JPH0749310A - Gas detector - Google Patents

Gas detector

Info

Publication number
JPH0749310A
JPH0749310A JP19575393A JP19575393A JPH0749310A JP H0749310 A JPH0749310 A JP H0749310A JP 19575393 A JP19575393 A JP 19575393A JP 19575393 A JP19575393 A JP 19575393A JP H0749310 A JPH0749310 A JP H0749310A
Authority
JP
Japan
Prior art keywords
gas
light emitting
porous
emitting element
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19575393A
Other languages
Japanese (ja)
Inventor
Kensou Suzuki
健聡 鈴木
Tadashi Sakai
忠司 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19575393A priority Critical patent/JPH0749310A/en
Publication of JPH0749310A publication Critical patent/JPH0749310A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To provide a gas detector with even higher sensitivity and selectivity of a detection gas. CONSTITUTION:This element includes a semiconductor substrate 1 with one main surface thereof made porous 1a finely, a light emitting element 5 comprising an electrode 2 arranged in a mesh or in a lattice on the surface made porous 1a and an opposed electrode layer 3 arranged on the rear of the substrate 1 and a detector 6 to detect the intensity of light emitted from the light emitting element 5 varying with a gas contacting the surface made porous 1a or a variation of the wavelength of the light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガス検知素子に関する。FIELD OF THE INVENTION The present invention relates to a gas sensing element.

【0002】[0002]

【従来の技術】周知のように、酸化物半導体式のガス検
知素子(ガスセンサ)は、保安防災用のガス警報器とし
て産業界で利用されて以来、家庭用機器など民生分野で
も広く使用されつつある。ここで、酸化物半導体式のガ
ス検知は、n型酸化物半導体を本体とし、Niなどのヒ
ーターで加熱する一方、たとえばPtなどの触媒を添加
して検知対象ガスに対する増感作用をもたせたガス検知
素子の構成としている。そして、このガス検知素子を所
要の検出回路に組み込み、被検ガスが接触したときの電
気伝導度変化を利用してガス検知を行う方式である。
2. Description of the Related Art As is well known, since an oxide semiconductor gas sensing element (gas sensor) has been used in the industrial world as a gas alarm for safety and disaster prevention, it has been widely used in the consumer field such as household appliances. is there. Here, the oxide semiconductor type gas detection is a gas in which an n-type oxide semiconductor is used as a main body and is heated by a heater such as Ni, while a catalyst such as Pt is added to have a sensitizing action on a gas to be detected. It is configured as a sensing element. Then, this gas detection element is incorporated into a required detection circuit, and gas detection is performed by utilizing the change in electrical conductivity when the test gas comes into contact.

【0003】ところで、近年、地球環境やエネルギー問
題などを背景に、NOx ,SOx ,CO2 などの環境汚
染ガスが問題になっており、この種の環境汚染ガスの検
出(検知))用に、高感度ガスセンサの開発が進められ
ている。たとえば、前記酸化物半導体式において、ガス
検知素子の高感度化のため、添加物を含めたn型酸化物
半導体の組成、あるいは各種成膜法を応用した薄膜型素
子の構造など、いろいろ検討・試行されているが、充分
な特性を有するガス検知素子の開発に至っていない。
By the way, in recent years, against the background of the global environment and energy problems, environmental pollutant gases such as NO x , SO x , and CO 2 have become a problem. For detecting (detecting) this kind of environmental pollutant gas. In addition, the development of high-sensitivity gas sensors is in progress. For example, in the oxide semiconductor type, various investigations have been made on the composition of the n-type oxide semiconductor including additives or the structure of a thin film type element to which various film forming methods are applied in order to increase the sensitivity of the gas detection element. Although it has been tried, a gas detection element having sufficient characteristics has not been developed.

【0004】[0004]

【発明が解決しようとする課題】前記したように、n型
酸化物半導体系のガス検知素子においては、その高感度
化のために、ガスセンサ本体の材質・組成面、あるいは
ガスセンサ本体の構造・形状面から検討されている。し
かしながら、本体を成す酸化物半導体薄膜の性状、たと
えば多孔度ないし多孔質性に限度があるとともに、ガス
吸着サイトの構造制御が困難であるので、充分な感度特
性を得られていないのが現状である。換言すると、表面
積(ガス吸着面積)が大きく、かつガス吸着サイトの構
造制御が可能で、高感度および検知ガスの選択性を呈す
るガス検知素子の開発が望まれている。 本発明は上記
事情に対処してなされたもので、より一層の高感度およ
び検知ガスの選択性を有するガス検知素子の提供を目的
とする。
As described above, in an n-type oxide semiconductor gas detecting element, in order to improve its sensitivity, the material / composition surface of the gas sensor main body or the structure / shape of the gas sensor main body. Considered from the aspect. However, since the properties of the oxide semiconductor thin film forming the main body, such as porosity or porosity, are limited and it is difficult to control the structure of the gas adsorption site, it is the current situation that sufficient sensitivity characteristics are not obtained. is there. In other words, it is desired to develop a gas detection element having a large surface area (gas adsorption area), capable of controlling the structure of gas adsorption sites, and exhibiting high sensitivity and selectivity of detection gas. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a gas detection element having higher sensitivity and selectivity of detection gas.

【0005】[0005]

【課題を解決するための手段】本発明に係るガス検知素
子は、一主面が細かな多孔質化した半導体基板,前記多
孔質化面にメッシュ状ないし格子状に配置された電極お
よび前記基板の裏面に配置された対向電極層から成る発
光素子と、前記発光素子の発光を受光して、多孔質化面
に接触するガスによって変化した発光素子の発光強度あ
るいは発光波長の変化量を検出する検出器とを具備して
成ることを特徴とする。
A gas detecting element according to the present invention is a semiconductor substrate having one main surface made fine and porous, electrodes arranged in a mesh or lattice on the porous surface, and the substrate. A light emitting element formed of a counter electrode layer disposed on the back surface of the light emitting element and the light emitted from the light emitting element, and the amount of change in the emission intensity or the emission wavelength of the light emitting element changed by the gas contacting the porous surface is detected And a detector.

【0006】そして、前記本発明は、半導体基板もしく
は金属基板の多孔質化領域が、発光の機能を有するばか
りでなく、ガスの特性を敏感に反映すること、ガス吸着
による発光強度および発光波長変化を確実に捕らえ得る
ことなどに始めて着目して達成されたものである。
In the present invention, the porous region of the semiconductor substrate or the metal substrate not only has the function of emitting light, but also sensitively reflects the characteristics of gas, and the emission intensity and emission wavelength change due to gas adsorption. It was achieved by focusing on the first thing that can be surely captured.

【0007】[0007]

【作用】本発明に係るガス検知素子においては、細かな
多孔質化により表面積が増大された面をガス感応部とす
るため、被検ガスの吸着も飛躍的に増大し、感度が大幅
に向上する。また、検知対象ガスを発光素子の発光強度
および発光波長変化として捕らえるため、検知ガスの特
性を敏感に反映することが可能となり、これに伴いすぐ
れた被検ガスの選択性を呈する。さらに、吸着サイトを
成す細孔を容易に制御でるので、前記被検ガスのさらな
る選択性の向上となり、この被検ガスの選択的な吸着
が、敏感に発光強度および発光波長変化に反映し、高感
度なガス検知素子として機能することになる。
In the gas detecting element according to the present invention, the surface having an increased surface area due to the fine porosity is used as the gas sensitive portion, so that the adsorption of the test gas is dramatically increased and the sensitivity is greatly improved. To do. Further, since the gas to be detected is detected as the light emission intensity and the light emission wavelength change of the light emitting element, it becomes possible to sensitively reflect the characteristics of the detection gas, and accordingly, the selectivity of the test gas is excellent. Furthermore, since the pores forming the adsorption site can be easily controlled, the selectivity of the test gas is further improved, and the selective adsorption of the test gas is sensitively reflected in the emission intensity and the emission wavelength change, It will function as a highly sensitive gas detection element.

【0008】[0008]

【実施例】以下、図1〜図5を参照して本発明の実施例
を説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0009】実施例1 図1は本発明に係るガス検知素子(ガスセンサ)の構成
例を断面的に示したもので、1は一主面が細かな多孔質
1a化した半導体基板、2は前記半導体基板1の多孔質1a
化面上に、一体的に配置されたメッシュ状ないし格子状
の電極、3は前記半導体基板1の裏面に配置された対向
電極層、4は前記対向電極層3に連接したフレームで発
光素子5を形成している。また、6は前記発光素子5の
発光を受光して、多孔質1a化面に接触するガスによる発
光素子5の発光強度および発光波長変化を検出する検出
器である。ここで.検出器6は、たとえばn−Si層7
a,i−Si層7b、受光面を成すp−Si層7c、SiO
2 層7dを介して設置された第1の電極層7e、前記p−S
i層7c面に配置された反射防止膜7f、および前記n−S
i層7a裏面に一体的に配置された第2の電極層7gから成
るシリコンフォトダイオード7を本体とし、前記シリコ
ンフォトダイオード7のn−Si層7a裏面側に一体的に
配置された電極層7gに連接したフレーム8とで検出器6
を形成している。 そして、この実施例では、前記発光
素子5の発光面(多孔質1a面)と、検出器6の受光面を
成すp−Si層7cとを、約 0.3〜 9mmの間隔をおいて対
向配置した構成を採っている。
Example 1 FIG. 1 is a sectional view showing an example of the structure of a gas detecting element (gas sensor) according to the present invention.
1a is a semiconductor substrate, 2 is a porous 1a of the semiconductor substrate 1
The mesh-like or lattice-like electrodes integrally arranged on the conversion surface, 3 is a counter electrode layer arranged on the back surface of the semiconductor substrate 1, and 4 is a light emitting element 5 in a frame connected to the counter electrode layer 3. Is formed. Reference numeral 6 denotes a detector for receiving the light emitted from the light emitting element 5 and detecting the emission intensity and the emission wavelength change of the light emitting element 5 due to the gas contacting the porous surface 1a. here. The detector 6 is, for example, an n-Si layer 7
a, i-Si layer 7b, p-Si layer 7c forming the light receiving surface, SiO
A first electrode layer 7e installed via two layers 7d, said p-S
The antireflection film 7f arranged on the surface of the i layer 7c, and the n-S
The silicon photodiode 7 composed of the second electrode layer 7g integrally disposed on the back surface of the i layer 7a is used as a main body, and the electrode layer 7g integrally disposed on the back surface side of the n-Si layer 7a of the silicon photodiode 7 is used. The frame 6 and the detector 6 connected to
Is formed. Further, in this embodiment, the light emitting surface of the light emitting element 5 (the porous 1a surface) and the p-Si layer 7c forming the light receiving surface of the detector 6 are arranged facing each other with an interval of about 0.3 to 9 mm. The composition is adopted.

【0010】次に、前記半導体基板1の細かな多孔質1a
化、換言すると発光素子5の発光面ないしガス感応部の
形成は、たとえばSi基板の陽極化成によってなし得
る。すなわち、Si基板の裏面に陽極を成すオーミック
電極(背面電極)を形成し、Pt電極などを対向電極と
してフッ酸中で通電しつつエッチングすることにより形
成できる。ここで、多孔質1a領域の多孔度や多孔構造
(状態)は、前記陽極化成の条件、たとえばSi基板の
タイプ,電流密度,陽極化成中の光照射の有無,陽極化
成時間,陽極化成溶液の種類や濃度などによって,任意
に制御し得るが、さらに陽極化成後の化学エッチング処
理も有効である。つまり、陽極化成したSi基板を、た
とえばフッ酸,硝酸などの溶液に数十秒間〜数時間浸漬
して、エッチング処理を行うと、前記多孔質1a化をより
効果的に行うことができる。
Next, the fine porous layer 1a of the semiconductor substrate 1
In other words, the light emitting surface of the light emitting element 5 or the gas sensitive portion can be formed by, for example, anodization of a Si substrate. That is, it can be formed by forming an ohmic electrode (back surface electrode) which forms an anode on the back surface of the Si substrate, and etching while conducting electricity in hydrofluoric acid using a Pt electrode or the like as a counter electrode. Here, the porosity and the porous structure (state) of the porous 1a region depend on the conditions of the anodization, such as the type of Si substrate, the current density, the presence or absence of light irradiation during the anodization, the anodization time, and the anodization solution. It can be controlled arbitrarily depending on the type and concentration, but chemical etching treatment after anodization is also effective. That is, when the anodized Si substrate is immersed in a solution of hydrofluoric acid, nitric acid or the like for several tens of seconds to several hours and subjected to etching treatment, the formation of the porous layer 1a can be performed more effectively.

【0011】なお、このエッチング処理に当たり、光照
射を行うことにより、照射光の波長をカットフィルター
などで制限すると、検知ガスに対応した細孔のサイズに
任意に制御し得るとともに、多孔質1a領域の発光波長の
制御も可能となる。
In this etching process, by irradiating light to limit the wavelength of the irradiating light with a cut filter or the like, the size of the pores corresponding to the detection gas can be arbitrarily controlled, and the porous 1a region can be controlled. It is also possible to control the emission wavelength of.

【0012】前記陽極化成の条件、および化学エッチン
グ処理条件は、多孔質1a領域を形成する基板の材質(種
類)や検知ガスに応じて選択・設定されるが、陽極化成
は、たとえば濃度が 5〜49%程度のフッ酸中で、電流密
度 0.5〜 100mA/cm2 、時間20秒〜 100分程度の条件で
行うことが好ましく、また背面電極3と対向電極とを短
絡し、発生する自己起電力で化成することも有効であ
る。一方、エッチング処理は、49%程度以下のフッ酸溶
液中で、暗中もしくは光照射しながら行うことが好まし
い。
The conditions for the anodization and the chemical etching treatment are selected and set according to the material (type) of the substrate forming the porous 1a region and the detection gas. It is preferable to carry out in a hydrofluoric acid of about 49% at a current density of 0.5 to 100 mA / cm 2 for a time of about 20 seconds to 100 minutes. Forming with electricity is also effective. On the other hand, the etching treatment is preferably performed in a hydrofluoric acid solution of about 49% or less in the dark or while irradiating with light.

【0013】なお、実施例の多孔質1a領域を形成したS
i基板1の場合は、先ず、n型Si基板に光を照射しな
がら陽極化成処理を施して、ガス感応部ないし発光部を
成す多孔質1a領域を形成した後、濃度 1〜49%程度のフ
ッ酸中で、化学エッチング処理した。さらに、ガスの選
択性を高めると同時にガスの吸脱着を促進するため、P
t触媒を担持させた。つまり、前記陽極化成処理および
化学エッチング処理を施したn型Si基板を、塩化白金
酸水溶液中に浸漬し、減圧下で多孔質1a領域に含浸させ
た後、引き上げ、 500℃で加熱処理を施してPt触媒を
担持させた。
Incidentally, the S containing the porous 1a region of the embodiment is formed.
In the case of the i substrate 1, first, the n-type Si substrate is subjected to anodization treatment while irradiating light to form the porous 1a region forming the gas sensitive portion or the light emitting portion, and then the concentration of 1 to 49%. Chemical etching was performed in hydrofluoric acid. Furthermore, in order to enhance the gas selectivity, and at the same time to promote the adsorption and desorption of gas, P
The t catalyst was supported. That is, the n-type Si substrate that has been subjected to the anodizing treatment and the chemical etching treatment is immersed in an aqueous solution of chloroplatinic acid to impregnate the porous 1a region under reduced pressure, then pulled up and subjected to heat treatment at 500 ° C. Supported a Pt catalyst.

【0014】また、前記n型Si基板1のPt触媒を担
持させた多孔質1a領域面に、イオンインプレーティング
法によって、Auをメッシュ状(格子状もしくはグリッ
ド状)に蒸着して電極2を形成する一方、裏面に導電性
のフレーム4の一部(対向電極3を成す)張り合わせて
発光素子5を形成した。図2は前記発光素子5の本体
部、すなわちn型Si基板1の触媒を担持させた多孔質
1a領域面に、メッシュ状(格子状もしくはグリッド状)
電極2を形成したときの構成を、斜視的に示したもの
で、電極2はパターン幅数μm 〜数十μm にパターニン
グされており、さらに半透過膜としての機能を持たせる
ため、膜厚を10〜30nmとしてある。つまり、被検ガスが
ガス感応部を成す多孔質1a領域に容易に到達し、かつ十
分なガス吸着面を確保し得る構成を採っている。
Further, Au is vapor-deposited in a mesh shape (lattice shape or grid shape) on the surface of the porous 1a region supporting the Pt catalyst of the n-type Si substrate 1 by an ion plating method to form the electrode 2. On the other hand, a part of the conductive frame 4 (forming the counter electrode 3) was attached to the back surface to form the light emitting element 5. FIG. 2 shows the main body of the light emitting device 5, that is, the porous type of the n-type Si substrate 1 carrying the catalyst.
Mesh shape (lattice or grid) on 1a area surface
The configuration when the electrode 2 is formed is shown in a perspective view. The electrode 2 is patterned to have a pattern width of several μm to several tens of μm. It is set to 10 to 30 nm. That is, the test gas can easily reach the porous region 1a forming the gas sensitive portion and can secure a sufficient gas adsorption surface.

【0015】次に、前記図1に図示した構成のガス検知
素子を、水素用ガスセンサとして使用した例について説
明する。先ず、所要の電位を印加した状態で、大気中で
ガス検知素子のエージングを行った後、前記大気中に水
素ガスを濃度 20000 ppm注入したとき、前記発光素子5
の発光強度および発光波長変化を検出器6で捕らえ、こ
れを電気的に出力して水素ガスの検知を行ったところ、
図3に示すような電気出力変化が認められた。図3から
分かるように、大気中では発光素子5の発光部ないしガ
ス感応部を成す多孔質1a領域の光出力は減少し、約30分
以内に出力は安定レベルに到達する。また、水素ガスの
注入に伴う光出力の増大、すなわち80%応答時間も 3分
以内であった。さらに、ガス検知素子を前記測定系から
外した場合(排気した場合)においても、数分程度で大
気中レベルに回復する特性が確認された。個々で、水素
ガスの濃度によって発光波長も変化するため、発光強度
に代えて発光波長の変化量を検出しても水素ガスの検知
が可能である。
Next, an example in which the gas detection element having the structure shown in FIG. 1 is used as a hydrogen gas sensor will be described. First, after aging the gas sensing element in the atmosphere with a required potential applied, when hydrogen gas was injected into the atmosphere at a concentration of 20000 ppm, the light emitting element 5
The change in the emission intensity and the change in the emission wavelength of was detected by the detector 6, and this was electrically output to detect hydrogen gas.
The electric output change shown in FIG. 3 was observed. As can be seen from FIG. 3, in the atmosphere, the light output of the porous 1a region forming the light emitting part or the gas sensitive part of the light emitting element 5 decreases, and the output reaches a stable level within about 30 minutes. In addition, the increase in light output with the injection of hydrogen gas, that is, the 80% response time was within 3 minutes. Furthermore, even when the gas detection element was removed from the measurement system (exhausted), it was confirmed that the gas level was restored to the atmospheric level within a few minutes. Since the emission wavelength also changes individually depending on the concentration of hydrogen gas, hydrogen gas can be detected by detecting the amount of change in emission wavelength instead of emission intensity.

【0016】なお、上記発光素子5の構成において、図
4に断面的に示すごとく、n型Si基板9の表面にB
(ボロン)を約1019/cm3 ドープしてp型化し、フッ酸
溶液中で陽極化成を行って、p型領域とn型領域を多孔
質化することで、多孔質Siでpn接合を形成して、化
発光部ないしガス感応部を成す多孔質 10a, 10b領域を
作成してから、その多孔質 10a領域面に、厚さ10〜30n
m,パターン幅数μm 〜数十μm のグリッド状にAu膜
製の電極11を形成した発光素子12を用いた場合は、pn
接合で多孔質 10a, 10b領域を実現し、かつpn接合近
傍の表面積が増大されるので、感度がさらに大幅に向上
される。
In the structure of the light emitting device 5, B is formed on the surface of the n-type Si substrate 9 as shown in a sectional view in FIG.
(Boron) is doped to about 10 19 / cm 3 to make it p-type, and anodization is performed in a hydrofluoric acid solution to make the p-type region and the n-type region porous, thereby forming a pn junction with porous Si. After forming the porous regions 10a and 10b that form the chemical emission part or the gas sensitive part, a thickness of 10 to 30n is formed on the surface of the porous region 10a.
When the light emitting element 12 in which the electrodes 11 made of Au film are formed in a grid shape with m and a pattern width of several μm to several tens of μm is used, pn
Since the porous regions 10a and 10b are formed by the joining and the surface area in the vicinity of the pn junction is increased, the sensitivity is further improved.

【0017】実施例2 この実施例は、互いに特性の異なる複数個のガス検知素
子を、組み合わせ・集積化することで、さらなる高感度
化を図った構成例である。
Embodiment 2 This embodiment is a structural example in which a plurality of gas detecting elements having different characteristics are combined and integrated to further enhance the sensitivity.

【0018】すなわち、Si基板13の一主面を異方性エ
ッチングによって、互いに離隔させて 1× 1mmの凹部を
複数個形設し、これらの凹部領域にPをイオン注入して
抵抗率の異なる領域を設ける。次いで、前記ドーピング
した各凹部面領域を、フッ酸溶液で選択的に化成して多
孔質化( 13a)した後、前記多孔質 13a化面に、所要の
マスクを介してAuをスパッタリングし、半透過性のグ
リッド状電極14を形成して、1枚のSi基板13主面に複
数個の発光素子 15aを備えた発光素子を作成した。
That is, one main surface of the Si substrate 13 is anisotropically etched to form a plurality of recesses of 1 × 1 mm apart from each other, and P is ion-implanted into these recessed regions to have different resistivities. Area is provided. Next, after selectively forming each of the doped recessed surface regions by a hydrofluoric acid solution to make them porous (13a), Au is sputtered on the porous 13a-formed surface through a required mask, A transparent grid electrode 14 was formed to prepare a light emitting device having a plurality of light emitting devices 15a on the main surface of one Si substrate 13.

【0019】一方、この発光素子に対応する検出器を作
成した。つまり、前記1枚のSi基板13主面に複数個の
発光素子 15aを備えた発光素子15に対応して、検出器本
体を成す複数個のpinフォトダイオード 16aを備えた
検出素子17を、前記発光素子15の作成手段に準じて作成
した。
On the other hand, a detector corresponding to this light emitting device was prepared. That is, the detection element 17 having a plurality of pin photodiodes 16a forming a detector main body is provided corresponding to the light emitting element 15 having a plurality of light emitting elements 15a on the main surface of the one Si substrate 13. The light-emitting element 15 was produced according to the production method.

【0020】このようにして、それぞれ用意した1枚の
Si基板13主面に複数個の発光素子15aを備えた発光素
子15、および1枚のSi基板18主面に複数個のpinフ
ォトダイオード 16aを備えた検出素子17を、図5に断面
的に示すごとく、互いに発光素子 15aとpinフォトダ
イオード 16aとを対向・抗位置合わせして、張り合わせ
ることにより、複数個のガス検知素子を組み合わせ・集
積化したガス検知素子を構成した。なお、この構成にお
いては、各ガス検知素子部に被検ガスの流入が可能に、
前記Si基板13およびSi基板18の張り合わせ面に、適
宜被検ガスの流入路が形設してある。
In this way, the prepared light emitting element 15 having a plurality of light emitting elements 15a on the main surface of the Si substrate 13 and the plurality of pin photodiodes 16a on the main surface of the Si substrate 18 are prepared. As shown in the cross-sectional view of FIG. 5, the detection element 17 provided with a plurality of gas detection elements is combined by opposing and opposing the light emitting element 15a and the pin photodiode 16a to each other, and adhering them together. An integrated gas sensing element was constructed. In addition, in this configuration, the test gas can flow into each gas detection element unit,
An inflow path for the test gas is appropriately formed on the bonding surfaces of the Si substrate 13 and the Si substrate 18.

【0021】このような、互いに特性の異なる複数個の
ガス検知素子部を備えた構成の場合は、各光検出器部の
受光素子として機能するフォトダイオードの電気出力か
ら、統計的手法で被検ガスをパターン認識することによ
り、ガスの識別能力、換言するとガスの選択性が大幅に
向上することになる。つまり、被検ガスに対し汎用的で
あるばかりでなく、一方では各ガス検知素子部の特性・
構成と、被検ガスに対する応答性との関係が明確になる
ため、対応するガス検知素子の選択も容易になるなどの
利点もある。
In the case of such a constitution including a plurality of gas detecting element portions having different characteristics, the statistical output is used to detect the electrical output of the photodiode functioning as the light receiving element of each photodetector portion. The pattern recognition of the gas significantly improves the gas identification capability, in other words, the gas selectivity. In other words, it is not only versatile for the test gas, but on the other hand
Since the relationship between the configuration and the response to the test gas is clarified, there is an advantage that the corresponding gas detection element can be easily selected.

【0022】なお、上記では、発光素子本体を成す多孔
質層を備えた基板として、Si半導体基板を例示した
が、これに限定されるものでなく、他の半導体基板でも
よいし、また、たとえばSiCなどの多孔質層を備えた
基板でも同様に使用し得る。さらに、受光器本体も、け
前記例示のSiフォトダイオードに限定されず、たとえ
ば(In・Ga)Asフォトダイオードであってもよ
い。
In the above description, the Si semiconductor substrate is exemplified as the substrate provided with the porous layer forming the light emitting element body, but the present invention is not limited to this, and other semiconductor substrates may be used. A substrate provided with a porous layer such as SiC may be used as well. Furthermore, the light receiver main body is not limited to the Si photodiode illustrated above, but may be, for example, an (In.Ga) As photodiode.

【0023】一方、発光素子と検知器との配置関係も、
前記例示の対向配置に限定されるものでなく、たとえば
発光素子に対して検知器を横並びに配置し、側方からの
発光もしくは反射光などを受光するような構成とするこ
とも可能である。
On the other hand, the positional relationship between the light emitting element and the detector is
The arrangement is not limited to the above-described opposing arrangement, and for example, a detector may be arranged side by side with respect to the light emitting element, and light emitted from the side or reflected light may be received.

【0024】[0024]

【発明の効果】上記説明したように、本発明に係るガス
検知素子は、検知ガスに対する選択性を向上し得るとと
もに、感度特性においても一層の高感度化や安定性が図
られている。つまり、環境汚染などで問題視される微小
濃度の場合を含む、各種のガス検知を、再現性良好に、
また高い信頼性の下になし得るので、この種ガス検知素
子の実用性をさらに高め得るものといえる。
As described above, the gas detecting element according to the present invention can improve the selectivity with respect to the detection gas, and is further improved in sensitivity and stability in sensitivity characteristics. In other words, various gas detection, including the case of minute concentration which is a problem due to environmental pollution, can be performed with good reproducibility.
Further, since it can be performed with high reliability, it can be said that the practicality of this kind of gas detection element can be further enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るガス検知素子の要部構成例を示す
断面図。
FIG. 1 is a cross-sectional view showing a configuration example of a main part of a gas detection element according to the present invention.

【図2】本発明に係るガス検知素子が具備する発光素子
本体の要部構成例を示す斜視図。
FIG. 2 is a perspective view showing a configuration example of a main part of a light emitting element body included in the gas detection element according to the present invention.

【図3】本発明に係るガス検知素子の特性例を示す曲線
図。
FIG. 3 is a curve diagram showing a characteristic example of a gas detection element according to the present invention.

【図4】本発明に係るガス検知素子が具備する発光素子
本体の他の要部構成例を示す斜視図。
FIG. 4 is a perspective view showing another structural example of a main part of a light emitting element body included in the gas detection element according to the present invention.

【図5】本発明に係るガス検知素子の他の要部構成例を
示す断面図。
FIG. 5 is a cross-sectional view showing another structural example of the main part of the gas detection element according to the present invention.

【符号の説明】[Explanation of symbols]

1,9…半導体基板 1a, 13a…多孔質 2,14…
グリッド状電極 3…対向電極層 4…発光素子側
フレーム 5,12,15…発光素子 6…検出器
7,16…フォトダイオード 7a…n−Si 7b…i−
Si 7c…p−Si 7d… SiO2 層 7e…第1の電極
層 7f…反射防止膜 7g…第1の電極層 8…検
出器側フレーム 10a…p型多孔質Si 10b…n型
多孔質Si 13,18…Si基板 15a…発光素子部 17…検出素子
1, 9 ... Semiconductor substrate 1a, 13a ... Porous 2, 14 ...
Grid-shaped electrode 3 ... Counter electrode layer 4 ... Light emitting element side frame 5, 12, 15 ... Light emitting element 6 ... Detector
7, 16 ... Photodiode 7a ... n-Si 7b ... i-
Si 7c ... p-Si 7d ... SiO 2 layer 7e ... first electrode layer 7f ... antireflection film 7g ... first electrode layer 8 ... detector side frame 10a ... p type porous Si 10b ... n type porous Si 13, 18 ... Si substrate 15a ... Light emitting element section 17 ... Detection element

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一主面が微細な多孔質化した半導体基
板,前記多孔質化面にメッシュ状ないし格子状に配置さ
れた電極および前記基板の裏面に配置された対向電極層
から成る発光素子と、 前記発光素子の発光を受光して、多孔質化面に接触する
ガスによって変化した発光素子の発光強度あるいは発光
波長の変化量を検出する検出器とを具備して成ることを
特徴とするガス検知素子。
1. A light emitting device comprising a semiconductor substrate whose one main surface is finely porous, electrodes arranged in a mesh or grid pattern on the porous surface, and a counter electrode layer arranged on the back surface of the substrate. And a detector for receiving the emitted light of the light emitting element and detecting the amount of change in the emission intensity or the emission wavelength of the light emitting element changed by the gas contacting the porous surface. Gas detection element.
JP19575393A 1993-08-06 1993-08-06 Gas detector Withdrawn JPH0749310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19575393A JPH0749310A (en) 1993-08-06 1993-08-06 Gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19575393A JPH0749310A (en) 1993-08-06 1993-08-06 Gas detector

Publications (1)

Publication Number Publication Date
JPH0749310A true JPH0749310A (en) 1995-02-21

Family

ID=16346395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19575393A Withdrawn JPH0749310A (en) 1993-08-06 1993-08-06 Gas detector

Country Status (1)

Country Link
JP (1) JPH0749310A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101799422A (en) * 2009-02-10 2010-08-11 三星电子株式会社 Microarray reaches the method that obtains the light data from microarray with substrate, microarray method for making

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101799422A (en) * 2009-02-10 2010-08-11 三星电子株式会社 Microarray reaches the method that obtains the light data from microarray with substrate, microarray method for making

Similar Documents

Publication Publication Date Title
US6673644B2 (en) Porous gas sensors and method of preparation thereof
US7141859B2 (en) Porous gas sensors and method of preparation thereof
CN201032635Y (en) PIN structure 4H-SiC ultraviolet photoelectric detector
US8047713B2 (en) Plasmon resonance detector
US20040023428A1 (en) Porous gas sensors and method of preparation thereof
CN100463232C (en) 4H-SiC avalanche photodetector and its preparing method
US11670732B2 (en) High sensitivity semiconductor device for detecting fluid chemical species and related manufacturing method
JP2005315700A (en) Hydrogen sensor and detection method of hydrogen
KR20130033939A (en) Fabrication method for gas sensor and temperature sensor based on suspended carbon nanowires
CN201000897Y (en) 4H-SiC avalanche photodetector
Liu et al. Self-powered gas sensor based on SiNWs/ITO photodiode
Shor et al. Broad‐Area Photoelectrochemical Etching of n‐Type Beta‐SiC
JP2005114360A (en) Hydrogen sensor and hydrogen detector
KR20110066849A (en) Semiconductor gas sensor with low power consumption
WO2016066003A1 (en) Silicon heater-based mems methane sensor, manufacturing method for same, and applications thereof
JPH04507461A (en) Self-holding thin film filament sensor, its formation method, and application to gas detectors and gas chromatography
KR100906496B1 (en) Gas sensor and method for manufacturing the same
JPH0749310A (en) Gas detector
US7838949B2 (en) Porous gas sensors and method of preparation thereof
KR102228652B1 (en) Photodiode type self-powered gas sensor and preparation method thereof
Talazac et al. Gas sensing properties of pseudo-Schottky diodes on p-type indium phosphide substrates: application to O3 and NO2 monitoring in urban ambient air
WO2016066007A1 (en) Mems methane sensor, and application and manufacturing method thereof
KR101967420B1 (en) A sensor for nox using semiconductor and a manufacturing mehtod thereof
JPH11195810A (en) Semiconductor light receiving element
KR101047363B1 (en) Multi-function sensor capable of self-generation and its manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031