtain the amount of wear, and the wear rate was divided by the residence time in the furnace to obtain the wear rate. This is shown in Table 2.

【0025】この結果、耐火物の材質の影響において、
骨材の種類の影響、グラファイトの含有量の影響を明ら
かにできた。この結果をもとにこの炉において耐火物の
改善による炉の寿命の向上を適切なグラファイト配合、
マグネシア原料の選択により改善した。 比較例1 実施例1と同じ条件においてダンボール紙で包んだ長さ
560mm、600mmのそれぞれ成形耐火物B及び成
形耐火物C、及びダンボール紙で包まない長さ580m
m、620mmのそれぞれ成形耐火物B及び成形耐火物
Cの計2個を投入したが、投入直後に、ダンボールで包
まない2つの成形耐火物は長辺方向の半分の位置で割れ
てしまった。また、残りの2つの成形耐火物は炉容が最
小半径1.6mであることから炉の中央に耐火物が常に
位置することになり、炉中央に位置するランスからの酸
素ジェットが直接耐火物にあたり、精錬反応を阻害した
のみならず、回収マグカーボン耐火物のかなりの脱炭層
が認められた。炉壁に用いる耐火物の評価にこのような
状況は不適であると判断した。 比較例2 図1に示すような直方体形状の成形耐火物を用いた。成
形耐火物の寸法を200×400×1200mmとし
た。これをコークスブリーズ中にて1100℃で熱処理
した。熱処理後、寸法測定し、梱包用ダンボール紙で包
んだあと、実施例1と同条件において耐火物投入による
損耗量の測定を試みた。投入後、成形耐火物はスラグ中
でしだいに周辺のスラグが付着しだし、大きな塊状に成
長発達し、スラグ上に浮遊する状態になった。このため
精錬操業も満足にできない状態に陥った。これは、この
成形耐火物が大きな熱容量を持つことから周囲のスラグ
が表面に凝固付着し、これが次第に成長したものと推定
される。 実施例2 炉内径4.8mの精錬炉は、2種類の精錬処理を交互に
行っている。この精錬炉に使われているマグカーボン耐
火物の精錬処理ごとの耐火物に及ぼす影響の調査、及び
処理中の前期、中期、後期の損耗を調べ精錬条件を改善
するため、精錬毎、精錬処理中耐火物を投入する時期を
かえて損耗速度を求めた。
As a result, in the influence of the refractory material,
We were able to clarify the effects of the type of aggregate and the content of graphite. Based on this result, it is possible to improve the life of the furnace by improving the refractory material in this furnace with an appropriate graphite composition,
It was improved by selecting the magnesia raw material. Comparative Example 1 Under the same conditions as in Example 1, molded refractory B and molded refractory C having a length of 560 mm and 600 mm respectively wrapped with cardboard paper, and a length of 580 m not wrapped with cardboard paper
Two pieces of molded refractory B and molded refractory C having a size of m and 620 mm were respectively charged, but immediately after the charging, the two molded refractories which were not wrapped in the corrugated cardboard were cracked at a half position in the long side direction. The remaining two molded refractories have a minimum radius of 1.6 m, so the refractory is always located in the center of the furnace, and the oxygen jet from the lance located in the center of the furnace is the direct refractory. In addition to inhibiting the refining reaction, a considerable decarburized layer of the recovered magcarbon refractory was observed. It was judged that such a situation was unsuitable for the evaluation of refractories used for furnace walls. Comparative Example 2 A molded refractory having a rectangular parallelepiped shape as shown in FIG. 1 was used. The dimensions of the molded refractory were set to 200 × 400 × 1200 mm. This was heat-treated at 1100 ° C. in a coke breeze. After the heat treatment, the dimensions were measured, and the pieces were wrapped in cardboard paper for packing, and then the amount of wear due to the addition of the refractory was measured under the same conditions as in Example 1. After the charging, the molded refractory gradually began to adhere to the surrounding slag in the slag, grew and developed into large lumps, and became suspended on the slag. As a result, the refining operations fell into a state where they could not be satisfied. It is presumed that this molded refractory had a large heat capacity, so that the surrounding slag solidified and adhered to the surface and gradually grew. Example 2 A refining furnace having a furnace inner diameter of 4.8 m alternately performs two types of refining treatments. In order to improve the refining conditions by investigating the influence of refining treatment on the mag carbon refractory used in this refining furnace on refractories, and improving the refining conditions during the early, middle, and late wear during the treatment The wear rate was determined by changing the timing of adding medium refractory.

【0026】成形耐火物として、図1乃至図3のそれぞ
れに示す形状ごとに各3種類ずつ第1乃至第3シリーズ
まで用意した。第1シリーズの成形耐火物は、処理の初
期で投入するものであり、図1に示す直方体をなし、表
3に示す各辺a,b,c(ただしa<b<c)の長さを
持ち、各成形耐火物の辺a,bの長さは固定し、辺cの
長さを変えたものである。第2及び第3シリーズの成形
耐火物は、処理の中間、及び末期でそれぞれ投入するも
のであり、最大辺cの端面を図2及び図3に示すように
それぞれ斜めに角度を変えたものとした。これにより精
錬後に回収した成形耐火物の投入時期及び成形耐火物を
それぞれ特定することができる。
As the molded refractory, three types of each of the shapes shown in FIGS. 1 to 3 were prepared up to the first to third series. The first series of molded refractory is to be put in at the initial stage of the treatment, has the rectangular parallelepiped shown in FIG. 1, and has the length of each side a, b, c (where a <b <c) shown in Table 3. The lengths of the sides a and b of the molded refractories are fixed and the length of the side c is changed. The molded refractories of the second and third series are introduced at the middle and final stages of the treatment, respectively, and the end face of the maximum side c is changed in angle as shown in FIGS. 2 and 3. did. This makes it possible to specify the injection time of the molded refractory and the molded refractory collected after refining.

【0027】なお、マグカーボン耐火物は成形時の加圧
方向を、a−c面となるようにし、損耗の差が明確にな
るように加圧方向を特定するために、辺aと辺bの寸法
と固定している(a<b)。ここで用いた成形耐火物
は、炉のスラグラインに用いるグラファイトの20重量
%、電融マグネシア50重量%、焼結マグネシア50重
量%のマグカーボン耐火物(煉瓦C)である。所定の形
状に加工代を残し切断した後、耐火物表面を平面研削加
工機を用いて、表面あらさがJIS規格表示で三角記号
▽▽になるまで研削した。成形耐火物は予め1000℃
までコークスブリーズ中で熱処理し、耐火物のバインダ
ーからの揮発分を除去し、耐火物投入時の急熱による揮
発ガスの膨張による耐火物の崩壊を防止した。処理後、
各成形耐火物の厚みbを小数点以下2桁まで、ノギスを
用いて長さ方向に5mmごとに測定した。
The magcarbon refractory has a side a and a side b so that the pressing direction at the time of molding is the ac plane and the pressing direction is specified so that the difference in wear becomes clear. It is fixed to the size of (a <b). The molded refractory used here was a magcarbon refractory (brick C) containing 20% by weight of graphite used in the slag line of the furnace, 50% by weight of electrofused magnesia, and 50% by weight of sintered magnesia. After cutting into a predetermined shape while leaving a machining allowance, the surface of the refractory was ground using a surface grinding machine until the surface roughness became a triangle symbol ▽▽ on the JIS standard display. Molded refractory is 1000 ℃ in advance
Heat treatment was performed in a coke breeze to remove the volatile components from the binder of the refractory and prevent the refractory from collapsing due to the expansion of volatile gas due to the rapid heat when the refractory was charged. After treatment,
The thickness b of each molded refractory was measured up to two digits after the decimal point using a caliper every 5 mm in the length direction.

【0028】投入初期の熱スポールを避けるため5mm
厚さの梱包箱作業用ダンボール紙で各耐火物の全面を包
んだ。成形耐火物の投入は、各精錬処理の精錬開始前、
中期、及び末期に、炉上部のサブランス開口部から炉内
に投入した。成形耐火物の回収方法は、吹錬終了、出湯
した後、炉を傾倒しスラグを徐々に滓パンに排出し、ス
ラグ排滓末期に炉下に設けた「すき」を装入し、これに
より成形耐火物を回収した。これにより、精錬処理Aに
おいては9個中6個、精錬処理Bにおいては9個中7個
回収できた。残りの成形耐火物は排滓の初期に滓パン
に、スラグとともに流出したものと考えられる。「す
き」上の回収耐火物は、赤熱しているため直ちに酸化を
防止するために予め準備してあるグラファイト粉中にグ
ラファイトの入った箱の中に投入した。
5 mm to avoid thermal spall at the initial stage of charging
The entire surface of each refractory was wrapped in cardboard for work in a thick packaging box. Molded refractory is charged before the refining of each refining process,
During the middle and end of the period, it was charged into the furnace through the sublance opening in the upper part of the furnace. The method of collecting the shaped refractory is as follows: after blowing and after tapping, the furnace is tilted and the slag is gradually discharged to the slag pan, and at the end of the slag slag discharge, the "plow" installed under the furnace is charged. The molded refractory was collected. As a result, 6 out of 9 pieces in the refining treatment A and 7 out of 9 pieces in the refining treatment B could be recovered. It is considered that the remaining formed refractories were discharged to the slag pan at the early stage of slag, together with the slag. Since the recovered refractory material on the "plow" was red-hot, it was immediately put into a box containing graphite in graphite powder prepared in advance to prevent oxidation.

【0029】角度と寸法により成形耐火物を特定した後
に、加圧方向と、それに直角な方向との損耗量を求める
ために、まず、成形耐火物をa−b面に平行にc辺を半
裁した。それぞれの半裁した成形耐火物をa−c面に直
角、b−c面に直角に、辺a、辺bの中央部を切断し
た。これにより、辺a及び辺bの回収後の残存寸法を測
定した。成形耐火物の角部は三面加熱およびスラグとの
反応により他の部分より損耗が著しいためこの部位を外
し、長手方向、c方向の中央部、すなわち最初に半裁し
た場所から2/6cの位置までの平均の厚みを残存寸法
と定めた。まず、投入前の寸法から残存寸法を引き、成
形耐火物によって炉内滞留時間が異なるため、それぞれ
の炉内滞留時間で割り、さらに片面の損耗速度を求める
ために2で割り求めた損耗速度を表4に示す。
After the forming refractory is specified by the angle and the dimension, first, the forming refractory is cut in half in parallel with the ab plane in order to obtain the amount of wear in the pressing direction and the direction perpendicular thereto. did. Each of the half-cut formed refractory materials was cut at a right angle to the a-c plane and a right angle to the b-c plane at the central portions of the sides a and b. Thus, the remaining dimensions of the sides a and b after the collection were measured. The corners of the molded refractory are worn out more than other parts due to heating on three sides and reaction with slag, so remove this part, and remove the part in the longitudinal and c-direction, that is, from the first half-cut position to the 2 / 6c position. The average thickness was defined as the residual dimension. First, subtract the remaining size from the size before loading, and divide the product by the respective residence time in the furnace because the residence time in the furnace varies depending on the molded refractory, and then divide by 2 to obtain the wear rate on one side. It shows in Table 4.

【0030】損耗速度=(初期の寸法−残存寸法)/2
/炉内滞留時間 この結果、精錬処理の内当初損耗に大きく影響を及ぼす
と考えられていた精錬処理Aにおいて、精錬処理の前
期、後期ともに損耗がほとんど進行せず、他方の精錬処
理Bにおいては損耗速度は前者に比べ大きく精錬処理
0.8mm/時間であり、処理途中に投入した耐火物の
損耗量の差から前期の損耗速度を測定したものは1.4
mmと前期で損耗が極めて大きくなることがわかった。
前期の損耗速度は、スラグコントロールが不調でスラグ
の滓化が不良となり、成形耐火物の損耗速度が大きくな
ったことがわかった。これを改善することにより全体の
損耗速度を半分の0.4mm/時間に低減できた。ま
た、マグカーボン耐火物の場合は、加圧面に直角な面を
稼働面に用いるが、この面の損耗速度は加圧面の損耗速
度に比べて2割ほど良好であることもわかった。
Wear rate = (initial size-remaining size) / 2
As a result, in the refining process A, which was considered to have a large effect on the initial wear of the refining process, the wear hardly progressed in both the first and second stages of the refining process, and in the other refining process B, The wear rate was 0.8 mm / hour, which was larger than that of the former, and the wear rate in the previous period was 1.4 from the difference in the amount of wear of refractory materials thrown in the process.
It was found that the wear was extremely large in the previous period of mm.
Regarding the wear rate in the previous term, it was found that the slag control was poor and slag slag formation was poor, and the wear rate of the molded refractories increased. By improving this, the overall wear rate could be reduced to half, 0.4 mm / hour. It was also found that in the case of the magcarbon refractory, a surface perpendicular to the pressure surface is used as the operating surface, and the wear rate of this surface is about 20% better than the wear rate of the pressure surface.

【0031】この結果をもとにこの炉において、損耗速
度の小さい精錬処理Aにおいては精錬温度を上昇させ、
前期に損耗速度の大きい原因となっているスラグの滓化
を適正化することによりトータルの精錬時間を従来の8
割に低減することができ、かつ成形耐火物の損耗量を低
減することができ、炉の寿命を2割ほど向上させること
ができた。 実施例3 炉内径6.5mの転炉は、主に鋼の脱炭処理を行ってい
る。この精錬炉に使われているマグカーボン耐火物に及
ぼす終点温度の影響、及び耐火物材質の差を得るために
耐火物投入法による損耗速度を求めた。
On the basis of this result, in this furnace, the refining temperature was raised in refining treatment A with a small wear rate,
The total smelting time was reduced to 8
The amount of wear of the molded refractory can be reduced, and the life of the furnace can be improved by about 20%. Example 3 A converter having an inner diameter of 6.5 m is mainly used for decarburizing steel. In order to obtain the influence of the end temperature on the magcarbon refractory used in this refining furnace and the difference in refractory materials, the wear rate by the refractory charging method was obtained.

【0032】処理前に投入する成形耐火物は、図1に示
す直方体形状であり、各辺a,b,cは表5にそれぞれ
示す。ここで用いた成形耐火物は、炉のスラグラインに
用いるグラファイトの20重量%、焼結マグネシア10
0重量%のマグカーボン耐火物(耐火物A)、及び電融
マグネシア50重量%、残りが焼結マグネシアからなる
マグネシアマグカーボンの耐火物(煉瓦C)の2種類で
ある。
The molding refractory to be charged before the treatment has a rectangular parallelepiped shape shown in FIG. 1, and the sides a, b and c are shown in Table 5, respectively. The molded refractory used here was 20% by weight of graphite used for the furnace slag line, and sintered magnesia 10
There are two types of refractory (brick C) of magnesia magcarbon consisting of 0% by weight of magcarbon refractory (refractory A), 50% by weight of electro-melted magnesia, and the rest consisting of sintered magnesia.

【0033】所定の形状に加工代を残し切断した後、耐
火物表面を平面研削加工機を用いて、表面あらさがJI
S規格表示で三角記号▽▽になるまで研削した。成形耐
火物は予め1000℃までコークスブリーズ中で熱処理
し、成形耐火物のバインダーからの揮発分を除去し、耐
火物投入時の急熱による揮発ガスの膨張による成形耐火
物の崩壊を防止した。各成形耐火物の厚みbを小数点以
下2桁まで、ノギスを用いて長さ方向に5mmごとに測
定した。投入初期の熱スポールを避けるため5mm厚さ
の梱包箱作用ダンボール紙で各成形耐火物の全面を包ん
だ。成形耐火物は、脱炭処理の開始前に、炉上部のサブ
ランス開口部から炉内に投入した。試験は終点温度をか
えて3回行った。成形耐火物の回収方法は、吹錬終了、
出湯した後、炉を傾倒しスラグを徐々に滓パンに排出
し、スラグ排滓末期に少量スラグを残し、これを炉下に
落下させた。このスラグをブルトーザで安全な位置まで
移動させ、このスラグの中から成形耐火物を回収した。
After cutting into a predetermined shape while leaving a machining allowance, the surface roughness of the refractory is measured by a surface grinding machine using a surface grinding machine.
Grind until the triangle symbol ▽▽ is displayed on the S standard display. The molded refractory was heat-treated in advance in a coke breeze to 1000 ° C. to remove volatile components from the binder of the molded refractory and prevent collapse of the molded refractory due to expansion of volatile gas due to rapid heat when the refractory was charged. The thickness b of each molded refractory was measured up to two digits after the decimal point using a caliper every 5 mm in the length direction. In order to avoid heat spall at the initial stage of charging, the entire surface of each molded refractory was wrapped with cardboard paper having a thickness of 5 mm. The molded refractory was put into the furnace through the sublance opening in the upper part of the furnace before the decarburization treatment was started. The test was repeated three times with the end temperature changed. The method of collecting the molded refractory is as follows:
After tapping, the furnace was tilted and the slag was gradually discharged into a slag pan, leaving a small amount of slag at the end of the slag slag, which was dropped under the furnace. The slag was moved to a safe position with a bulltozer, and the molded refractory was recovered from this slag.

【0034】回収耐火物は、赤熱しているため直ちに酸
化を防止するために予め準備してあるグラファイトの入
った箱の中に投入した。そして、加圧方向と、それに直
角な方向との損耗量を求めるために、b−c面に平行
に、辺aの中央部を切断し、辺bの長さを5mmごとに
辺c方向に測定した。耐火物の角部は三面加熱およびス
ラグとの反応により他の部分より損耗が著しいと想定さ
れるためこの部位(端から1/6cの部位)を外し、辺
c方向の中央部を中心として2/3cを残存寸法とし
た。
Since the recovered refractory was red-hot, it was immediately put into a box containing graphite prepared in advance to prevent oxidation. Then, in order to obtain the amount of wear in the pressurizing direction and the direction perpendicular thereto, the center part of the side a is cut in parallel with the bc plane, and the length of the side b is increased by 5 mm in the side c direction. It was measured. It is assumed that the corners of the refractory will be more worn out than the other parts due to heating on three sides and reaction with slag, so remove this part (part from 1 / 6c from the end) and center it in the direction of side c. / 3c was taken as the residual dimension.

【0035】損耗速度=(初期の寸法−残存寸法)/2
/炉内滞留時間 結果を表6に示す。これにより終点温度が高い程耐火物
の損耗に大きく影響することがわかる。また材質の差は
温度の高い程損耗量の差として表れる。損耗をほとんど
起さない1600℃の耐火物の稼働面を研磨紙及びダイ
ヤモンドペーストで研磨し、撮影した10倍及び100
倍の顕微鏡写真から、粗粒部は残っているが耐火物のマ
トリックスの損耗量は耐火物Aと耐火物Cで約3倍差が
あり、耐火物Cの方が良好であった。残存寸法から表れ
ない耐火物マトリックスの損耗の差も顕微鏡観察により
明らかになった。この結果より、終点温度を少なくとも
1640℃に抑えることが、耐火物の損耗量低減から重
要であることがわかり、この精錬処理末期の温度上昇を
極力抑えることにより、炉体寿命を3割ほど向上させる
ことができた。 実施例4 一般に、マグカーボン耐火物は、1000℃以上の高温
に晒されると耐火物中に酸化防止剤として添加してある
Al等の金属が耐火物中のグラファイトと反応、炭化し
炭化物を生成する。これを冷却後大気中に放置すると、
空気中の水分とこの炭化物が反応し、消化膨張を起す。
Wear rate = (initial size-remaining size) / 2
/ Residence time in the furnace is shown in Table 6. From this, it can be seen that the higher the end point temperature, the greater the influence on the wear of the refractory. Further, the difference in the material appears as the difference in the amount of wear as the temperature rises. The working surface of the refractory at 1600 ° C, which causes almost no wear, was polished with abrasive paper and diamond paste, and photographed 10 times and 100 times.
From the double-time micrograph, although the coarse-grained portions remained, the amount of wear of the refractory matrix was about 3 times different between refractory A and refractory C, and refractory C was better. Differences in the wear of the refractory matrix that did not appear from the residual dimensions were also revealed by microscopic observation. From these results, it was found that it is important to keep the end point temperature at least 1640 ° C from the viewpoint of reducing the amount of refractory wear, and by suppressing the temperature rise at the end of the refining process as much as possible, the life of the furnace body is improved by about 30%. I was able to do it. Example 4 Generally, when a magcarbon refractory is exposed to a high temperature of 1000 ° C. or higher, a metal such as Al added as an antioxidant in the refractory reacts with graphite in the refractory and carbonizes to form a carbide. To do. If this is left in the atmosphere after cooling,
The moisture in the air reacts with this carbide, causing digestive swelling.

【0036】上述の実施例3においては、熱処理したマ
グカーボン耐火物は、投入試験までの保管期間に、消化
膨張を起すことを防止するために、熱処理後のすべての
成形耐火物を非透過袋の中に真空封入した。
In the above-mentioned Example 3, the heat-treated magcarbon refractory was made of a non-permeable bag in which all of the heat-treated molded refractories were subjected to heat treatment in order to prevent digestive expansion during the storage period until the loading test. It was vacuum sealed in.

【0037】これらの作業は煩雑であることから、熱処
理の有無による成形耐火物の急熱による揮発ガスの膨張
により成形耐火物の崩壊の差を確認するために実施例3
と同じ条件で、終点温度1600℃の脱炭処理時に投入
試験を行い、検討した。
Since these operations are complicated, in order to confirm the difference in the collapse of the molded refractory due to the expansion of the volatile gas due to the rapid heating of the molded refractory with or without heat treatment, Example 3
Under the same conditions as above, a charging test was conducted during the decarburization treatment at the end point temperature of 1600 ° C., and the examination was conducted.

【0038】成形耐火物はグラファイトの20重量%、
焼結マグネシア100重量%のマグカーボン耐火物(煉
瓦A)を用いた。処理前に投入する成形耐火物は、図1
に示す直方体形状であり、各辺a,b,cは表7に示
す。所定の形状に加工代を残して切断した後、平面研削
加工機を用いて表面あらさがJIS規格表示で三角記号
▽▽になるまで研削した。成形耐火物のうち4個は予め
1000℃までコークスブリーズ中で熱処理し、バイン
ダー剤に含まれる揮発成分を除去した。投入初期の熱ス
ポールを避けるため5mm厚さの梱包箱作成用ダンボー
ル紙で成形耐火物の全面を包んだ。
Molded refractory material is 20% by weight of graphite,
A magcarbon refractory (brick A) containing 100% by weight of sintered magnesia was used. The molding refractory to be added before processing is shown in Fig. 1.
The rectangular parallelepiped shape shown in FIG. 7 and each side a, b, c is shown in Table 7. After cutting with a machining allowance into a predetermined shape, it was ground using a surface grinding machine until the surface roughness became a triangle symbol ▽▽ on the JIS standard display. Four of the molded refractories were heat-treated in advance in a coke breeze to 1000 ° C. to remove volatile components contained in the binder agent. In order to avoid the heat spall at the initial stage of charging, the entire surface of the molded refractory was wrapped with cardboard paper for making a packaging box having a thickness of 5 mm.

【0039】未熱処理及び熱処理した成形耐火物の合計
8個の耐火物投入は、脱炭処理の開始に、炉上部のサブ
ランス開口部から炉内に投入した。吹錬終了、出湯した
後、炉を傾倒しスラグをすべて滓パンに排出し、スラグ
をスラグヤードに輸送後、滓パンのスラグを少量になる
まで排滓し、残ったスラグを場所を移し、排滓しそのス
ラグの中から成形耐火物を回収した。回収耐火物は、直
ちに酸化を防止するために予め準備してあるグラファイ
ト粉中にグラファイトの入った箱の中に投入した。
A total of eight refractory materials which had not been heat-treated and which had been heat-treated were charged into the furnace through the sublance opening at the top of the furnace at the start of the decarburization treatment. After blowing and hot water, tilt the furnace and discharge all the slag to the slag pan, transport the slag to the slag yard, discharge the slag from the slag pan to a small amount, move the remaining slag to a new location, Molded refractory was collected from the slag and the slag. The recovered refractory material was immediately placed in a box containing graphite in graphite powder prepared in advance in order to prevent oxidation.

【0040】そこで、加圧方向と、それに直角な方向と
の損耗量を求めるために、b−c面に平行に、辺aの中
央部を切断した。成形耐火物の断面を観察すると、回収
した熱処理をしていない成形耐火物4個のうち3個は亀
裂の発生はあるものの崩壊までいたっておらず、辺c方
向に辺bの測定も可能であった。しかし、表8に示すよ
うに、残存寸法は投入前の成形耐火物の寸法より大き
く、これは成形耐火物の加熱による残存線膨脹に相当す
ることがわかった。したがって、熱処理していない耐火
物を投入する場合、成形耐火物の崩壊の可能性はあるも
のの数を多く、かつ予め残存線膨張、収縮を測定してお
くことにより、熱処理を除いても耐火物投入による損耗
量の測定は可能であることを確認した。 比較例3 実施例4において、成形耐火物を回収する場合に、吹錬
終了、出湯した後、炉を傾倒しスラグをすべて滓パンに
排出し、スラグをスラグヤードに輸送後、滓パンのスラ
グを少量にするまで排滓し、残ったスラグを場所を移
し、排滓を試みたが、移動のための気動車の遣り繰りが
うまくいかず、排滓までの時間がかかりすぎ、少量残し
たスラグが滓パン内で成形耐火物とともに固化してしま
った。ブレーカーを用いて回収を試みたがスラグが成形
耐火物に固着しており、成形耐火物のまま取り出すこと
はできなかった。したがって、この回収方法における回
収の確率は、転炉からの排滓から回収までの時間がかか
る場合が多く、炉下での耐火物回収に比較し必ずしも高
くない。 実施例5 炉内径3.5mの溶融金属保持容器は、精錬炉から連続
鋳造設備間を運搬する役目と、炉外精錬としてアーク式
加熱装置で処理する時の保持容器としても用いられる。
このアーク式加熱装置での加熱処理がこの保持容器の耐
火物の寿命を決定しており、この条件での損耗速度を耐
火物投入により求め、材質を検討した。
Therefore, in order to determine the amount of wear in the pressing direction and in the direction perpendicular thereto, the central portion of the side a was cut in parallel with the bc plane. When observing the cross section of the molded refractory, three of the four molded refractories that have not been subjected to the heat treatment have cracks but have not yet collapsed, and it is possible to measure the side b in the side c direction. there were. However, as shown in Table 8, it was found that the residual dimension was larger than the dimension of the molded refractory before charging, which corresponds to the residual linear expansion due to heating of the molded refractory. Therefore, if a refractory that has not been heat-treated is added, the number of molded refractories that have the possibility of collapsing is large, and the residual linear expansion and contraction are measured in advance so that the refractory does not have to be heat-treated. It was confirmed that it was possible to measure the amount of wear due to the input. Comparative Example 3 In Example 4, when the molded refractory material was recovered, after the completion of blowing and tapping, the furnace was tilted, all the slag was discharged to the slag pan, the slag was transported to the slag yard, and then the slag of the slag pan was slag. The slag that had left a small amount was discarded, and the remaining slag was moved to a new location and tried to be removed. Has solidified with the molding refractory in the slag pan. Attempts were made to recover it using a breaker, but the slag was stuck to the molded refractory and could not be taken out as it was. Therefore, the probability of recovery in this recovery method often takes time from the waste from the converter to the recovery, and is not necessarily higher than that of refractory recovery under the furnace. Example 5 A molten metal holding container having an inner diameter of 3.5 m is used as a container for transporting from a refining furnace to a continuous casting facility and also as a holding container when processing is performed by an arc type heating device as refining outside the furnace.
The heat treatment in this arc type heating device determines the life of the refractory material in this holding container. The wear rate under this condition was determined by charging the refractory material, and the material was examined.

【0041】投入した成形耐火物は、図1に示す直方体
形状をなし、表9に示すように各辺a,b,c(ただ
し、a<b<c)の長さを持ち、各成形耐火物、及びプ
レキャスタブルの辺a,bの長さは固定し、最大辺cの
長さを変えた。
The formed refractory material has the rectangular parallelepiped shape shown in FIG. 1 and has the lengths of the sides a, b and c (where a <b <c) as shown in Table 9, and The length of the sides a and b of the object and the precastable was fixed, and the length of the maximum side c was changed.

【0042】マグカーボン耐火物の場合は、成形時の加
圧方向を、b−c面となるように、損耗の差が明確にな
るように加圧方向を特定した。試験に用いた成形耐火物
はマグカーボン耐火物(13重量%、焼結マグネシ
ア)、アルミナ−スピネルキャスタブル、及びアルミナ
キャスタブルの予め表9の形状にプレキャストしブロッ
ク化したものである。このうちマグカーボン耐火物は、
平面研削加工機を用いて表面あらさがJIS規格表示で
三角記号▽▽になるまで研削した。マグカーボン耐火物
は予め1000℃までコークスブリーズ中で熱処理し、
耐火物中のバインダーからの揮発分を除去し、耐火物投
入時の急熱による揮発ガスの膨張による成形耐火物の崩
壊を防止した。また、プレキャストブロックは自由水及
び結晶水の除去を勘案した昇熱曲線で1100℃まで、
箱型電気炉で加熱した。
In the case of the magcarbon refractory, the pressing direction at the time of molding was specified so as to be the b-c surface and the difference in wear was clearly defined. The molded refractory used in the test was a magcarbon refractory (13% by weight, sintered magnesia), an alumina-spinel castable, and an alumina castable precast in the shape of Table 9 to form a block. Among them, Mag carbon refractory,
Grinding was performed using a surface grinding machine until the surface roughness became a triangle symbol ▽▽ on the JIS standard display. Mag carbon refractory is heat-treated in advance in coke breeze up to 1000 ℃,
Volatile components from the binder in the refractory were removed, and collapse of the molded refractory due to expansion of volatile gas due to rapid heat when the refractory was charged was prevented. In addition, the precast block has a heating curve that considers the removal of free water and crystal water up to 1100 ° C.
It was heated in a box-type electric furnace.

【0043】処理後、各成形耐火物の厚みa,bを小数
点以下2桁まで、ノギスを用いて長さ方向に5mmごと
に測定した。投入初期の熱スポールから耐火物、プレキ
ャスタブルを避けるため5mm厚さの梱包箱作成用ダン
ボール紙で全面を包んだ。耐火物等の投入は、アーク式
加熱装置での処理の開始前に炉前より投入した。処理後
の回収方法は、保持容器を傾斜させ、スラグドラガーに
より、スラグとともに成形耐火物も掻き取った。
After the treatment, the thicknesses a and b of each molded refractory were measured up to two digits after the decimal point using a caliper every 5 mm in the length direction. The entire surface was wrapped with cardboard paper for making a 5 mm-thick packing box to avoid refractory and precastable from the heat spall at the initial stage of charging. The refractory and the like were charged from the front of the furnace before the start of treatment with the arc type heating device. As a method of recovery after the treatment, the holding container was tilted, and the molded refractory was scraped off together with the slag by the slag drager.

【0044】回収したマグカーボン耐火物は、直ちに酸
化を防止するために予め準備してあるグラファイト粉中
にグラファイトの入った箱の中に投入した。なお、冷却
時のスポールを防ぐためキャスタブルは断熱材を内張り
した鉄箱中で放冷した。常温まで冷却後の耐火物、プレ
キャストブロックは、辺c方向の長さを測定し耐火物、
ブロックを特定した後、耐火物をb−c面に平行にa辺
を半裁し、辺bの回収後の寸法を測定した。成形耐火物
の角部は三面加熱およびスラグとの反応により他の部分
より損耗が著しいためこの部位を外し、長手方向、辺c
方向の中央部を中心に辺cの2/3の平均の残存厚みを
求めた。これを容器内滞留時間で割り求めた損耗速度を
表10に示す。この結果、マグカーボン耐火物が、圧倒
的にキャスタブルブロックに比べ損耗量が少なく、マグ
カーボン耐火物を本保持容器のスラグラインの材質とし
て特定し、材質の細かい検討に移った。 実施例6 連続鋳造用タンディッシュのスラグライン部の最小距離
は1.5mである。このタンディッシュは、いわゆる熱
間タンディッシュと呼ばれるもので、タンディッシュ内
のスラグは熱間で排出し、タンデッシュを常温まで冷却
することなく補修せず使用するものである。スラグをす
べてタンディッシュより排出するために、スラグの粘性
を低下させるスラグ改質剤を用いるが、この改質剤によ
り低粘性化したスラグは極めて高い侵食能を有する。そ
こで、従来のスラグライン材質(高アルミナ耐火物、8
5重量%Al23 )、マグネシア耐火物(95重量%
MgO)、マグカーボン耐火物(20重量%C)のこの
改質スラグによる差を検討した。
The recovered magcarbon refractory was immediately put into a box containing graphite in graphite powder prepared in advance in order to prevent oxidation. The castables were allowed to cool in an iron box lined with a heat insulating material to prevent spalls during cooling. For refractory and precast blocks after cooling to room temperature, measure the length in the direction of side c,
After the block was specified, the refractory was half-cut in parallel with the bc plane, and the dimension of the side b after recovery was measured. The corners of the molded refractory are more worn than other parts due to heating on the three sides and reaction with the slag.
The average remaining thickness of ⅔ of the side c was determined centering on the central portion in the direction. Table 10 shows the wear rate obtained by dividing this by the residence time in the container. As a result, the amount of wear of the magcarbon refractory was overwhelmingly smaller than that of the castable block, and the magcarbon refractory was specified as the material of the slag line of the holding container, and detailed examination of the material was carried out. Example 6 The minimum distance of the slag line part of the tundish for continuous casting is 1.5 m. This tundish is a so-called hot tundish, in which the slag in the tundish is discharged hot and the tundish is used without being repaired without being cooled to room temperature. In order to discharge all the slag from the tundish, a slag modifier that lowers the viscosity of the slag is used. The slag whose viscosity is reduced by this modifier has an extremely high erosion ability. Therefore, conventional slag line materials (high alumina refractory, 8
5 wt% Al 2 O 3 ), magnesia refractory (95 wt%
The difference due to this modified slag between MgO) and magcarbon refractory (20 wt% C) was examined.

【0045】耐火物形状は、図1に示す形状をなし、各
成形耐火物の大きさを表11に示す。耐火物を予めマグ
カーボン耐火物は還元雰囲気で1100℃で熱処理し、
酸化物系耐火物は大気雰囲気下で1100℃で熱処理し
た。タンディッシュ内は、1500℃と温度が精錬炉の
温度に比べ低く、耐火物に与える熱衝撃も少ないこと、
またタンディッシュ内のスラグの攪拌が精錬炉に比べ少
ないことから、実施例の1〜6に記した投入時のダンボ
ール紙で耐火物全面を包むことはせず、ダンボールがそ
のまま炭化し耐火物表面に残ることをさけ、そのままタ
ンディッシュ内に投入し溶損速度を調べた。耐火物等の
回収は、タンディッシュ傾倒時に、鉄製すきを挿入し、
マグカーボン耐火物のみグラファイト中で冷却を行い、
他の耐火物は鉄板上で放冷した。
The shape of the refractory material is as shown in FIG. 1, and the size of each molded refractory material is shown in Table 11. The refractory is heat-treated beforehand at 1100 ° C in a reducing atmosphere for the magcarbon refractory,
The oxide refractory was heat-treated at 1100 ° C. in an air atmosphere. The temperature in the tundish is 1500 ° C, which is lower than the temperature of the refining furnace, and the thermal shock given to the refractory is small.
Further, since the slag in the tundish is less agitated than in the refining furnace, the entire surface of the refractory is not wrapped with the cardboard paper at the time of charging described in Examples 1 to 6, but the cardboard is carbonized as it is and the refractory surface is used. It was put into the tundish as it was, and the dissolution rate was investigated. For refractory collection, insert a steel plow when tilting the tundish,
Only mag carbon refractory is cooled in graphite,
The other refractories were left to cool on an iron plate.

【0046】溶損速度の比は高アルミナ耐火物、マグネ
シア耐火物、マグカーボン耐火物で5:2:1の割合で
あった。さらにスラグ浸潤層の厚さは10:4:1で酸
化物系耐火物の浸潤が際立っている。これより、スラグ
ライン材質としてマグカーボン耐火物が優位であること
がわかった。 実施例7 実施例6において、溶鋼への加炭の可能性のあるマグカ
ーボン耐火物の溶鋼に対する反応性、耐用性を検討し
た。耐火物の比重を制御するために、耐火物製造時にW
C球を耐火物中に埋め込み、この耐火物を溶鋼中に沈
め、排滓時に、すきを用いて回収した。マグカーボン耐
火物の材質及び熱処理、回収、冷却方法は、実施例6と
同じである。マグカーボン耐火物は表面でグラファイト
の存在するところで耐火物への溶鋼の侵入が観察された
が、溶鋼は耐火物稼働面から3mmの位置で止まってい
た。耐火物のマクロな損耗は観察されなかった。 実施例8 500kgを溶解する高周波誘導炉の内径は400mm
である。この実験設備である誘導炉の中で溶銑と脱リン
スラグを共存させた条件で、溶銑予備処理のスラグライ
ン材質であるAl23 −SiC−C系耐火物の耐用性
を検討した。SiCの量を7重量%、カーボン量を11
重量%と固定し、骨材の影響を調べるために、耐火物G
は骨材としてアルミナを用い、耐火物Hはアルミナにか
えてスピネル骨材を用いた。
The ratio of erosion rates was 5: 2: 1 for the high alumina refractory, the magnesia refractory and the magcarbon refractory. Furthermore, the thickness of the slag infiltration layer is 10: 4: 1, and the infiltration of oxide refractory is outstanding. From this, it was found that mag carbon refractory was superior as the slag line material. Example 7 In Example 6, the reactivity and durability of a magcarbon refractory having a possibility of carburizing molten steel to molten steel were examined. In order to control the specific gravity of refractory, W
C spheres were embedded in a refractory material, the refractory material was submerged in molten steel, and was collected using a plow at the time of slag waste. The material and heat treatment, recovery, and cooling method of the magcarbon refractory material are the same as in Example 6. The infiltration of molten steel into the refractory was observed in the presence of graphite on the surface of the magcarbon refractory, but the molten steel stopped at a position 3 mm from the refractory operating surface. No macroscopic wear of the refractory was observed. Example 8 The inner diameter of the high frequency induction furnace that melts 500 kg is 400 mm.
Is. Under the condition that hot metal and dephosphorized slag coexist in the induction furnace which is the experimental facility, the durability of Al 2 O 3 -SiC-C refractory, which is a slag line material for hot metal pretreatment, was examined. 7% by weight of SiC and 11% of carbon
In order to investigate the effect of aggregates by fixing with the weight%, refractory material G
Alumina was used as the aggregate, and refractory H was replaced with alumina by spinel aggregate.

【0047】耐火物の形状を図1とし、表12に示すよ
うな各辺の長さとし、耐火物を特定した、耐火物を予め
コークスブリーズ中で1200℃で熱処理したあと、熱
処理後の寸法を測定した。耐火物形状が25×35×
(45〜60)mmと小さいことから、投入時のスポー
ルによる割れは起こらないことから、特に断熱層を設け
ずそのまま誘導炉内に投入した。耐火物は2時間誘導炉
内で保持した。このときの溶銑温度は1400℃とし、
CaO/SiO2 で3.6、Na2 Oとして4重量%の
スラグを用いた。耐火物は、誘導炉上部より、はさみ取
り、グラファイト中で冷却した。
The shape of the refractory is shown in FIG. 1 and the lengths of the sides are shown in Table 12. The refractory is specified. The refractory is heat-treated in advance in a coke breeze at 1200 ° C. It was measured. Refractory shape is 25 × 35 ×
Since it is as small as (45-60) mm, cracks due to spalls at the time of charging do not occur. Therefore, it was charged into the induction furnace as it was without providing a heat insulating layer. The refractory was held in the induction furnace for 2 hours. The hot metal temperature at this time is 1400 ° C,
CaO / SiO 2 was 3.6, and Na 2 O was 4 wt% slag. The refractory was scissored from the upper part of the induction furnace and cooled in graphite.

【0048】耐火物Gおよび耐火物Hの各耐火物の平均
損耗量はそれぞれ1.5mm/時間および1.0mm/
時間となり、マグネシア分を含むスピネル骨材のほうが
アルミナ骨材よりもスラグ中のNa2 Oに対して良好な
耐食性を示すという結果を得た。 実施例9 酸素−プロパン炎による溶射補修法は、従来の吹き付け
による熱間補修補術に比べ、実炉での残存量の観察から
かなり高耐食性を有することがわかっている。しかし、
個々の溶射体の損耗速度は、耐火物の場合と同様に測定
が容易ではない。熱間での溶射補修の場合、炉の耐火物
表面にスラグが付着しており、このスラグを介して溶射
材が耐火物に付着する形態となる。そこでまず、耐火物
表面にスラグを付着させるために炉内に成形耐火物を投
入し、回収した後、溶射材料を耐火物表面に溶射し、再
度炉内に投入し、溶射層の損耗速度を測定した。
The average amounts of wear of the refractories of refractory G and refractory H are 1.5 mm / hour and 1.0 mm / hour, respectively.
It was time, and it was obtained that the spinel aggregate containing the magnesia content showed better corrosion resistance to Na 2 O in the slag than the alumina aggregate. Example 9 It is known that the thermal spray repair method using an oxygen-propane flame has considerably higher corrosion resistance than the conventional hot repair method by spraying, from the observation of the residual amount in an actual furnace. But,
The wear rate of individual thermal spray bodies is not as easy to measure as with refractories. In the case of hot spray repair, slag adheres to the refractory surface of the furnace, and the spray material adheres to the refractory through the slag. Therefore, first, in order to adhere slag to the surface of the refractory, insert the molded refractory into the furnace, collect it, spray the sprayed material onto the surface of the refractory, and then insert it again into the furnace to determine the wear rate of the sprayed layer. It was measured.

【0049】実施例2において、マグカーボン耐火物の
損耗が極めて小さい精錬処理Aの末期に、表13に示す
形状のマグカーボン耐火物(耐火物C)を合計8個を投
入した。耐火物の形状以外の耐火物の熱処理、投入方
法、回収方法、冷却方法等はすべて実施例2と同じであ
る。回収できた成形耐火物は8個中6個回収であった。
このスラグの付着した回収耐火物をガス炉中で1300
℃に加熱し、耐火物の付着スラグ表面に、アルミナ−ク
ロム系とマグネシア−スラグ系の二種類の溶射材料を溶
射した。各辺a,b,cの寸法を測定した後に、梱包用
ダンボール紙で包み、今度は損耗速度の大きい精錬処理
Bの初期に再度炉内に投入した。投入および回収の方法
は実施例2と同じとした。回収できた成形耐火物は6個
中4個回収であった。
In Example 2, at the end of the refining process A in which the wear of the magcarbon refractory material was extremely small, a total of eight magcarbon refractory materials (refractory material C) shown in Table 13 were added. The heat treatment of the refractory other than the shape of the refractory, the charging method, the collecting method, the cooling method, and the like are all the same as in the second embodiment. Six out of eight refractories could be recovered.
The collected refractory with the slag adhered in a gas furnace at 1300
It was heated to ℃, and two types of thermal spray materials of alumina-chromium system and magnesia-slag system were sprayed on the surface of the slag on which the refractory was adhered. After measuring the dimensions of the sides a, b, and c, the sides a, b, and c were wrapped and wrapped in a corrugated cardboard paper, and this time, they were charged again into the furnace at the beginning of the refining process B in which the wear rate was high. The charging and collecting methods were the same as in Example 2. The molded refractories that could be recovered were 4 out of 6.

【0050】実施例2と同じ方法で断面から求めた溶射
層の損耗速度から、マグネシア−スラグ系の方が損耗速
度がアルミナ−クロム系溶射材料より大きく、この耐食
性の差はマグネシア−スラグ系溶射材料中のスラグの量
によるものと想定され、これ以降、精錬処理Aの後で行
う熱間補修にはアルミナクロム系溶射材料を用いた。
From the wear rate of the sprayed layer obtained from the cross section by the same method as in Example 2, the wear rate of the magnesia-slag system was larger than that of the alumina-chromium sprayed material, and the difference in the corrosion resistance was magnesia-slag system sprayed. It is assumed that this is due to the amount of slag in the material, and thereafter, the alumina-chrome thermal spray material was used for the hot repair performed after the refining treatment A.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【表3】 [Table 3]

【0054】[0054]

【表4】 [Table 4]

【0055】[0055]

【表5】 [Table 5]

【0056】[0056]

【表6】 [Table 6]

【0057】[0057]

【表7】 [Table 7]

【0058】[0058]

【表8】 [Table 8]

【0059】[0059]

【表9】 [Table 9]

【0060】[0060]

【表10】 [Table 10]

【0061】[0061]

【表11】 [Table 11]

【0062】[0062]

【表12】 [Table 12]

【0063】[0063]

【表13】 [Table 13]

【0064】[0064]

【発明の効果】本発明によれば、耐火物を用いる溶融金
属精錬炉および溶融金属保持容器に関して溶融金属の滞
留中にスラグ及び/又は溶融金属による耐火物の損耗量
を容易に測定することができ、炉および保持容器の適格
な運用、操業及び耐火物の選定を行なうことができる。
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to easily measure the amount of wear of the refractory due to the slag and / or the molten metal during the molten metal retention in the molten metal refining furnace and the molten metal holding container using the refractory. It is possible to properly operate and operate the furnace and holding vessel and select refractories.

【図面の簡単な説明】[Brief description of drawings]

【図1】成形耐火物を模式的に示す斜視図。FIG. 1 is a perspective view schematically showing a molded refractory material.

【図2】他の成形耐火物を模式的に示す斜視図。FIG. 2 is a perspective view schematically showing another molded refractory material.

【図3】他の成形耐火物を模式的に示す斜視図。FIG. 3 is a perspective view schematically showing another molded refractory material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 久樹 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hisaki Kato 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 成形耐火物の初期寸法を測定する工程
と、 溶融金属精錬炉または溶融金属保持容器に収容された溶
融物中に前記成形耐火物を投入する工程と、 投入した成形耐火物を前記溶融物中から回収する工程
と、 回収した成形耐火物の寸法を測定する工程と、 この測定寸法と前記初期寸法とに基づき成形耐火物の損
耗量を算出する工程と、を有することを特徴とする耐火
物損耗量の測定方法。
1. A step of measuring an initial dimension of a molded refractory, a step of introducing the molded refractory into a molten material contained in a molten metal refining furnace or a molten metal holding container, and And a step of measuring the size of the recovered molded refractory, and a step of calculating the amount of wear of the molded refractory based on the measured size and the initial size. A method for measuring the amount of refractory wear.
【請求項2】 さらに、成形耐火物に含まれるバインダ
ーの揮発分、自由水、あるいは結晶水を除く工程を有す
ることを特徴とする請求項1記載の耐火物損耗量の測定
方法。
2. The method for measuring the amount of wear of a refractory according to claim 1, further comprising a step of removing volatile components, free water, or crystal water of the binder contained in the molded refractory.
【請求項3】 さらに、投入前に成形耐火物を断熱部材
でくるむ工程を有することを特徴とする請求項1記載の
耐火物損耗量の測定方法。
3. The method for measuring the amount of refractory wear according to claim 1, further comprising a step of wrapping the molded refractory with a heat insulating member before charging.
【請求項4】 さらに、溶融物中から回収した成形耐火
物を還元あるいは不活性雰囲気中で冷却する工程を有す
ることを特徴とする請求項1記載の耐火物損耗量の測定
方法。
4. The method for measuring the amount of wear of a refractory material according to claim 1, further comprising the step of reducing the molded refractory material recovered from the melt or cooling it in an inert atmosphere.
【請求項5】 投入されるべき耐火物は、次式 1cm3 <V<90000cm3 ただし、Vは耐火物の体積[cm3 ]を示す、を満たす
体積を持つことを特徴とする請求項2乃至4のうちのい
ずれか1に記載の耐火物損耗量の測定方法。
5. A refractory to be turned on, claim characterized by having the following formula: 1cm 3 <V <90000cm 3 However, V is shows the volume of the refractory [cm 3], satisfying the volume 2 5. The method for measuring the amount of wear of a refractory according to any one of 1 to 4.
【請求項6】 投入されるべき耐火物は、次式 (1/400)D<L<(1/3)D ただし、Lは耐火物の最大外径[cm]を示し、Dは炉
または保持容器の最小径あるいは距離[cm]を示す、
を満たす形状を持つことを特徴とする請求項5記載の耐
火物損耗量の測定方法。
6. The refractory to be charged has the following formula (1/400) D <L <(1/3) D, where L is the maximum outer diameter [cm] of the refractory, and D is a furnace or Indicates the minimum diameter or distance [cm] of the holding container,
The method for measuring the amount of refractory wear according to claim 5, wherein the method has a shape that satisfies the above condition.
JP5192318A 1993-08-03 1993-08-03 How to measure refractory wear Expired - Fee Related JP2743783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5192318A JP2743783B2 (en) 1993-08-03 1993-08-03 How to measure refractory wear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5192318A JP2743783B2 (en) 1993-08-03 1993-08-03 How to measure refractory wear

Publications (2)

Publication Number Publication Date
JPH0749343A true JPH0749343A (en) 1995-02-21
JP2743783B2 JP2743783B2 (en) 1998-04-22

Family

ID=16289295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5192318A Expired - Fee Related JP2743783B2 (en) 1993-08-03 1993-08-03 How to measure refractory wear

Country Status (1)

Country Link
JP (1) JP2743783B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100332925B1 (en) * 1999-12-23 2002-04-20 홍상복 Apparatus for measuring the wear speed of refractory
KR100362660B1 (en) * 1998-11-30 2003-01-24 주식회사 포스코 How to Monitor Refractory Wear Condition in Refining Furnace
JP2023043842A (en) * 2021-09-16 2023-03-29 Jfeスチール株式会社 Measurement method of surface shape of refractory, measurement method of wear amount of refractory and manufacturing method of molten iron

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259060A (en) * 1986-05-02 1987-11-11 Mitsubishi Metal Corp Immersion testing method for refractory brick

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259060A (en) * 1986-05-02 1987-11-11 Mitsubishi Metal Corp Immersion testing method for refractory brick

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100362660B1 (en) * 1998-11-30 2003-01-24 주식회사 포스코 How to Monitor Refractory Wear Condition in Refining Furnace
KR100332925B1 (en) * 1999-12-23 2002-04-20 홍상복 Apparatus for measuring the wear speed of refractory
JP2023043842A (en) * 2021-09-16 2023-03-29 Jfeスチール株式会社 Measurement method of surface shape of refractory, measurement method of wear amount of refractory and manufacturing method of molten iron

Also Published As

Publication number Publication date
JP2743783B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
EP1036776A1 (en) Unburned carbon-containing refractory material and vessel for molten metal
JP6172227B2 (en) Tundish for continuous casting
EP0076577B1 (en) Molten metal transfer channels
US3687437A (en) Metallurgical furnaces or vessels
US4304605A (en) High temperature resistant coating composition
JP2743783B2 (en) How to measure refractory wear
JP5980762B2 (en) Amorphous refractories using used MgO-C brick waste and used alumina magnesia amorphous refractory waste
JP5967160B2 (en) Lined refractory for secondary refining equipment with decompression
US3303032A (en) Magnesia-zircon refractories
US3403213A (en) Electric furnace having refractory brick of specific composition in the critical wear areas
US2631836A (en) Refractory lining
JP3074317B2 (en) Carbonaceous refractory for treating molten light metal and method for producing the same
US4350324A (en) Method of removal of slag deposits from the bottom of a furnace
JPH07315913A (en) Magnesia refractory brick
JPH07291715A (en) Spinel refractory brick
RU2802219C1 (en) Method for manufacturing crucible lining of vacuum induction furnace
JPH07291748A (en) Executing method of monolithic refractory
Zongqi et al. Indispensability and Vulnerability of Magnesia-carbon Bricks for Steelmaking Process
JP5980747B2 (en) Unshaped refractories using mag carbon
JP2001356085A (en) Method for evaluating corrosion resistance, abrasion resistance and oxidation resistance of carbon-containing refractory material
Biswas et al. BOF Refractory
SU952970A1 (en) Method for protecting lining of steel melting convertor
JPH0676252B2 (en) Unfired alumina / magnesia brick
Chatterjee et al. Refractory Practices in Ferro-alloy Smelting Furnaces
JPH0826817A (en) Magnesia carbonaceous refractory brick

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees