JPH0748566B2 - Acceleration sensor and manufacturing method thereof - Google Patents

Acceleration sensor and manufacturing method thereof

Info

Publication number
JPH0748566B2
JPH0748566B2 JP24906489A JP24906489A JPH0748566B2 JP H0748566 B2 JPH0748566 B2 JP H0748566B2 JP 24906489 A JP24906489 A JP 24906489A JP 24906489 A JP24906489 A JP 24906489A JP H0748566 B2 JPH0748566 B2 JP H0748566B2
Authority
JP
Japan
Prior art keywords
silicon substrate
conductivity type
groove
pair
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24906489A
Other languages
Japanese (ja)
Other versions
JPH03112170A (en
Inventor
昇治 長崎
Original Assignee
山武ハネウエル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山武ハネウエル株式会社 filed Critical 山武ハネウエル株式会社
Priority to JP24906489A priority Critical patent/JPH0748566B2/en
Publication of JPH03112170A publication Critical patent/JPH03112170A/en
Publication of JPH0748566B2 publication Critical patent/JPH0748566B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は地震、物体の移動、衝突等の加速度を検出する
加速度センサおよびその製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to an acceleration sensor for detecting acceleration such as an earthquake, movement of an object, collision, and the like, and a manufacturing method thereof.

〔従来の技術〕[Conventional technology]

第6図は従来の加速度センサの一例を示す断面図であ
る。同図において、1はシリコン基板、2はシリコン基
板1の裏面側に四角形状にわたつて断面がほぼ台形状に
エツチング加工により形成された溝、3はシリコン基板
1への溝2の形成により台形の島状に形成された厚肉状
の慣性質量部、4はシリコン基板1に対して溝2の形成
によつて慣性質量部3を懸架して支持する可動部として
の薄肉状起歪部であり、これらのシリコン基板1,溝2,慣
性質量部3および起歪部4によりセンサチツプ5を構成
している。また、6はシリコン基板1の表面側に形成さ
れた電極取り出し部、7はシリコン基板1の表面側に上
記慣性質量部3を被覆して固定配置された上部キヤツ
プ、8は上部キヤツプ7の内面に慣性質量部3と対向し
て形成された上部電極、9はシリコン基板1の裏面側に
慣性質量部3を被覆して固定配置された下部キヤツプ、
10は下部キヤツプ9の内面に慣性質量部3と対向して形
成された下部電極、11は空隙部からなる容量形成部であ
る。
FIG. 6 is a sectional view showing an example of a conventional acceleration sensor. In the figure, 1 is a silicon substrate, 2 is a groove formed by etching on the back surface side of the silicon substrate 1 in a square shape having a substantially trapezoidal cross section, and 3 is a trapezoid formed by forming the groove 2 in the silicon substrate 1. The island-shaped thick inertial mass portions 4 are thin-walled straining portions as movable portions that suspend and support the inertial mass portion 3 by forming the grooves 2 in the silicon substrate 1. The silicon chip 1, the groove 2, the inertial mass portion 3 and the strain generating portion 4 constitute the sensor chip 5. Further, 6 is an electrode lead-out portion formed on the front surface side of the silicon substrate 1, 7 is an upper cap fixedly arranged on the front surface side of the silicon substrate 1 by covering the inertial mass portion 3, and 8 is an inner surface of the upper cap 7. An upper electrode formed to face the inertial mass portion 3, a lower cap 9 fixedly arranged on the back surface side of the silicon substrate 1 so as to cover the inertial mass portion 3,
Reference numeral 10 is a lower electrode formed on the inner surface of the lower cap 9 so as to face the inertial mass portion 3, and 11 is a capacitance forming portion formed of a void portion.

このような構成において、センサに加速度が加わると、
慣性質量部3の位置が変位し、対向する上部電極8と下
部電極10との間で容量値が変化して加速度が検出される
ことになる。一方、過大な加速度が加わつた場合には、
上,下のキヤツプ7,9がストツパーの役割を果たし、起
歪部4の過度な変形による破壊を防ぐ構造になつてい
る。
In such a configuration, when acceleration is applied to the sensor,
The position of the inertial mass part 3 is displaced, the capacitance value is changed between the upper electrode 8 and the lower electrode 10 which face each other, and the acceleration is detected. On the other hand, if excessive acceleration is applied,
The upper and lower caps 7 and 9 play the role of stoppers, and have a structure that prevents damage due to excessive deformation of the strain-flexing part 4.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、このように構成された加速度センサは、
センサチツプ5と上部キヤツプ7と下部キヤツプ9との
3点の主構成部材から構成されており、これらの3点の
構成部材にはそれぞれ寸法上のばらつきを有しているこ
とから、次のような問題があつた。すなわち、 (a)3点の構成部品の組み付け時の位置合わせが極め
て困難であつた。
However, the acceleration sensor configured in this way is
The sensor chip 5, the upper cap 7, and the lower cap 9 are composed of three main constituent members, and these three constituent members have dimensional variations. There was a problem. That is, (a) it was extremely difficult to align the three components at the time of assembling.

(b)上部キヤツプ7および下部キヤツプ9とセンサチ
ツプ5との間隙の完成寸法が大きくばらつくことから、
耐圧に余裕をもたせる必要があり、高感度な加速度セン
サの設計が困難であつた。
(B) Since the completed dimensions of the gap between the upper cap 7 and the lower cap 9 and the sensor chip 5 greatly vary,
It is difficult to design a high-sensitivity acceleration sensor because it is necessary to allow a sufficient withstand voltage.

(c)慣性質量部3の底面が直接ストツパに当る構成に
なつているため、慣性質量部3の形状や下側プレートの
形状の設計の自由度が小さかつた。
(C) Since the bottom surface of the inertial mass portion 3 is configured to directly contact the stopper, the degree of freedom in designing the shape of the inertial mass portion 3 and the shape of the lower plate is small.

したがつて本発明は、前述した従来の課題を解決するた
めになされたものであり、その目的は、加速度に対する
感度を向上させかつ小型でしかも高耐圧で量産を可能と
した加速度センサおよびその製造方法を提供することに
ある。
Therefore, the present invention has been made to solve the above-described conventional problems, and an object thereof is to improve the sensitivity to acceleration and to make the acceleration sensor small in size and capable of mass production with high breakdown voltage, and to manufacture the same. To provide a method.

〔課題を解決するための手段〕[Means for Solving the Problems]

このような課題を解決するために本発明による加速度セ
ンサは、シリコン基板内に一定の間隙幅を有するL字状
の断面構造をもつ溝を形成し、このシリコン基板の表面
部分にシリコン薄肉状の一対の起歪部を形成し、この起
歪部間にシリコン厚肉状の慣性質量部を懸架支持させた
ものである。
In order to solve such a problem, in the acceleration sensor according to the present invention, a groove having an L-shaped cross-sectional structure having a constant gap width is formed in a silicon substrate, and a silicon thin-walled shape is formed on a surface portion of the silicon substrate. A pair of strain generating portions are formed, and a thick silicon inertial mass portion is suspended and supported between the strain generating portions.

また、本発明による加速度センサの製造方法は、第1の
シリコン基板の一方の面に溝を形成した後、その上に起
歪部となる第2のシリコン基板を接着し、他方の面から
上記の溝と連結する溝を形成してL字状の断面構造をも
つ溝を形成することにより、シリコン基板の表面部分に
シリコン薄肉状の起歪部が形成される。
Further, in the method of manufacturing an acceleration sensor according to the present invention, after forming a groove on one surface of the first silicon substrate, a second silicon substrate serving as a strain-generating portion is adhered on the groove, and the above-mentioned method is performed from the other surface. By forming a groove having an L-shaped cross-sectional structure by forming a groove connected to the groove of No. 3, a thin-walled silicon strain element is formed on the surface portion of the silicon substrate.

〔作用〕[Action]

本発明においては、シリコン基板内にL字状の溝が一定
の間隙幅を有して高精度で形成される。
In the present invention, the L-shaped groove is formed in the silicon substrate with a constant gap width with high accuracy.

〔実施例〕〔Example〕

以下、図面を用いて本発明の実施施例を詳細に説明す
る。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明による加速度センサの一実施例を示す断
面図であり、前述の図と同一部分には同一符号を付して
ある。同図において、シリコン基板1の表面と平行とな
る裏面を結晶面の(110)面とし、この裏面側には結晶
面の(110)面と垂直方向に結晶面の〈112〉軸に沿つて
異方性エツチングにより食刻されて断面がほぼ逆L字状
の一対のL字状溝2a′,2b′が一定の間隙を有して平行
に形成されている。そして、この逆L字状の溝2a′,2
b′の形成によつてシリコン基板1の上部にはシリコン
基板1の薄肉部からなる一対の起歪部4a,4bが形成され
るとともにこの一対の起歪部4a,4bとの間にはほぼ直方
体を有するシリコン基板1の厚肉部からなる慣性質量部
3′が支持されて形成され、さらにこの慣性質量部3′
の表面には対向する下部電極10が形成されている。
FIG. 1 is a sectional view showing an embodiment of an acceleration sensor according to the present invention, and the same parts as those in the above-mentioned drawings are designated by the same reference numerals. In the figure, the back surface parallel to the front surface of the silicon substrate 1 is defined as the (110) plane of the crystal plane, and the back surface is along the <112> axis of the crystal plane in a direction perpendicular to the (110) plane of the crystal plane. A pair of L-shaped grooves 2a 'and 2b', which are etched by anisotropic etching and have a substantially inverted L-shaped cross section, are formed in parallel with a constant gap. Then, the inverted L-shaped grooves 2a ′, 2
Due to the formation of b ′, a pair of strain-generating portions 4a, 4b, which are thin portions of the silicon substrate 1, are formed on the upper portion of the silicon substrate 1, and between the pair of strain-generating portions 4a, 4b are almost formed. An inertial mass portion 3'consisting of a thick-walled portion of a silicon substrate 1 having a rectangular parallelepiped is supported and formed, and the inertial mass portion 3'is further formed.
A lower electrode 10 is formed so as to face the surface of the lower electrode.

このような構成によれば、慣性質量部3′がメサ型では
なく、任意の大きさの直方体状で形成されるので、その
質量が増加し、感度向上が計れる。また、一対の溝2
a′,2b′をシリコン基板1に逆L字状に形成したことに
より、容量形成部11に加速度が加わり、慣性質量部3′
が下方向に慣性力Fが与えられても第2図に示すように
一対の薄肉状起歪部4a,4bが逆L字状溝2a′,2b′内のそ
れぞれの角部1a,1bに当接して支持され、さらに大きな
加速度が加わり、第3図に示すように慣性質量部3′に
多大な慣性力F′が与えられても一対の薄肉状起歪部4
a,4bがそれぞれ4A,4Bを支点としてそれぞれ角部1a,1bに
当接して慣性質量部3′の底面が基台に接触する範囲ま
で支持させることができる。したがつて過大な加速度に
対しても、2段構えの最終ストツパとしての機能が得ら
れ、それ以上の変形よる破壊を防止することができる。
With such a configuration, the inertial mass portion 3'is not a mesa type but a rectangular parallelepiped having an arbitrary size, so that the mass thereof is increased and the sensitivity can be improved. Also, a pair of grooves 2
By forming a ′ and 2b ′ in the inverted L shape on the silicon substrate 1, acceleration is applied to the capacitance forming portion 11, and the inertial mass portion 3 ′ is formed.
Even if the inertial force F is applied downward, as shown in FIG. 2, a pair of thin-walled strain generating portions 4a, 4b are formed at the respective corners 1a, 1b in the inverted L-shaped grooves 2a ', 2b'. Even if a large acceleration is applied due to the contact and support, and a large inertial force F'is applied to the inertial mass portion 3 ', as shown in FIG.
The a and 4b can contact the corners 1a and 1b with the fulcrums 4A and 4B as fulcrums, and can support the bottom of the inertial mass part 3'to the extent of contact with the base. Therefore, even with an excessive acceleration, the function as a final stopper having a two-step stance can be obtained, and it is possible to prevent destruction due to further deformation.

第4図は本発明による加速度センサの他の実施例を示す
断面図であり、前述の図と同一部分には同一符号を付し
てある。同図において、第1図と果なる点は、シリコン
基板1の表面が(100)面である点でこの結晶面の(10
0)面に対して異方性エツチングを行なつて結晶面の〈1
10〉軸方向に沿つた溝2a″,2b″が形成されて加速度セ
ンサが構成されている。
FIG. 4 is a cross-sectional view showing another embodiment of the acceleration sensor according to the present invention, and the same parts as those in the above-mentioned drawings are designated by the same reference numerals. In this figure, the point that is different from FIG. 1 is that the surface of the silicon substrate 1 is the (100) plane, and
Anisotropic etching is performed on the (0) plane to
10> The acceleration sensor is configured by forming the grooves 2a ″, 2b ″ along the axial direction.

このような構成においても前述と全く同等の効果が得ら
れる。
Even in such a configuration, the same effect as described above can be obtained.

第5図(a)〜(g)は本発明による加速度センサの製
造方法の一実施例を説明する工程の断面図である。同図
において、まず、同図(a)に示すようにP型シリコン
基板1の表面に例えばSi3N4などのエツチングマスク材2
1を成膜した後、このエツチングマスク材21に前記逆L
字状溝2a′,2b′内のシリコン基板1表面と平行となる
部分に相当する一対の窓パターン21a,21bをフオトリソ
グラフイ技術によりパターニングして形成し、この一対
の窓パターン21a,21b内を例えばKOHなどのエツチング液
により異方性エツチングを行なつて一対の溝22a,22bを
形成した後、エツチングマスク材21を除去する。次に同
図(b)に示すように一対の溝22a,22b内で前記逆L字
状溝2a′,2b′のシリコン基板1表面と垂直となる部分
に図示しないが例えば熱酸化膜などのマスク材を成膜
し、シリコン基板1の表面および一対の溝22a,22b内に
例えばリンなどを熱拡散してn型不純物拡散層23を形成
する。次にこのシリコン基板1の裏面側に前述と同様な
方法によりSi3N4のエツチングマスク材を形成し、KOHで
異方性エツチングを行なつて前記慣性質量部3′となる
部分に溝24を形成する。次に同図(d)に示すよう表面
にn型不純物拡散層23を形成したシリコン基板1上に、
一方の面にn型エピタキシヤル層25を形成したP型シリ
コン基板26を例えば1000〜1100℃の酸化雰囲気中でフユ
ージヨンボンドを行なつてそのn型エピタキシヤル層25
側を直接接合し一体化する。次このn型エピタキシヤル
層25を形成したシリコン基板26を例えばKOH溶液中に浸
漬し、n型不純物拡散層23が形成されたシリコン基板1
に数〜10V程度の正電位を与えてエツチングを行なう
と、同図(e)に示すようにn型エピタキシヤル層25の
部分でエツチングが止り、同図(d)に示したシリコン
基板26はエツチング除去される。次に同図(f)に示す
ようにn型エピタキシヤル層25の表面所定位置に下部電
極10および電極取り出し部6を形成した後、シリコン基
板1の裏面側に前述と同様な方法によりSi3N4のエツチ
ングマスク材を形成し、KOH溶液中に浸漬し、n型エピ
タキシヤル層25に数〜10数ボルト程度の正電圧を与えて
エツチングを行なうと、n型エピタキシヤル層25および
n型不純物拡散層23の部分でエツチングが止り、前述し
た一対の溝22a,22bにそれぞれ連通する一対の逆L字状
溝26a,26bが形成される。次に同図(g)に示すように
n型エピタキシヤル層25上に、内面凹部に上部電極8を
形成したパイレツクス製キヤツプ7を陽極接合法により
接合して第1図と同等の加速度センサが完成される。
5 (a) to 5 (g) are sectional views of steps for explaining an embodiment of the method of manufacturing the acceleration sensor according to the present invention. In the figure, first, as shown in FIG. 3A, an etching mask material 2 such as Si 3 N 4 is formed on the surface of the P-type silicon substrate 1.
After depositing the film 1 on the etching mask material 21, the reverse L
A pair of window patterns 21a, 21b corresponding to the portions parallel to the surface of the silicon substrate 1 in the character-shaped grooves 2a ', 2b' are formed by patterning by the photolithography technique, and inside the pair of window patterns 21a, 21b. After anisotropic etching is performed with an etching liquid such as KOH to form the pair of grooves 22a and 22b, the etching mask material 21 is removed. Next, as shown in FIG. 3B, in the pair of grooves 22a, 22b, not shown in the portions of the inverted L-shaped grooves 2a ', 2b' which are perpendicular to the surface of the silicon substrate 1, for example, a thermal oxide film is formed. A mask material is deposited, and phosphorus or the like is thermally diffused on the surface of the silicon substrate 1 and in the pair of grooves 22a and 22b to form the n-type impurity diffusion layer 23. Next, an etching mask material of Si 3 N 4 is formed on the back surface side of the silicon substrate 1 by the same method as described above, and anisotropic etching is performed with KOH to form a groove 24 in the portion which becomes the inertial mass portion 3 '. To form. Next, as shown in FIG. 3D, on the silicon substrate 1 having the n-type impurity diffusion layer 23 formed on its surface,
A p-type silicon substrate 26 having an n-type epitaxial layer 25 formed on one surface is subjected to a fusion bond in an oxidizing atmosphere of, for example, 1000 to 1100 ° C. to form the n-type epitaxial layer 25.
The sides are directly joined and integrated. Next, the silicon substrate 26 having the n-type epitaxial layer 25 formed thereon is dipped in, for example, a KOH solution to form the silicon substrate 1 having the n-type impurity diffusion layer 23 formed thereon.
When a positive potential of about several to 10 V is applied to the etching, etching stops at the n-type epitaxial layer 25 as shown in FIG. 7E, and the silicon substrate 26 shown in FIG. Etching is removed. Next, as shown in FIG. 3F, after the lower electrode 10 and the electrode lead-out portion 6 are formed at predetermined positions on the surface of the n-type epitaxial layer 25, Si 3 is formed on the back surface side of the silicon substrate 1 by the same method as described above. When an etching mask material of N 4 is formed and dipped in a KOH solution, and etching is performed by applying a positive voltage of about several tens to several tens of volts to the n-type epitaxial layer 25, etching is performed on the n-type epitaxial layer 25 and the n-type epitaxial layer 25. Etching stops at the impurity diffusion layer 23, and a pair of inverted L-shaped grooves 26a, 26b communicating with the pair of grooves 22a, 22b described above are formed. Next, as shown in FIG. 2G, a Pyrex cap 7 having an upper electrode 8 formed on the inner surface of the n-type epitaxial layer 25 is bonded by an anodic bonding method to obtain an acceleration sensor equivalent to that shown in FIG. Will be completed.

このような方法によれば、慣性質量部3′を懸架支持す
る一対の逆L字状の溝2a′,2b′が、シリコン基板1の
異方性エツチングおよび電界ストツプエツチング技術に
よりシリコン基板1の表面と平行な一対の溝22a,22bお
よび連通する垂直な溝26a,26bを食刻することにより形
成できるので、シリコン基板1の表面には一対の起歪部
4a,4bが高感度構造で形成できるとともにこの一対の起
歪部4a,4bと正確な位置に慣性質量部3′の過大変位を
ストツプさせる角部1a,1bが高精度で形成することがで
きる。また、上述した工程は、通常のIC製造プロセスと
同様にφ4″ウエハから一度に500〜1000個形成できる
ため、量産性もある。
According to such a method, the pair of inverted L-shaped grooves 2a 'and 2b' for suspending and supporting the inertial mass portion 3'is formed in the silicon substrate 1 by the anisotropic etching and electric field etching techniques of the silicon substrate 1. Since it can be formed by etching a pair of grooves 22a and 22b parallel to the surface of the silicon and vertical grooves 26a and 26b that communicate with each other, the surface of the silicon substrate 1 has a pair of strain generating portions.
4a and 4b can be formed with a high sensitivity structure, and this pair of strain generating portions 4a and 4b and the corner portions 1a and 1b that stop the excessive displacement of the inertial mass portion 3'can be formed at precise positions with high precision. it can. In addition, the above-described steps can be mass-produced because 500 to 1000 pieces can be formed at a time from a φ4 ″ wafer as in the normal IC manufacturing process.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、シリコン基板内に
一定の間隙幅を有する一対のL字状の溝を形成し、この
シリコン基板の表面部分にシリコン薄肉状の一対の起歪
部を形成してこの一対の起歪部間にシリコン厚肉状の慣
性質量部を支持させたことにより、高感度および高耐圧
が達成できるとともに高感度と高耐圧という相矛盾する
特性の設計自由度が大幅に拡大される。また、表面に下
部電極を形成したセンサチツプと内面に上部電極を形成
したキヤツプとを対向配置させて構成されるので、主構
成部材が従来の3点から2点に軽減されるとともに小型
化が可能となるなどの極めて優れた効果が得られる。
As described above, according to the present invention, a pair of L-shaped grooves having a constant gap width are formed in a silicon substrate, and a pair of silicon thin strain elements are formed on the surface portion of the silicon substrate. By supporting the thick silicon inertial mass between the pair of strain generating parts, high sensitivity and high withstand voltage can be achieved, and the degree of freedom in designing the contradictory characteristics of high sensitivity and high withstand voltage is greatly increased. Be expanded to. Further, the sensor chip having the lower electrode formed on the surface and the cap having the upper electrode formed on the inner surface are arranged to face each other, so that the main constituent members are reduced from the conventional three points to two points, and the size can be reduced. It is possible to obtain an extremely excellent effect such as

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による加速度センサの一実施例を示す断
面図、第2図および第3図は第1図の加速度センサの作
用を説明する断面図、第4図は本発明による加速度セン
サの他の実施例を示す断面図、第5図(a)〜(g)は
本発明による加速度センサの製造方法の一実施例を示す
工程の断面図、第6図は従来の加速度センサの構成を示
す断面図である。 1……シリコン基板、1a,1b……角部、2a′,2a″,2b′,
2b″……溝、3′……慣性質量部、4a,4b……起歪部、4
A,4B……支点、6……電極取り出し部、7……上部キャ
ップ、8……上部電極、10……下部電極、11……容量形
成部、21……エツチングマスク、21a,21b……窓パター
ン、22a,22b……溝、23……n型不純物拡散層、24……
溝、25……n型エピタキシヤル層、26a,26b……逆L字
状溝。
FIG. 1 is a sectional view showing an embodiment of the acceleration sensor according to the present invention, FIGS. 2 and 3 are sectional views for explaining the operation of the acceleration sensor of FIG. 1, and FIG. 4 is a sectional view of the acceleration sensor according to the present invention. 5 (a) to 5 (g) are sectional views of steps showing an embodiment of a method of manufacturing an acceleration sensor according to the present invention, and FIG. 6 shows a structure of a conventional acceleration sensor. It is sectional drawing shown. 1 ... Silicon substrate, 1a, 1b ... Corner, 2a ', 2a ", 2b',
2b "... Groove, 3 '... Inertia mass part, 4a, 4b ... Strain element, 4
A, 4B ...... fulcrum, 6 ...... electrode extraction part, 7 ...... upper cap, 8 ...... upper electrode, 10 ...... lower electrode, 11 ...... capacitance forming part, 21 ...... etching mask, 21a, 21b ...... Window pattern, 22a, 22b ... Groove, 23 ... N-type impurity diffusion layer, 24 ...
Groove, 25 ... n-type epitaxial layer, 26a, 26b ... Inverted L-shaped groove.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】シリコン基板の一方の面に前記シリコン基
板面と垂直方向に一定の間隙幅を有する第1の溝と、前
記第1の溝の底部と連結しかつ前記シリコン基板の端面
方向に向かって前記シリコン基板と平行方向に所定の間
隙幅を有する第2の溝とからなる前記シリコン基板と垂
直方向の断面がL字状の溝を設けることにより前記シリ
コン基板の他方の面に形成されたシリコン薄肉状の一対
の起歪部と、 前記一対の起歪部間の前記第1の溝の方向に沿って懸架
支持されたシリコン厚肉部からなる慣性質量部と、 前記シリコン基板の他方の面の前記慣性質量部および前
記第2の溝と反対向する面上に形成された下部電極と、 前記シリコン基板の他方の面上に前記一対の起歪部を覆
うように接着配置された絶縁性キャップと、 前記絶縁性キャップの内面に前記下部電極と対向して配
置された上部電極と、 を備えたことを特徴とする加速度センサ。
1. A first groove having a constant gap width in a direction perpendicular to the surface of the silicon substrate on one surface of the silicon substrate, and a bottom portion of the first groove, the first groove being connected to the end surface direction of the silicon substrate. A second groove having a predetermined gap width in the direction parallel to the silicon substrate is formed on the other surface of the silicon substrate by providing a groove having an L-shaped cross section in the direction perpendicular to the silicon substrate. And a pair of silicon thin-walled strain generating portions, an inertial mass portion including a thick silicon portion suspended and supported along the direction of the first groove between the pair of strain generating portions, and the other of the silicon substrates. And a lower electrode formed on a surface of the surface opposite to the inertial mass portion and the second groove, and bonded to the other surface of the silicon substrate so as to cover the pair of strain-flexing portions. An insulating cap, and the insulating cap An acceleration sensor, comprising: an upper electrode disposed on the inner surface of the cup so as to face the lower electrode.
【請求項2】第1の第1導電型のシリコン基板の一方の
面に前記シリコン基板の面に平行な一対の第2の溝を形
成する工程と、 前記一対の第2の溝内の中心側を除き前記第1の第1導
電型のシリコン基板の一方の面に第2導電型の不純物拡
散層を形成する工程と、 前記第1の第1導電型のシリコン基板の他方の面に前記
一対の第2の溝間に対応する位置関係を有して第3の溝
を形成する工程と、 一方の面に第2導電型のエピタキシャル層を形成した第
2の第1導電型のシリコン基板のその第2導電型のエピ
タキシャル層を前記第1の第1導電型のシリコン基板の
第2の導電型の不純物拡散層形成面と接合する工程と、 前記第2の第1導電型のシリコン基板をエッチング溶液
に浸漬し、前記第2導電型のエピタキシャル層に正電位
を印加しながら前記第2の第1導電型のシリコン基板の
第1導電型部分をエッチング除去する工程と、 前記第2導電型のエピタキシャル層の表面の前記一対の
第2の溝間に対応する位置関係を有した面上に下部電極
を形成する工程と、 前記第1の第1導電型のシリコン基板をエッチング溶液
に浸漬し、前記第2導電型のエピタキシャル層に正電位
を印加しながら、前記第3の溝内の所定部分をエッチン
グし前記一対の第2の溝内の前記中心側と連結する第1
の溝を形成する工程と、 前記第2導電型のエピタキシャル層の表面に内面凹部に
上部電極を形成した絶縁性キャップを接着する工程と、 からなる加速度センサの製造方法。
2. A step of forming a pair of second grooves parallel to a surface of the silicon substrate on one surface of a first first conductivity type silicon substrate, and a center in the pair of second grooves. A step of forming a second conductivity type impurity diffusion layer on one surface of the first first conductivity type silicon substrate except the side; and a step of forming the second conductivity type impurity diffusion layer on the other surface of the first first conductivity type silicon substrate. A step of forming a third groove having a corresponding positional relationship between the pair of second grooves, and a second first conductivity type silicon substrate having a second conductivity type epitaxial layer formed on one surface thereof Bonding the second conductivity type epitaxial layer to the second conductivity type impurity diffusion layer forming surface of the first first conductivity type silicon substrate, and the second first conductivity type silicon substrate. Is immersed in an etching solution and no positive potential is applied to the second conductivity type epitaxial layer. The step of etching away the first conductivity type portion of the second first conductivity type silicon substrate, and the positional relationship between the pair of second grooves on the surface of the second conductivity type epitaxial layer. A step of forming a lower electrode on the surface having the first conductive type silicon substrate, immersing the first first conductive type silicon substrate in an etching solution, and applying a positive potential to the second conductive type epitaxial layer; A predetermined portion in the groove of the first groove is etched to connect with the center side in the pair of second grooves.
And a step of adhering an insulative cap having an upper electrode formed in an inner recess on the surface of the second-conductivity-type epitaxial layer.
JP24906489A 1989-09-27 1989-09-27 Acceleration sensor and manufacturing method thereof Expired - Lifetime JPH0748566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24906489A JPH0748566B2 (en) 1989-09-27 1989-09-27 Acceleration sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24906489A JPH0748566B2 (en) 1989-09-27 1989-09-27 Acceleration sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH03112170A JPH03112170A (en) 1991-05-13
JPH0748566B2 true JPH0748566B2 (en) 1995-05-24

Family

ID=17187472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24906489A Expired - Lifetime JPH0748566B2 (en) 1989-09-27 1989-09-27 Acceleration sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0748566B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5421213A (en) * 1990-10-12 1995-06-06 Okada; Kazuhiro Multi-dimensional force detector
EP0657718B1 (en) * 1993-12-07 1998-08-26 Matsushita Electric Industrial Co., Ltd. Capacitance sensor and method of manufacturing the same
JP4073382B2 (en) * 2003-09-02 2008-04-09 ホシデン株式会社 Vibration sensor
US8604566B2 (en) * 2008-06-17 2013-12-10 Infineon Technologies Ag Sensor module and semiconductor chip
JP4968371B2 (en) 2010-06-30 2012-07-04 大日本印刷株式会社 Manufacturing method of sensor device and sensor device
JP2012181198A (en) * 2012-04-05 2012-09-20 Dainippon Printing Co Ltd Sensor device manufacturing method and sensor device

Also Published As

Publication number Publication date
JPH03112170A (en) 1991-05-13

Similar Documents

Publication Publication Date Title
JP5211387B2 (en) 3-axis thin film accelerometer
US6035714A (en) Microelectromechanical capacitive accelerometer and method of making same
JP4705229B2 (en) Micromachining rotational angular acceleration sensor
US5148604A (en) Micromechanical tilt sensor
US5313836A (en) Semiconductor sensor for accelerometer
JP3305516B2 (en) Capacitive acceleration sensor and method of manufacturing the same
JPH0453267B2 (en)
JP2013178255A (en) Semiconductor dynamic quantity sensor and method of manufacturing the same
US4812199A (en) Rectilinearly deflectable element fabricated from a single wafer
FI81915C (en) KAPACITIV ACCELERATIONSGIVARE OCH FOERFARANDE FOER FRAMSTAELLNING DAERAV.
CN109626318B (en) Cover plate structure, manufacturing method thereof and capacitive sensor
JPH0748566B2 (en) Acceleration sensor and manufacturing method thereof
US20040048403A1 (en) Single crystal, tunneling and capacitive, three-axes sensor using eutectic bonding and a method of making same
US20080028856A1 (en) Capacitive accelerating sensor bonding silicon substrate and glass substrate
JP4168497B2 (en) Manufacturing method of semiconductor dynamic quantity sensor
CN116374942B (en) Microelectromechanical component integrating inertial and pressure sensors
JPH11230985A (en) Semiconductor dynamic quantity sensor
KR20000028948A (en) Method for manufacturing an angular rate sensor
JP2012002752A (en) Capacity type inertial force sensor
CN107764459B (en) Pressure sensor and method for manufacturing the same
JP3109556B2 (en) Package structure three-axis acceleration sensor and method of manufacturing the same
JP2001044450A (en) Semiconductor dynamic quantity sensor
JPH10111203A (en) Capacitive semiconductor sensor and its production
JPH07225243A (en) Acceleration sensor and its production, method for detecting acceleration by the acceleration sensor and acceleration sensor array
JP4120037B2 (en) Semiconductor dynamic quantity sensor and manufacturing method thereof