JPH03112170A - Acceleration sensor and its manufacture - Google Patents

Acceleration sensor and its manufacture

Info

Publication number
JPH03112170A
JPH03112170A JP24906489A JP24906489A JPH03112170A JP H03112170 A JPH03112170 A JP H03112170A JP 24906489 A JP24906489 A JP 24906489A JP 24906489 A JP24906489 A JP 24906489A JP H03112170 A JPH03112170 A JP H03112170A
Authority
JP
Japan
Prior art keywords
silicon substrate
groove
conductivity type
parts
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24906489A
Other languages
Japanese (ja)
Other versions
JPH0748566B2 (en
Inventor
Shoji Nagasaki
昇治 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP24906489A priority Critical patent/JPH0748566B2/en
Publication of JPH03112170A publication Critical patent/JPH03112170A/en
Publication of JPH0748566B2 publication Critical patent/JPH0748566B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an acceleration sensor whose sensitivity is high, which is highly pressure-resistant, which is small-sized and which can be mass-produced by a method wherein a prescribed groove is formed inside a silicon substrate, one pair of strain- causing parts are formed in surface parts and an inertial mass part is suspended and supported between the strain-causing parts. CONSTITUTION:Grooves 2a', 2b' which have a definite interval width and whose cross- section structure is L-shaped are formed inside a silicon substrate 1; one pair of silicon thin strain-causing parts 4a, 4b are formed in surface parts of the substrate 1; a silicon thick inertial mass part 3' is suspended and supported between the strain-causing parts. In this constitution, even when an acceleration is applied to a capacity formation part 11 and the mass part 3' is given an inertial force F in a downward direction, the strain-causing parts 4a, 4b come into contact with corner parts 1a, 1b inside the grooves 2a', 2b' and are supported, even when a larger acceleration and a larger inertial force F' are given additionally, the strain-causing parts 4a, 4b come into contact with the corner parts 1a, 1b by making use of parts 4A, 4B as fulcrums and can be supported up to a range that the bottom face of the mass part 3' comes into contact with a base stand. Thereby, it is possible to prevent this sensor from being destroyed by a further deformation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は地震、物体の移動、衝突等の加速度を検出する
加速度センサおよびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an acceleration sensor that detects acceleration caused by earthquakes, movement of objects, collisions, etc., and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

第6図は従来の加速度センサの一例を示す断面図である
。同図において、1はシリコン基板、2はシリコン基板
1の裏面側に四角形状にわたって断面がほぼ台形状にエ
ツチング加工によシ形成された溝、3はシリコン基板1
への溝2の形成によシ台形の島状に形成された厚肉状の
慣性質量部、4はシリコン基板1に対して溝2の形成に
よって慣性質量部3を懸架して支持する可動部としての
薄肉状起歪部であシ、これらのシリコン基板1゜溝2.
慣性質量部3および起歪部4によりセンサチップ5を構
成している。また、6はシリコン基板1の表面側に形成
された電極域シ出し部、7はシリコン基板1の表面側に
上記慣性質量部3を被覆して固定配置された上部キャッ
プ、8は上部キャップTの内面に慣性質量部3と対向し
て形成された上部電極、9はシリコン基板1の裏面側に
慣性質量部3を被覆して固定配置された下部キャップ、
10は下部キャップ9の内面に慣性質量部3と対向して
形成された下部電極、11は空隙部からなる容量形成部
である。
FIG. 6 is a sectional view showing an example of a conventional acceleration sensor. In the figure, 1 is a silicon substrate, 2 is a groove formed by etching on the back side of the silicon substrate 1 over a rectangular shape and has an almost trapezoidal cross section, and 3 is a silicon substrate 1.
4 is a movable part that suspends and supports the inertial mass part 3 by forming the groove 2 on the silicon substrate 1; These silicon substrates have 1° grooves 2.
The inertial mass section 3 and the strain generating section 4 constitute a sensor chip 5. Reference numeral 6 denotes an electrode area projecting portion formed on the surface side of the silicon substrate 1; 7, an upper cap fixedly arranged to cover the inertial mass portion 3 on the surface side of the silicon substrate 1; and 8, an upper cap T. an upper electrode formed on the inner surface of the silicon substrate 1 to face the inertial mass part 3; a lower cap 9 fixedly arranged to cover the inertial mass part 3 on the back side of the silicon substrate 1;
10 is a lower electrode formed on the inner surface of the lower cap 9 to face the inertial mass section 3, and 11 is a capacitance forming section consisting of a gap.

このような構成において、センサに加速度が加わると、
慣性質量部3の位置が変位し、対向する上部電極8と下
部電極10との間で容量値が変化して加速度が検出され
ることになる。一方、過大な加速度が加わった場合には
、上、下のキャップ7.9がストッパーの役割を果たし
、起歪部4の過度な変形による破壊を防ぐ構造になって
いる。
In such a configuration, when acceleration is applied to the sensor,
The position of the inertial mass section 3 is displaced, the capacitance value changes between the opposing upper electrode 8 and lower electrode 10, and acceleration is detected. On the other hand, when excessive acceleration is applied, the upper and lower caps 7.9 act as stoppers to prevent destruction of the strain-generating portion 4 due to excessive deformation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし々がら、このように構成された加速度センサは、
センサチップ5と上部キャップ7と下部キャップ9との
3点の主構成部材から構成されておシ、これらの3点の
構成部材にはそれぞれ寸法上のばらつきを有しているこ
とから、次のような問題があった。すなわち、 (&)3点の構成部品の組み付は時の位置合わせが極め
て困難であった。
However, the acceleration sensor configured in this way is
It is composed of three main components: a sensor chip 5, an upper cap 7, and a lower cap 9. Since these three components each have dimensional variations, the following There was a problem like this. In other words, (&) it was extremely difficult to align the three components when assembling them.

(b)上部キャップ7および下部キャップ9とセンサチ
ップ5との間隙の完成寸法が大きくばらつくことから、
耐圧に余裕をもたせる必要があシ、高感度な加速度セン
サの設計が困難であった。
(b) Since the completed dimensions of the gaps between the upper cap 7 and lower cap 9 and the sensor chip 5 vary greatly,
It was difficult to design a highly sensitive acceleration sensor because it was necessary to provide a margin for pressure resistance.

(、)慣性質量部3の底面が直接ストッパに当る構成に
なっているため、慣性質量部3の形状や下側プレートの
形状の設計の自由度が小さかった。
(,) Since the bottom surface of the inertial mass section 3 is configured to directly contact the stopper, there is little freedom in designing the shape of the inertial mass section 3 and the shape of the lower plate.

したがって本発明は、前述した従来の課題を解決するた
めに表されたものであシ、その目的は、加速度に対する
感度を向上させかつ小屋でしかも高耐圧で量産を可能と
した加速度センサおよびその製造方法を提供することに
ある。
Therefore, the present invention has been made to solve the above-mentioned conventional problems, and its purpose is to provide an acceleration sensor that has improved sensitivity to acceleration and that can be mass-produced in a shed and with high pressure resistance, and to manufacture the same. The purpose is to provide a method.

〔課題を解決するための手段〕[Means to solve the problem]

このような課題を解決するために本発明による加速度セ
ンサは、シリコン基板内に一定の間隙幅を有するL字状
の断面構造をもつ溝を形成し、このシリコン基板の表面
部分にシリコン薄肉状の一対の起歪部を形成し、との起
歪部間にシリコン厚肉状の慣性質量部を懸架支持させた
ものである。
In order to solve these problems, the acceleration sensor according to the present invention has a groove having an L-shaped cross-sectional structure with a constant gap width formed in a silicon substrate, and a thin silicon layer formed on the surface of the silicon substrate. A pair of strain-generating parts are formed, and a silicon thick-walled inertial mass part is suspended and supported between the strain-generating parts.

また、本発明による加速度センサの製造方法は、第1の
シリコン基板の一方の面に溝を形成した後、その上に起
歪部となる第2のシリコン基板を接着し、他方の面から
上記の溝と連結する溝を形成してL字状の断面構造をも
つ溝を形成することにより、シリコン基板の表面部分に
シリコン薄肉状の起歪部が形成される。
Further, in the method for manufacturing an acceleration sensor according to the present invention, after forming a groove on one surface of a first silicon substrate, a second silicon substrate that will become a strain-generating portion is bonded thereon, and the groove is formed on one surface of the first silicon substrate. By forming a groove connected to the groove of , and forming a groove having an L-shaped cross-sectional structure, a thin silicon strain-generating portion is formed on the surface portion of the silicon substrate.

〔作用〕[Effect]

本発明においては、シリコン基板内にL字状の溝が一定
の間隙幅を有して高精度で形成される。
In the present invention, an L-shaped groove is formed with high precision in a silicon substrate with a constant gap width.

〔実施例〕 以下、図面を用いて本発明の実施例を詳細に説明する。〔Example〕 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明による加速度センサの一実施例を示す断
面図であシ、前述の図と同一部分には同一符号を付しで
ある。同図において、シリコン基板10表面と平行とな
る裏面を結晶面の(110)面とし、この裏面側には結
晶面の(110)面と垂直方向に結晶面の(112)軸
に涜って異方性エツチングによシ食刻されて断面がはt
X逆り字状の一対のL字状溝2m’+2b’が一定の間
隙を有して平行に形成されている。そして、この逆り字
状の溝2a/。
FIG. 1 is a sectional view showing an embodiment of an acceleration sensor according to the present invention, and the same parts as in the previous figures are given the same reference numerals. In the figure, the back surface parallel to the surface of the silicon substrate 10 is the (110) crystal plane, and the back surface has a (112) axis in a direction perpendicular to the (110) crystal plane. The cross section is etched by anisotropic etching.
A pair of L-shaped grooves 2m'+2b' in the shape of an inverted X are formed in parallel with a constant gap. And this inverted character-shaped groove 2a/.

2b/の形成によってシリコン基板1の上部にはシリコ
ン基板1の薄肉部からなる一対の起歪部4th。
2b/, a pair of strain-generating portions 4th made of thin-walled portions of the silicon substrate 1 are formed on the upper part of the silicon substrate 1.

4bが形成されるとともにこの一対の起歪部4m+4b
との間にはtlぼ直方体を有するシリコン基板1の厚肉
部からなる慣性質量部3′が支持されて形成され、さら
にこの慣性質量部3/の表面には対向する下部電極10
が形成されている。
4b is formed, and this pair of strain-generating parts 4m+4b
An inertial mass part 3' made of a thick part of the silicon substrate 1 having a rectangular parallelepiped shape is supported and formed between the inertial mass part 3' and a lower electrode 10 opposite to the surface of this inertial mass part 3/.
is formed.

このような構成によれば、慣性質量部3′がメサ型では
なく、任意の大きさの直方体状で形成されるので、その
質量が増加し、感度向上が計れる。
According to such a configuration, the inertial mass section 3' is formed not in a mesa shape but in a rectangular parallelepiped shape of an arbitrary size, so that its mass increases and sensitivity can be improved.

また、一対の溝2a’12b’をシリコン基板1内に逆
り字状に形成したことによシ、容量形成部11に加速度
が加わり、慣性質量部3/が下方向に慣性力Fが与えら
れても第2図に示すように一対の薄肉状起歪部4m、4
bが逆り字状溝2a’12b’内のそれぞれの角部1a
r1bに当接して支持され、さらに大きな加速度が加わ
)、第3図に示すように慣性質量部31に多大な慣性力
F′が与えられても一対の薄肉状起歪部4m 、 4b
がそれぞれ4A、4Bを支点としてそれぞれ角部1a、
lbに当接して慣性質量部3′の底面が基台に接触する
範囲まで支持させることができる。したがって過大な加
速度に対しても、2段構えの最終ストッパとしての機能
が得られ、それ以上の変形による破壊を防止することが
できる。
Further, by forming the pair of grooves 2a'12b' in an inverted shape in the silicon substrate 1, acceleration is applied to the capacitance forming part 11, and an inertial force F is applied downward to the inertial mass part 3/. As shown in FIG. 2, even if the
b is each corner 1a in the inverted groove 2a'12b'
r1b, and a larger acceleration is applied thereto), and as shown in FIG.
are corner portions 1a and 4A and 4B, respectively, as fulcrums, respectively.
The inertial mass part 3' can be supported to the extent that the bottom surface of the inertial mass part 3' comes into contact with the base. Therefore, even in the case of excessive acceleration, the function as a two-stage final stopper can be obtained, and destruction due to further deformation can be prevented.

第1図は本発明による加速度セ/すの他の実施例を示す
断面図であり、前述の図と同一部分には同一符号を付し
である。同図において、第1図と異なる点は、シリコン
基板10表面が(100)面である点でこの結晶面の(
100)面に対して異方性エツチングを行なって結晶面
の(110)軸方向に沿った溝2&’j2b’が形成さ
れて加速度センサが構成されている。
FIG. 1 is a sectional view showing another embodiment of the acceleration sensor according to the present invention, and the same parts as in the previous figures are given the same reference numerals. The difference between this figure and FIG. 1 is that the surface of the silicon substrate 10 is a (100) plane, which is the (100) plane of this crystal plane.
The acceleration sensor is constructed by performing anisotropic etching on the 100) plane to form grooves 2&'j2b' along the (110) axis direction of the crystal plane.

このような構成においても前述と全く同等の効果が得ら
れる。
Even in such a configuration, effects completely equivalent to those described above can be obtained.

第5図(、)〜0)は本発明による加速度センサの製造
方法の一実施例を説明する工程の断面図である。
FIGS. 5(a) to 5(a) are cross-sectional views illustrating an embodiment of the method for manufacturing an acceleration sensor according to the present invention.

同図において、まず、同図(畠)に示すようにP型シリ
コン基板10表面に例えばSi3N4 などのエツチン
グマスク材21を成膜した後、このエツチングマスク材
21に前記逆り字状溝2m’+ 2b’内のシリコン基
板1表面と平行とカる部分に相当する一対の窓パターン
21鼻、 21bを7オトリソグラフイ技術によυパタ
ーニングして形成し、この一対の窓パターン21m 、
 21b内を例えばKOHなどのエツチング液により異
方性エツチングを行なって一対の# 22m 、 22
bを形成した後、エツチングマスク材21を除去する。
In the same figure, first, as shown in the same figure (Hata), an etching mask material 21 such as Si3N4 is formed on the surface of a P-type silicon substrate 10, and then the above-mentioned inverted-shaped groove 2m' is formed in this etching mask material 21. A pair of window patterns 21m, 21b corresponding to the portion parallel to the surface of the silicon substrate 1 in +2b' are formed by υ patterning using the 7 otolithography technique, and this pair of window patterns 21m,
21b is anisotropically etched using an etching solution such as KOH to form a pair of #22m, 22
After forming the etching mask material 21, the etching mask material 21 is removed.

次に同図(b)に示すように一対の溝22m 、 22
b内で前記逆り字状溝2m’+ 2b’のシリコン基板
1表面と垂直となる部分に図示しないが例えば熱酸化膜
などのマスク材を成膜し、シリコン基板10表面および
一対の溝22m 、 22b内に例えばリンなどを熱拡
散してn型不純物拡散層23を形成する。次にこのシリ
コン基板1の裏面側に前述と同様な方法によシ513N
4のエツチングマスク材を形成し、KOHで異方性エツ
チングを行なって前記慣性質量部3′となる部分に溝2
4を形成する。次に同図(d)に示すよう表面に11型
不純物拡散層23を形成したシリコン基板1上に、一方
の面にn型エピタキシャル層25を形成したP型シリコ
ン基板26を例えば1000〜1100℃の酸化雰囲気
中で7ユージヨンボンドを行なってそのn型エピタキシ
ャル層25側を直接接合し一体化する。次にこのn型エ
ピタキシャル層25を形成したシリコン基板26を例え
ばKOH溶液中に浸漬し、n型不純物拡散層23が形成
されたシリコン基板1に数〜IOV程度の正電位を与え
てエツチングを行なうと、同図(・)に示すようにn型
エピタキシャル層25の部分でエツチングが止シ、同図
(d)に示したシリコン基板26はエツチング除去され
る。次に同図(f)に示すようにn型エピタキシャル層
25の表面所定位置に下部電極10および電極数シ出し
部6を形成した後、シリコン基板1の裏面側に前述と同
様な方法によ’り5t3N<のエツチングマスク材を形
成し、KOH溶液中に浸漬し、n型エピタキシャル層2
5に数〜10数ボルト程度の正電位を与えてエツチング
を行なうと、n型エピタキシャル層25およびn型不純
物拡散層23の部分でエツチングが止シ、前述した一対
の溝22m 、 22bにそれぞれ連通する一対の逆り
字状溝26m 、 26bが形成される。次に同図(x
’)VC示すようにn型エピタキシャル層25上に、内
面凹部に上部電極8を形成したパイレックス製キャップ
Tを陽極接合法によυ接合して第1図と同等の加速度セ
ンサが完成される。
Next, as shown in the same figure (b), a pair of grooves 22m, 22
Although not shown, a masking material such as a thermal oxide film is formed on a portion of the inverted grooves 2m'+2b' perpendicular to the surface of the silicon substrate 1 within b, and the surface of the silicon substrate 10 and the pair of grooves 22m are formed. , 22b, for example, by thermally diffusing phosphorus or the like to form an n-type impurity diffusion layer 23. Next, apply 513N to the back side of this silicon substrate 1 in the same manner as described above.
An etching mask material No. 4 is formed, and anisotropic etching is performed using KOH to form a groove 2 in the portion that will become the inertial mass portion 3'.
form 4. Next, as shown in FIG. 2D, a P-type silicon substrate 26 having an n-type epitaxial layer 25 formed on one surface is heated to 1000 to 1100° C. on the silicon substrate 1 having an 11-type impurity diffusion layer 23 formed on its surface. The n-type epitaxial layer 25 side is directly bonded and integrated by performing 7-generation bonding in an oxidizing atmosphere. Next, the silicon substrate 26 on which the n-type epitaxial layer 25 is formed is immersed in, for example, a KOH solution, and etching is performed by applying a positive potential of several to IOV to the silicon substrate 1 on which the n-type impurity diffusion layer 23 is formed. The etching is then stopped at the n-type epitaxial layer 25, as shown in () in the same figure, and the silicon substrate 26 shown in (d) in the same figure is etched away. Next, as shown in FIG. 3(f), after forming the lower electrode 10 and the electrode number protrusion 6 at predetermined positions on the surface of the n-type epitaxial layer 25, the same method as described above is performed on the back side of the silicon substrate 1. An etching mask material with a thickness of 5t3N< is formed and immersed in a KOH solution to form an n-type epitaxial layer 2.
When etching is performed by applying a positive potential of several to ten-odd volts to 5, the etching stops at the n-type epitaxial layer 25 and n-type impurity diffusion layer 23, and the grooves 22m and 22b communicate with each other. A pair of inverted grooves 26m and 26b are formed. Next, the same figure (x
') VC As shown in FIG. 1, a Pyrex cap T having an upper electrode 8 formed in a concave inner surface is bonded to the n-type epitaxial layer 25 by an anodic bonding method to complete an acceleration sensor similar to that shown in FIG.

このような方法によれば、慣性質量部3′を懸架支持す
る一対の逆り字状の溝2m’ + 2b’が、シリコン
基板1の異方性エツチングおよび電界ストップエツチン
グ技術によシシリコン基板10表面と平行な一対の溝2
2m 、 22bおよび連通する垂直な溝26& 、 
26bを食刻することにより形成できるので、シリコン
基板1の表面には一対の起歪部4&。
According to this method, the pair of inverted grooves 2m'+2b', which suspend and support the inertial mass part 3', are etched into the silicon substrate 10 by anisotropic etching of the silicon substrate 1 and electric field stop etching technology. A pair of grooves 2 parallel to the surface
2m, 22b and a communicating vertical groove 26&,
Since it can be formed by etching 26b, a pair of strain-generating parts 4& is formed on the surface of the silicon substrate 1.

4bが高感度構造で形成できるとともにこの一対の起歪
部4m、4bと正確な位置に慣性質量部3′の過大変位
をストップさせる角部1m、1bが高精度で形成するこ
とができる。また、上述した工程は、通常のIC製造プ
ロセスと同様にφ4′ウェハから一度に500〜100
0個形成できるため、量産性もある。
4b can be formed with a highly sensitive structure, and the corner parts 1m and 1b that stop excessive displacement of the inertial mass part 3' can be formed with high precision at the exact positions of the pair of strain-generating parts 4m and 4b. In addition, the above-mentioned process can process 500 to 100 pieces at a time from a φ4′ wafer, similar to the normal IC manufacturing process.
Since 0 pieces can be formed, mass production is possible.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、シリコン基板内に
一定の間隙幅を有する一対のL字状の溝を形成し、この
シリコン基板の表面部分にシリコン薄肉状の一対の起歪
部を形成してこの一対の起歪部間にシリコン厚肉状の慣
性質量部を支持させたことによシ、高感度および高耐圧
が達成できるとともに高感度と高耐圧という相矛盾する
特性の設計自由度が大幅に拡大される。また、表面に下
部電極を形成したセンサチップと内面に上部電極を形成
したキャップとを対向配置させて構成されるので、主構
成部材が従来の3点から2点に軽減されるとともに小型
化が可能となるなどの極めて優れた効果が得られる。
As explained above, according to the present invention, a pair of L-shaped grooves having a constant gap width are formed in a silicon substrate, and a pair of thin-walled silicon strain-generating parts are formed in the surface portion of the silicon substrate. By supporting a silicon thick-walled inertial mass part between the pair of strain-generating parts, high sensitivity and high withstand voltage can be achieved, as well as a degree of freedom in designing the contradictory characteristics of high sensitivity and high withstand voltage. will be significantly expanded. In addition, since the sensor chip with the lower electrode formed on the surface and the cap with the upper electrode formed on the inner surface are arranged facing each other, the number of main components can be reduced from the conventional three to two, and the size can be reduced. Extremely excellent effects such as being possible can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による加速度センサの一実施例を示す断
面図、第2図および第3図は第1図の加速度センサの作
用を説明する断面図、第1図は本発明による加速度セン
サの他、の実施例を示す断面図、第5図(&)〜(X)
は本発明による加速度センサの製造方法の一実施例を示
す工程の断面図、第6図は従来の加速度センサの構成を
示す断面図である。 1・e・・シリコン基板、1畠、1b−−・−角部、2
&’+ 2&’+ 2b’、 2bla @ @ a溝
、3’@@@・慣性質量部、4m、4b・・・・起歪部
、4A、4BΦ・・・支点、6・−・・電極域シ出し部
、1−−・・上部シリコンキャップ、8・・・・上部電
極、10・・・・下部電極、11・・・・容量形成部、
21・・・・エツチングマスク、21m。 21b・・・・窓パターン、22m + 22b・・・
e溝、23・・・eH型不純物拡散層、24@e・・溝
、25・・・・n型エピタキシャル層、26m 、 2
6b・・・・逆り字状溝。
FIG. 1 is a cross-sectional view showing an embodiment of the acceleration sensor according to the present invention, FIGS. 2 and 3 are cross-sectional views explaining the operation of the acceleration sensor shown in FIG. 1, and FIG. Cross-sectional views showing other embodiments, FIGS. 5(&) to (X)
6 is a cross-sectional view showing a process of an embodiment of the method for manufacturing an acceleration sensor according to the present invention, and FIG. 6 is a cross-sectional view showing the configuration of a conventional acceleration sensor. 1・e...Silicon substrate, 1 field, 1b----corner, 2
&'+ 2&'+ 2b', 2bla @ @ a groove, 3'@@@・Inertial mass part, 4m, 4b... Strain part, 4A, 4BΦ... Fulcrum, 6... Electrode area projection part, 1-- upper silicon cap, 8-- upper electrode, 10-- lower electrode, 11-- capacitance forming part,
21...Etching mask, 21m. 21b...Window pattern, 22m + 22b...
e groove, 23...eH type impurity diffusion layer, 24@e...groove, 25...n type epitaxial layer, 26m, 2
6b...Inverted groove.

Claims (2)

【特許請求の範囲】[Claims] (1)シリコン基板の一方の面と垂直方向に一定の間隙
幅を有して第1の溝を設けるとともにこの第1の溝の底
部と連結してこのシリコン基板面と平行方向に外側方向
へ向つて所定の間隙幅を有する第2の溝を設けてシリコ
ン基板と垂直方向の断面がL字状の溝を形成してシリコ
ン基板の他方の面に形成されたシリコン薄肉状の起歪部
と、この起歪部間に懸架支持されたシリコン厚肉状の慣
性質量部と、このシリコン基板の他方の面に形成された
下部電極と、とのシリコン基板の他方の面上に接着配置
されたキャップと、このキャップの内面に下部電極と対
向して配置された上部電極とを備えたことを特徴とする
加速度センサ。
(1) A first groove is provided with a constant gap width in a direction perpendicular to one surface of the silicon substrate, and connected to the bottom of the first groove to extend outward in a direction parallel to the silicon substrate surface. A second groove having a predetermined gap width is provided on the other side of the silicon substrate to form a groove having an L-shaped cross section in a direction perpendicular to the silicon substrate. , a silicon thick-walled inertial mass section suspended and supported between the strain-generating sections, and a lower electrode formed on the other surface of the silicon substrate, which are adhesively arranged on the other surface of the silicon substrate. An acceleration sensor comprising: a cap; and an upper electrode disposed on the inner surface of the cap to face a lower electrode.
(2)第1の第1導電型のシリコン基板の一方の面に第
2の溝を形成する工程と、第2の溝内の一部分を除き第
1の第1導電型のシリコン基板の一方の面に第2導電型
の不純物拡散層を形成する工程と、第1の第1導電型の
シリコン基板の他方の面に第2の溝と所定の位置関係を
有して第3の溝を形成する工程と、一方の面に第2導電
型のエピタキシャル層を有する第2の第1導電型のシリ
コン基板をその第2導電型のエピタキシャル層を第1の
第1導電型のシリコン基板の第2導電型の不純物拡散層
形成面と接着する工程と、第2の第1導電型のシリコン
基板の第2導電型のエピタキシャル層に正電位を印加し
ながら第2の第1導電型のシリコン基板をエッチング除
去する工程と、第2導電型のエピタキシャル層の表面に
下部電極を形成する工程と、第2導電型のエピタキシャ
ル層に正電位を印加しながら第1の第1導電型のシリコ
ン基板の他方の面から第2の溝に対応する個所をエッチ
ングし第2の溝と連結する第1の溝を形成する工程と、
第2導電型のエピタキシャル層上に内面凹部に上部電極
を形成したキャップを接着する工程とからなる加速度セ
ンサの製造方法。
(2) forming a second groove on one side of the first silicon substrate of the first conductivity type; forming an impurity diffusion layer of a second conductivity type on a surface, and forming a third groove having a predetermined positional relationship with the second groove on the other surface of the first silicon substrate of the first conductivity type; a second silicon substrate of the first conductivity type having an epitaxial layer of the second conductivity type on one surface, and a second silicon substrate of the first conductivity type; A step of adhering a conductivity type impurity diffusion layer formation surface, and a second conductivity type silicon substrate while applying a positive potential to the second conductivity type epitaxial layer of the first conductivity type silicon substrate. a step of etching away the second conductive type epitaxial layer; a step of forming a lower electrode on the surface of the second conductive type epitaxial layer; and a step of removing the first first conductive type silicon substrate while applying a positive potential to the second conductive type epitaxial layer. etching a portion corresponding to the second groove from the surface to form a first groove connected to the second groove;
A method for manufacturing an acceleration sensor comprising the step of bonding a cap having an upper electrode formed in a recessed part on an epitaxial layer of a second conductivity type.
JP24906489A 1989-09-27 1989-09-27 Acceleration sensor and manufacturing method thereof Expired - Lifetime JPH0748566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24906489A JPH0748566B2 (en) 1989-09-27 1989-09-27 Acceleration sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24906489A JPH0748566B2 (en) 1989-09-27 1989-09-27 Acceleration sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH03112170A true JPH03112170A (en) 1991-05-13
JPH0748566B2 JPH0748566B2 (en) 1995-05-24

Family

ID=17187472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24906489A Expired - Lifetime JPH0748566B2 (en) 1989-09-27 1989-09-27 Acceleration sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0748566B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0480471A2 (en) * 1990-10-12 1992-04-15 OKADA, Kazuhiro Force detector and acceleration detector and method of manufacturing the same
EP0657718A1 (en) * 1993-12-07 1995-06-14 Matsushita Electric Industrial Co., Ltd. Capacitance sensor and method of manufacturing the same
US7430915B2 (en) * 2003-09-02 2008-10-07 Hosiden Corporation Vibration sensor
US20090309174A1 (en) * 2008-06-17 2009-12-17 Infineon Technologies Ag Sensor module and semiconductor chip
JP2012181198A (en) * 2012-04-05 2012-09-20 Dainippon Printing Co Ltd Sensor device manufacturing method and sensor device
US9209319B2 (en) 2010-06-30 2015-12-08 Dai Nippon Printing Co., Ltd Sensor device manufacturing method and sensor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0480471A2 (en) * 1990-10-12 1992-04-15 OKADA, Kazuhiro Force detector and acceleration detector and method of manufacturing the same
EP0657718A1 (en) * 1993-12-07 1995-06-14 Matsushita Electric Industrial Co., Ltd. Capacitance sensor and method of manufacturing the same
US7430915B2 (en) * 2003-09-02 2008-10-07 Hosiden Corporation Vibration sensor
US20090309174A1 (en) * 2008-06-17 2009-12-17 Infineon Technologies Ag Sensor module and semiconductor chip
US8604566B2 (en) * 2008-06-17 2013-12-10 Infineon Technologies Ag Sensor module and semiconductor chip
US9090453B2 (en) 2008-06-17 2015-07-28 Infineon Technologies Ag Sensor module and semiconductor chip
US9533874B2 (en) 2008-06-17 2017-01-03 Infineon Technologies Ag Sensor module and semiconductor chip
US9209319B2 (en) 2010-06-30 2015-12-08 Dai Nippon Printing Co., Ltd Sensor device manufacturing method and sensor device
JP2012181198A (en) * 2012-04-05 2012-09-20 Dainippon Printing Co Ltd Sensor device manufacturing method and sensor device

Also Published As

Publication number Publication date
JPH0748566B2 (en) 1995-05-24

Similar Documents

Publication Publication Date Title
EP0631122B1 (en) High sensitivity miniature pressure transducer with tensioned diaphragm
US4574327A (en) Capacitive transducer
KR0137931B1 (en) Capacitive semiconductor sensor with hinged diaphragm for planar motion
US8207586B2 (en) Substrate bonded MEMS sensor
EP0518997B1 (en) Differential capacitive transducer
JPS58501697A (en) capacitive pressure transducer
JPH04313031A (en) Vibration measuring sensor and manufacture thereof
FI81915C (en) KAPACITIV ACCELERATIONSGIVARE OCH FOERFARANDE FOER FRAMSTAELLNING DAERAV.
EP2346083A1 (en) Mems sensor
US6973829B2 (en) Semiconductor dynamic quantity sensor with movable electrode and fixed electrode supported by support substrate
JPH03112170A (en) Acceleration sensor and its manufacture
US6051855A (en) Electrostatic capacitive sensor
KR20000028948A (en) Method for manufacturing an angular rate sensor
JPH11230985A (en) Semiconductor dynamic quantity sensor
US4883768A (en) Mesa fabrication in semiconductor structures
JPH07167725A (en) Capacitive pressure sensor and its manufacture
JPH10111203A (en) Capacitive semiconductor sensor and its production
JP2006200980A (en) Capacitance type pressure sensor and capacitance type actuator
JPH1144705A (en) Semiconductor acceleration sensor and its manufacture
JPH04302175A (en) Manufacture of semiconductor acceleration sensor
JP3021905B2 (en) Manufacturing method of semiconductor acceleration sensor
JPH07225243A (en) Acceleration sensor and its production, method for detecting acceleration by the acceleration sensor and acceleration sensor array
JP4345907B2 (en) Manufacturing method of semiconductor sensor
JPH09178770A (en) Semiconductor acceleration sensor
JP2512171B2 (en) Acceleration detector