JPH0748566B2 - Acceleration sensor and a method of manufacturing the same - Google Patents

Acceleration sensor and a method of manufacturing the same

Info

Publication number
JPH0748566B2
JPH0748566B2 JP24906489A JP24906489A JPH0748566B2 JP H0748566 B2 JPH0748566 B2 JP H0748566B2 JP 24906489 A JP24906489 A JP 24906489A JP 24906489 A JP24906489 A JP 24906489A JP H0748566 B2 JPH0748566 B2 JP H0748566B2
Authority
JP
Japan
Prior art keywords
silicon substrate
surface
groove
pair
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24906489A
Other languages
Japanese (ja)
Other versions
JPH03112170A (en
Inventor
昇治 長崎
Original Assignee
山武ハネウエル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山武ハネウエル株式会社 filed Critical 山武ハネウエル株式会社
Priority to JP24906489A priority Critical patent/JPH0748566B2/en
Publication of JPH03112170A publication Critical patent/JPH03112170A/en
Publication of JPH0748566B2 publication Critical patent/JPH0748566B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は地震、物体の移動、衝突等の加速度を検出する加速度センサおよびその製造方法に関するものである。 DETAILED DESCRIPTION OF THE INVENTION The present invention [relates] are those earthquakes, a moving object, relates to an acceleration sensor and a manufacturing method thereof for detecting an acceleration of a collision or the like.

〔従来の技術〕 [Prior art]

第6図は従来の加速度センサの一例を示す断面図である。 Figure 6 is a sectional view showing an example of a conventional acceleration sensor. 同図において、1はシリコン基板、2はシリコン基板1の裏面側に四角形状にわたつて断面がほぼ台形状にエツチング加工により形成された溝、3はシリコン基板1への溝2の形成により台形の島状に形成された厚肉状の慣性質量部、4はシリコン基板1に対して溝2の形成によつて慣性質量部3を懸架して支持する可動部としての薄肉状起歪部であり、これらのシリコン基板1,溝2,慣性質量部3および起歪部4によりセンサチツプ5を構成している。 In the figure, 1 is a silicon substrate, 2 is groove connexion sectional cotton in a square shape on the back surface of the silicon substrate 1 is formed by etching process substantially trapezoidal, 3 trapezoid by the formation of grooves 2 into the silicon substrate 1 inertial mass shaped island which is formed in thick, 4 in thin-walled strain generating portion as a movable portion for supporting and suspending the by connexion inertial mass 3 in the formation of the grooves 2 with respect to the silicon substrate 1 There, these silicon substrate 1, groove 2, constitutes a Sensachitsupu 5 by inertial mass 3 and the strain generating section 4. また、6はシリコン基板1の表面側に形成された電極取り出し部、7はシリコン基板1の表面側に上記慣性質量部3を被覆して固定配置された上部キヤツプ、8は上部キヤツプ7の内面に慣性質量部3と対向して形成された上部電極、9はシリコン基板1の裏面側に慣性質量部3を被覆して固定配置された下部キヤツプ、 The electrode extraction portion formed on the surface side of the silicon substrate 1 is 6, 7 fixedly arranged upper cap to cover the inertial mass 3 on the surface side of the silicon substrate 1, the inner surface of the upper cap 7 8 the inertial mass 3 opposed to the upper electrode formed, 9 fixedly arranged bottom cap covers the inertial mass 3 on the back side of the silicon substrate 1,
10は下部キヤツプ9の内面に慣性質量部3と対向して形成された下部電極、11は空隙部からなる容量形成部である。 A lower electrode formed to face the inertial mass 3 into the inner surface of the lower cap 9 10, 11 is a capacitance forming part consisting of the gap portion.

このような構成において、センサに加速度が加わると、 In such a configuration, when the acceleration is applied to the sensor,
慣性質量部3の位置が変位し、対向する上部電極8と下部電極10との間で容量値が変化して加速度が検出されることになる。 Displaced position of the inertial mass 3, acceleration capacitance changes between the upper electrode 8 and lower electrode 10 which faces will be detected. 一方、過大な加速度が加わつた場合には、 On the other hand, in the case where an excessive acceleration is One Kuwawa is,
上,下のキヤツプ7,9がストツパーの役割を果たし、起歪部4の過度な変形による破壊を防ぐ構造になつている。 Furthermore, it caps 7 and 9 below acted as Sutotsupa, are decreased to the structure to prevent breakage due to excessive deformation of the strain unit 4.

〔発明が解決しようとする課題〕 [Problems that the Invention is to Solve]

しかしながら、このように構成された加速度センサは、 However, the acceleration sensor configured as described above,
センサチツプ5と上部キヤツプ7と下部キヤツプ9との3点の主構成部材から構成されており、これらの3点の構成部材にはそれぞれ寸法上のばらつきを有していることから、次のような問題があつた。 Sensachitsupu 5 and is composed of a main component of the 3-point between the upper cap 7 and the lower cap 9, since the components of these three points each have a variation in size, as follows problem has been made. すなわち、 (a)3点の構成部品の組み付け時の位置合わせが極めて困難であつた。 That is, alignment has been made extremely difficult position during assembly of the components of (a) 3 points.

(b)上部キヤツプ7および下部キヤツプ9とセンサチツプ5との間隙の完成寸法が大きくばらつくことから、 (B) since the completion size of the gap between the upper cap 7 and the lower cap 9 and Sensachitsupu 5 varies greatly,
耐圧に余裕をもたせる必要があり、高感度な加速度センサの設計が困難であつた。 You must make sure it has enough breakdown voltage, been made difficult to design a highly sensitive acceleration sensor.

(c)慣性質量部3の底面が直接ストツパに当る構成になつているため、慣性質量部3の形状や下側プレートの形状の設計の自由度が小さかつた。 (C) for the bottom surface of the inertial mass 3 is decreased to the configuration striking directly a stop, the degree of freedom in designing the shape of the shape and the lower plate of the inertial mass 3 is small Katsuta.

したがつて本発明は、前述した従来の課題を解決するためになされたものであり、その目的は、加速度に対する感度を向上させかつ小型でしかも高耐圧で量産を可能とした加速度センサおよびその製造方法を提供することにある。 The While connexion present invention has been made to solve the conventional problems described above, an object of the acceleration sensor and its production made it possible to mass production to improve the sensitivity and small, yet high voltage resistance to the acceleration It is to provide a method.

〔課題を解決するための手段〕 [Means for Solving the Problems]

このような課題を解決するために本発明による加速度センサは、シリコン基板内に一定の間隙幅を有するL字状の断面構造をもつ溝を形成し、このシリコン基板の表面部分にシリコン薄肉状の一対の起歪部を形成し、この起歪部間にシリコン厚肉状の慣性質量部を懸架支持させたものである。 The acceleration sensor according to the present invention in order to solve such a problem, a groove having an L-shaped cross section having a constant gap width in the silicon substrate, the silicon thin-walled surface portion of the silicon substrate forming a pair of the strain generating portion, in which the inertial mass of the silicon thick shape was suspended and supported between the strain generating part.

また、本発明による加速度センサの製造方法は、第1のシリコン基板の一方の面に溝を形成した後、その上に起歪部となる第2のシリコン基板を接着し、他方の面から上記の溝と連結する溝を形成してL字状の断面構造をもつ溝を形成することにより、シリコン基板の表面部分にシリコン薄肉状の起歪部が形成される。 The manufacturing method of an acceleration sensor according to the present invention, after forming the grooves on one surface of a first silicon substrate, bonding the second silicon substrate serving as a strain generating portion thereon, said the other surface by forming a groove having an L-shaped cross section with a groove for coupling with the groove formation, the strain generating portions of the silicon thin-walled is formed on the surface portion of the silicon substrate.

〔作用〕 [Action]

本発明においては、シリコン基板内にL字状の溝が一定の間隙幅を有して高精度で形成される。 In the present invention, L-shaped grooves are formed with high accuracy with a constant gap width in the silicon substrate.

〔実施例〕 〔Example〕

以下、図面を用いて本発明の実施施例を詳細に説明する。 Hereinafter, the embodiment 施例 of the present invention will be described in detail with reference to the drawings.

第1図は本発明による加速度センサの一実施例を示す断面図であり、前述の図と同一部分には同一符号を付してある。 Figure 1 is a sectional view showing an embodiment of an acceleration sensor according to the present invention, the figure and the same portion of the previously described figures are given the same reference numerals. 同図において、シリコン基板1の表面と平行となる裏面を結晶面の(110)面とし、この裏面側には結晶面の(110)面と垂直方向に結晶面の〈112〉軸に沿つて異方性エツチングにより食刻されて断面がほぼ逆L字状の一対のL字状溝2a′,2b′が一定の間隙を有して平行に形成されている。 In the figure, the rear surface is parallel to the surface the silicon substrate 1 as a crystal plane of (110) plane, along connexion to <112> axis of the back surface on the side of the crystal face (110) plane and the direction perpendicular to the crystal plane are formed in parallel with etched has been a pair of cross-section substantially inverted L-shaped L-shaped grooves 2a ', 2b' has a fixed gap by anisotropic etching. そして、この逆L字状の溝2a′,2 Then, the inverted L-shaped grooves 2a ', 2
b′の形成によつてシリコン基板1の上部にはシリコン基板1の薄肉部からなる一対の起歪部4a,4bが形成されるとともにこの一対の起歪部4a,4bとの間にはほぼ直方体を有するシリコン基板1の厚肉部からなる慣性質量部3′が支持されて形成され、さらにこの慣性質量部3′ b a pair of the strain generating portion 4a made of a thin wall of the silicon substrate 1 on the upper portion of Yotsute silicon substrate 1 in the formation of 'the pair with 4b are formed strain generating portion 4a, substantially between the 4b thick inertial mass 3 consisting of meat parts silicon substrate 1 having a rectangular parallelepiped 'is formed by the support, further the inertial mass 3'
の表面には対向する下部電極10が形成されている。 Lower electrode 10 facing is formed on the surface of the.

このような構成によれば、慣性質量部3′がメサ型ではなく、任意の大きさの直方体状で形成されるので、その質量が増加し、感度向上が計れる。 According to such a configuration, rather than a mesa-type inertial mass 3 ', since it is formed by rectangular any size, its mass increases, the sensitivity is improved measurably. また、一対の溝2 The pair of grooves 2
a′,2b′をシリコン基板1に逆L字状に形成したことにより、容量形成部11に加速度が加わり、慣性質量部3′ a ', 2b' by forming an inverted L-shape in the silicon substrate 1, joined by acceleration capacitance forming part 11, inertial mass 3 '
が下方向に慣性力Fが与えられても第2図に示すように一対の薄肉状起歪部4a,4bが逆L字状溝2a′,2b′内のそれぞれの角部1a,1bに当接して支持され、さらに大きな加速度が加わり、第3図に示すように慣性質量部3′に多大な慣性力F′が与えられても一対の薄肉状起歪部4 A pair of thin-walled strain generating portion 4a but as shown in Figure 2 be given inertial force F in a downward direction, 4b is inverted L-shaped grooves 2a ', 2b' respectively of the corner portions 1a in and 1b is supported in contact with, generating additional large acceleration, the third pair of thin-walled be given 'great inertial force F in' inertial mass 3 as shown in FIG strain generating portion 4
a,4bがそれぞれ4A,4Bを支点としてそれぞれ角部1a,1bに当接して慣性質量部3′の底面が基台に接触する範囲まで支持させることができる。 a, 4b can be supported respectively 4A, to the extent that each corner 1a and 4B serving as a fulcrum, for the bottom of the contact inertial mass 3 'to 1b contacts the base. したがつて過大な加速度に対しても、2段構えの最終ストツパとしての機能が得られ、それ以上の変形よる破壊を防止することができる。 Even for the while connexion excessive acceleration, obtained functions as a final a stop of the two-stage stance, it is possible to prevent a further deformation by destruction.

第4図は本発明による加速度センサの他の実施例を示す断面図であり、前述の図と同一部分には同一符号を付してある。 Figure 4 is a sectional view showing another embodiment of an acceleration sensor according to the present invention, the figure and the same portion of the previously described figures are given the same reference numerals. 同図において、第1図と果なる点は、シリコン基板1の表面が(100)面である点でこの結晶面の(10 In the figure, the first figure and fruit becomes point, the surface of the silicon substrate 1 of the crystal plane at a point a (100) plane (10
0)面に対して異方性エツチングを行なつて結晶面の〈1 0) anisotropic etching line of go-between of the crystal surface with respect to surface <1
10〉軸方向に沿つた溝2a″,2b″が形成されて加速度センサが構成されている。 10> axially 沿Tsutamizo 2a ", 2b" is is formed by the acceleration sensor is constructed.

このような構成においても前述と全く同等の効果が得られる。 The effect of totally equivalent to the above can be obtained even in such a configuration.

第5図(a)〜(g)は本発明による加速度センサの製造方法の一実施例を説明する工程の断面図である。 Figure 5 (a) ~ (g) are cross-sectional views illustrating a process for explaining one embodiment of a method for producing an acceleration sensor according to the present invention. 同図において、まず、同図(a)に示すようにP型シリコン基板1の表面に例えばSi 3 N 4などのエツチングマスク材2 In the figure, first, the figure for example, the surface of the P-type silicon substrate 1 as shown in (a) Si 3 N 4 Etsu quenching mask material 2, such as
1を成膜した後、このエツチングマスク材21に前記逆L 1 after forming a, the inverted L in this Etsu quenching mask material 21
字状溝2a′,2b′内のシリコン基板1表面と平行となる部分に相当する一対の窓パターン21a,21bをフオトリソグラフイ技術によりパターニングして形成し、この一対の窓パターン21a,21b内を例えばKOHなどのエツチング液により異方性エツチングを行なつて一対の溝22a,22bを形成した後、エツチングマスク材21を除去する。 Shaped groove 2a ', 2b' pair of windows pattern 21a corresponding to the surface of the silicon substrate 1 and the portion to be parallel in the 21b formed by patterning by photo-lithographic techniques, the pair of window patterns 21a, the 21b after the anisotropic etching to form rows of connexion pair of grooves 22a, 22b by etching solution, such as for example KOH, removes Etsu quenching mask material 21. 次に同図(b)に示すように一対の溝22a,22b内で前記逆L字状溝2a′,2b′のシリコン基板1表面と垂直となる部分に図示しないが例えば熱酸化膜などのマスク材を成膜し、シリコン基板1の表面および一対の溝22a,22b内に例えばリンなどを熱拡散してn型不純物拡散層23を形成する。 Then drawing (b) are shown as a pair of grooves 22a, the inverted L-shaped groove 2a in 22b ', 2b' not shown on the surface of the silicon substrate 1 and a vertical portion, such as but for example, a thermal oxide film the mask material is deposited, the surface and the pair of grooves 22a of the silicon substrate 1, within 22b such as phosphorus or the like is thermally diffused to form an n-type impurity diffusion layer 23. 次にこのシリコン基板1の裏面側に前述と同様な方法によりSi 3 N 4のエツチングマスク材を形成し、KOHで異方性エツチングを行なつて前記慣性質量部3′となる部分に溝24を形成する。 Then the Etsu quenching mask material the Si 3 N 4 was formed by a similar to the above method on the back side of the silicon substrate 1, a groove 24 in the portion comprising the anisotropic etching and the line of connexion the inertial mass 3 'with KOH to form. 次に同図(d)に示すよう表面にn型不純物拡散層23を形成したシリコン基板1上に、 Then on the silicon substrate 1 formed with the n-type impurity diffusion layer 23 on the surface as shown in FIG. 2 (d),
一方の面にn型エピタキシヤル層25を形成したP型シリコン基板26を例えば1000〜1100℃の酸化雰囲気中でフユージヨンボンドを行なつてそのn型エピタキシヤル層25 Line a full Yuji Yeon bonds in an oxidizing atmosphere in a P-type silicon substrate 26 formed with n-type epitaxial layer 25 on one surface for example 1000 to 1100 ° C. for connexion the n-type epitaxial layer 25
側を直接接合し一体化する。 Joining the side directly to be integrated. 次このn型エピタキシヤル層25を形成したシリコン基板26を例えばKOH溶液中に浸漬し、n型不純物拡散層23が形成されたシリコン基板1 Immersing the silicon substrate 26 formed with following the n-type epitaxial layer 25 for example, KOH solution, the silicon substrate 1 an n-type impurity diffusion layer 23 is formed
に数〜10V程度の正電位を与えてエツチングを行なうと、同図(e)に示すようにn型エピタキシヤル層25の部分でエツチングが止り、同図(d)に示したシリコン基板26はエツチング除去される。 When performing etching by applying a positive potential of several ~10V, the portion of the n-type epitaxial layer 25 as shown in FIG. (E) by etching is blind, the silicon substrate 26 shown in FIG. (D), etching is removed. 次に同図(f)に示すようにn型エピタキシヤル層25の表面所定位置に下部電極10および電極取り出し部6を形成した後、シリコン基板1の裏面側に前述と同様な方法によりSi 3 N 4のエツチングマスク材を形成し、KOH溶液中に浸漬し、n型エピタキシヤル層25に数〜10数ボルト程度の正電圧を与えてエツチングを行なうと、n型エピタキシヤル層25およびn型不純物拡散層23の部分でエツチングが止り、前述した一対の溝22a,22bにそれぞれ連通する一対の逆L字状溝26a,26bが形成される。 After forming the lower electrode 10 and the electrode extraction portion 6 then the surface position of the n-type epitaxial layer 25 as shown in FIG. (F), Si 3 by the above similar method on the back surface side of the silicon substrate 1 forming a Etsu quenching mask material n 4, it was immersed in KOH solution, when the etching in the n-type epitaxial layer 25 by applying a positive voltage of approximately several to 10 a few volts, the n-type epitaxial layer 25 and n-type in portions of the impurity diffusion layer 23 etching is blind, a pair of grooves 22a described above, a pair of inverted L-shaped groove 26a of each communicating with 22b, 26b are formed. 次に同図(g)に示すようにn型エピタキシヤル層25上に、内面凹部に上部電極8を形成したパイレツクス製キヤツプ7を陽極接合法により接合して第1図と同等の加速度センサが完成される。 Then on the n-type epitaxial layer 25 as shown in FIG. (G), the Pairetsukusu made cap 7 forming the upper electrode 8 on the inner surface concave portion equivalent acceleration sensor and the first drawing bonded by anodic bonding method It is completed.

このような方法によれば、慣性質量部3′を懸架支持する一対の逆L字状の溝2a′,2b′が、シリコン基板1の異方性エツチングおよび電界ストツプエツチング技術によりシリコン基板1の表面と平行な一対の溝22a,22bおよび連通する垂直な溝26a,26bを食刻することにより形成できるので、シリコン基板1の表面には一対の起歪部 According to this method, 'a pair of inverted L-shaped groove 2a for suspending supporting' inertial mass 3 and 2b ', the silicon substrate 1 by the silicon substrate 1 anisotropic etching and the field scan shoulder stop Etsu quenching technique surface and a pair of parallel grooves 22a, 22b and communicating with the vertical groove 26a, can be formed by etching a 26b, a pair of the strain generating portion on the surface of the silicon substrate 1
4a,4bが高感度構造で形成できるとともにこの一対の起歪部4a,4bと正確な位置に慣性質量部3′の過大変位をストツプさせる角部1a,1bが高精度で形成することができる。 4a, 4b are sensitive structure the pair of the strain generating portion 4a together can be formed in the corner portion 1a which Sutotsupu the excessive displacement of 4b and accurate location inertial mass 3 ', that 1b is formed with high precision it can. また、上述した工程は、通常のIC製造プロセスと同様にφ4″ウエハから一度に500〜1000個形成できるため、量産性もある。 Also, the steps described above, since like a normal IC manufacturing process can 500-1000 formed at a time from .phi.4 "wafer, there is also a mass production.

〔発明の効果〕 〔Effect of the invention〕

以上説明したように本発明によれば、シリコン基板内に一定の間隙幅を有する一対のL字状の溝を形成し、このシリコン基板の表面部分にシリコン薄肉状の一対の起歪部を形成してこの一対の起歪部間にシリコン厚肉状の慣性質量部を支持させたことにより、高感度および高耐圧が達成できるとともに高感度と高耐圧という相矛盾する特性の設計自由度が大幅に拡大される。 According to the present invention described above, to form a pair of L-shaped groove having a constant gap width in a silicon substrate, forming a pair of strain generating portions silicon thin-wall surface portion of the silicon substrate to by was supported inertial mass of the silicon thick shape between the pair of the strain generating part, considerably high sensitivity and design freedom of conflicting properties of a high withstand voltage with high sensitivity and high breakdown voltage can be achieved It is enlarged. また、表面に下部電極を形成したセンサチツプと内面に上部電極を形成したキヤツプとを対向配置させて構成されるので、主構成部材が従来の3点から2点に軽減されるとともに小型化が可能となるなどの極めて優れた効果が得られる。 Further, since the cap forming an upper electrode on Sensachitsupu an inner surface to form a lower electrode on a surface is constituted by opposed, it can be miniaturized along with the main component is reduced to two points from three points very good effect, such as a can be obtained.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

第1図は本発明による加速度センサの一実施例を示す断面図、第2図および第3図は第1図の加速度センサの作用を説明する断面図、第4図は本発明による加速度センサの他の実施例を示す断面図、第5図(a)〜(g)は本発明による加速度センサの製造方法の一実施例を示す工程の断面図、第6図は従来の加速度センサの構成を示す断面図である。 Sectional view showing an embodiment of an acceleration sensor according to Figure 1 the present invention, FIGS. 2 and 3 are sectional views for explaining the operation of the acceleration sensor of Figure 1, Figure 4 is an acceleration sensor according to the present invention sectional view showing another embodiment, FIG. 5 (a) ~ (g) are cross-sectional views illustrating a process of showing one embodiment of a method for producing an acceleration sensor according to the present invention, FIG. 6 is a configuration of a conventional acceleration sensor is a cross-sectional view illustrating. 1……シリコン基板、1a,1b……角部、2a′,2a″,2b′, 1 ...... silicon substrate, 1a, 1b ...... corner, 2a ', 2a ", 2b',
2b″……溝、3′……慣性質量部、4a,4b……起歪部、4 2b "... groove, 3 '... inertial mass, 4a, 4b ... strain generating unit, 4
A,4B……支点、6……電極取り出し部、7……上部キャップ、8……上部電極、10……下部電極、11……容量形成部、21……エツチングマスク、21a,21b……窓パターン、22a,22b……溝、23……n型不純物拡散層、24…… A, 4B ...... fulcrum, 6 ...... electrode extraction portion, 7 ...... top cap, 8 ...... upper electrode, 10 ...... lower electrode, 11 ...... capacitance forming part, 21 ...... Etsu quenching mask, 21a, 21b ...... window patterns, 22a, 22b ...... groove, 23 ...... n-type impurity diffusion layer, 24 ......
溝、25……n型エピタキシヤル層、26a,26b……逆L字状溝。 Grooves, 25 ...... n-type epitaxial layer, 26a, 26b ...... inverted L-shaped groove.

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】シリコン基板の一方の面に前記シリコン基板面と垂直方向に一定の間隙幅を有する第1の溝と、前記第1の溝の底部と連結しかつ前記シリコン基板の端面方向に向かって前記シリコン基板と平行方向に所定の間隙幅を有する第2の溝とからなる前記シリコン基板と垂直方向の断面がL字状の溝を設けることにより前記シリコン基板の他方の面に形成されたシリコン薄肉状の一対の起歪部と、 前記一対の起歪部間の前記第1の溝の方向に沿って懸架支持されたシリコン厚肉部からなる慣性質量部と、 前記シリコン基板の他方の面の前記慣性質量部および前記第2の溝と反対向する面上に形成された下部電極と、 前記シリコン基板の他方の面上に前記一対の起歪部を覆うように接着配置された絶縁性キャップと、 前記絶縁性キャッ And 1. A first groove in the silicon substrate surface and the direction perpendicular to the one surface of the silicon substrate has a constant gap width, connected to the bottom of the first groove and the end face direction of the silicon substrate the silicon substrate and the vertical cross section and a second groove is formed on the other surface of the silicon substrate by providing the L-shaped groove having a predetermined gap width in the silicon substrate and parallel to the direction towards a pair of strain generating portions silicon thin-wall of the inertial mass consisting of the along the direction of the first groove suspended supporting silicon thick portion between the pair of the strain generating portion, the other of said silicon substrate a lower electrode formed on the inertial mass and the second groove and the anti-facing on the face of the surface, the bonded arranged so as to cover a pair of the strain generating portion on the other surface of the silicon substrate an insulating cap, the insulating cap プの内面に前記下部電極と対向して配置された上部電極と、 を備えたことを特徴とする加速度センサ。 An acceleration sensor, characterized in that it comprises an upper electrode disposed to face the lower electrode on the inner surface of the flop, the.
  2. 【請求項2】第1の第1導電型のシリコン基板の一方の面に前記シリコン基板の面に平行な一対の第2の溝を形成する工程と、 前記一対の第2の溝内の中心側を除き前記第1の第1導電型のシリコン基板の一方の面に第2導電型の不純物拡散層を形成する工程と、 前記第1の第1導電型のシリコン基板の他方の面に前記一対の第2の溝間に対応する位置関係を有して第3の溝を形成する工程と、 一方の面に第2導電型のエピタキシャル層を形成した第2の第1導電型のシリコン基板のその第2導電型のエピタキシャル層を前記第1の第1導電型のシリコン基板の第2の導電型の不純物拡散層形成面と接合する工程と、 前記第2の第1導電型のシリコン基板をエッチング溶液に浸漬し、前記第2導電型のエピタキシャル層に正電位を印加しな Wherein forming a second groove of the pair parallel to the plane of the silicon substrate on one surface of the silicon substrate of the first first conductivity type, the center of the second groove of the pair forming a second conductivity type impurity diffusion layer on one surface of the first first conductivity type silicon substrate except a side, said the other surface of said first first-conductivity-type silicon substrate forming a third groove having a positional relationship corresponding to the pair of second grooves, the second first-conductivity-type silicon substrate forming a second conductivity type epitaxial layer on one surface as a step of a second conductive type epitaxial layer is bonded to the second conductivity type impurity diffusion layer forming surface of said first first-conductivity-type silicon substrate, said second first-conductivity-type silicon substrate of was immersed in an etching solution, Do and a positive potential is applied to a epitaxial layer of the second conductivity type がら前記第2の第1導電型のシリコン基板の第1導電型部分をエッチング除去する工程と、 前記第2導電型のエピタキシャル層の表面の前記一対の第2の溝間に対応する位置関係を有した面上に下部電極を形成する工程と、 前記第1の第1導電型のシリコン基板をエッチング溶液に浸漬し、前記第2導電型のエピタキシャル層に正電位を印加しながら、前記第3の溝内の所定部分をエッチングし前記一対の第2の溝内の前記中心側と連結する第1 A step of reluctant the first conductivity type portion etched in the second of the first conductivity type silicon substrate, a positional relationship corresponding to between the pair of second grooves in the surface of the second conductivity type epitaxial layer forming a lower electrode on a surface, said first first-conductivity-type silicon substrate was immersed in an etching solution, while applying a positive potential to the epitaxial layer of the second conductivity type, the third first to etch a predetermined portion of the groove of the coupling between the central side of the second groove of the pair
    の溝を形成する工程と、 前記第2導電型のエピタキシャル層の表面に内面凹部に上部電極を形成した絶縁性キャップを接着する工程と、 からなる加速度センサの製造方法。 Process and method of the the steps of bonding the insulating cap forming an upper electrode on the inner surface recesses in the surface of the second conductivity type epitaxial layer, an acceleration sensor consisting of forming a groove of a.
JP24906489A 1989-09-27 1989-09-27 Acceleration sensor and a method of manufacturing the same Expired - Lifetime JPH0748566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24906489A JPH0748566B2 (en) 1989-09-27 1989-09-27 Acceleration sensor and a method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24906489A JPH0748566B2 (en) 1989-09-27 1989-09-27 Acceleration sensor and a method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH03112170A JPH03112170A (en) 1991-05-13
JPH0748566B2 true JPH0748566B2 (en) 1995-05-24

Family

ID=17187472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24906489A Expired - Lifetime JPH0748566B2 (en) 1989-09-27 1989-09-27 Acceleration sensor and a method of manufacturing the same

Country Status (1)

Country Link
JP (1) JPH0748566B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5421213A (en) * 1990-10-12 1995-06-06 Okada; Kazuhiro Multi-dimensional force detector
EP0657718B1 (en) * 1993-12-07 1998-08-26 Matsushita Electric Industrial Co., Ltd. Capacitance sensor and method of manufacturing the same
JP4073382B2 (en) * 2003-09-02 2008-04-09 ホシデン株式会社 Vibration sensor
US8604566B2 (en) 2008-06-17 2013-12-10 Infineon Technologies Ag Sensor module and semiconductor chip
JP4968371B2 (en) 2010-06-30 2012-07-04 大日本印刷株式会社 Manufacturing method of sensor device and sensor device
JP2012181198A (en) * 2012-04-05 2012-09-20 Dainippon Printing Co Ltd Sensor device manufacturing method and sensor device

Also Published As

Publication number Publication date
JPH03112170A (en) 1991-05-13

Similar Documents

Publication Publication Date Title
US5780885A (en) Accelerometers using silicon on insulator technology
JP3444639B2 (en) Method and apparatus for producing integrated pressure transducer
US5177661A (en) SOI diaphgram sensor
US6046067A (en) Micromechanical device and method for its production
US6805008B2 (en) Accelerometer with folded beams
US5060526A (en) Laminated semiconductor sensor with vibrating element
US6428713B1 (en) MEMS sensor structure and microfabrication process therefor
CN1126173C (en) Semiconductor integrated capacitive acceleration sensor and relative fabrication method
US6629465B1 (en) Miniature gauge pressure sensor using silicon fusion bonding and back etching
EP0854358A1 (en) High sensitivity miniature pressure transducer
US6797631B2 (en) High sensitive micro-cantilever sensor and fabricating method thereof
US5326726A (en) Method for fabricating monolithic chip containing integrated circuitry and suspended microstructure
US5476819A (en) Substrate anchor for undercut silicon on insulator microstructures
EP2410344A2 (en) Method for manufacturing an accelerometer
US6065341A (en) Semiconductor physical quantity sensor with stopper portion
US6460234B1 (en) Method of forming micromachined sealed capacitive pressure sensors
US4553436A (en) Silicon accelerometer
JP2015180521A (en) Capacitive micro-electro-mechanical sensors with single crystal silicon electrodes
DE19537285B4 (en) A method of manufacturing a semiconductor device having a flexible device, a semiconductor element, a movable gate field effect sensor, a method of using a movable gate transistor as a sensor, and a capacitive sensor
US5352635A (en) Silicon accelerometer fabrication method
US5706565A (en) Method for making an all-silicon capacitive pressure sensor
US6146917A (en) Fabrication method for encapsulated micromachined structures
JP2786321B2 (en) Semiconductor capacitive acceleration sensor and a manufacturing method thereof
US5000817A (en) Batch method of making miniature structures assembled in wafer form
JP5211387B2 (en) 3-axis thin film accelerometer