JPH0748441B2 - Method for producing oxide garnet single crystal - Google Patents

Method for producing oxide garnet single crystal

Info

Publication number
JPH0748441B2
JPH0748441B2 JP1053306A JP5330689A JPH0748441B2 JP H0748441 B2 JPH0748441 B2 JP H0748441B2 JP 1053306 A JP1053306 A JP 1053306A JP 5330689 A JP5330689 A JP 5330689A JP H0748441 B2 JPH0748441 B2 JP H0748441B2
Authority
JP
Japan
Prior art keywords
single crystal
garnet single
oxide garnet
substrate
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1053306A
Other languages
Japanese (ja)
Other versions
JPH02232913A (en
Inventor
俊彦 流王
由則 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP1053306A priority Critical patent/JPH0748441B2/en
Publication of JPH02232913A publication Critical patent/JPH02232913A/en
Publication of JPH0748441B2 publication Critical patent/JPH0748441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は酸化物ガーネット単結晶の製造方法、特にはバ
ブルメモリィ、磁気光学素子、マイクロ波素子などの用
途に有用とされる、一様な膜厚を有する酸化物ガーネッ
ト単結晶の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a method for producing an oxide garnet single crystal, and particularly to a uniform method which is useful for applications such as bubble memory, magneto-optical device, and microwave device. The present invention relates to a method for producing an oxide garnet single crystal having a film thickness.

[従来の技術] 酸化物ガーネット単結晶の製造は一般に液相エピタキシ
ャル法(以下LPE法と略記する)によって行なわれてお
り、これはルツボ中にPbO,B2O3などのフラックスと共に
ガーネット成分となる金属酸化物を溶かし込んで飽和メ
ルト液を作り、ついでこの融液中に基板を浸漬し、回転
および/または反転させながらこの基板上に酸化物ガー
ネット単結晶を成長させるという方法で作られている。
[Prior Art] Generally, an oxide garnet single crystal is manufactured by a liquid phase epitaxial method (hereinafter abbreviated as LPE method), which is used as a garnet component together with a flux such as PbO and B 2 O 3 in a crucible. It is made by melting a metal oxide to form a saturated melt, and then immersing the substrate in this melt and rotating and / or reversing it to grow an oxide garnet single crystal on the substrate. There is.

[発明が解決しようとする課題] しかし、この酸化物ガーネット単結晶についてはこれを
磁気バブル、磁気光学素子、マイクロ波素子として使用
しようとするときには各種の磁性特性の変化の少ないこ
とが要求される。また、特に磁気特性のもととなる膜厚
については同一のウエーハ内での膜厚変動の少ないこと
が要求されるのであるが、このLPE法で作られた酸化物
ガーネット単結晶は同一ウエーハ内で均一な厚味を得る
ことが難しく、したがって磁性特性も不均一なものとな
るため、これを磁気バブルメモリーに使用するとコラッ
プス磁界差の大きいものとなるし、磁気光学素子に用い
るとファラデー回転角の変動の大きいものになり、さら
にマイクロ波素子に使用すると磁気共鳴半値幅(ΔH)
のウエーハ両面のバラ付きが大きくなるために充分な特
性が得られず、したがってこれらの用途には使用できな
いという不利がある。
[Problems to be Solved by the Invention] However, when this oxide garnet single crystal is used as a magnetic bubble, a magneto-optical element, or a microwave element, it is required that various changes in magnetic characteristics are small. . Also, regarding the film thickness that is the basis of the magnetic characteristics, it is required that the film thickness fluctuation within the same wafer is small, but the oxide garnet single crystal produced by this LPE method is used within the same wafer. Since it is difficult to obtain a uniform thickness and the magnetic properties are also non-uniform, the use of this in a magnetic bubble memory results in a large difference in the collapse magnetic field, and when used in a magneto-optical element, the Faraday rotation angle. Of the magnetic resonance half-width (ΔH) when used in a microwave device.
However, there is a disadvantage that sufficient characteristics cannot be obtained due to the large variation on both sides of the wafer, and therefore it cannot be used for these applications.

[課題を解決するための手段] 本発明はこのような不利を解決することのできる酸化物
ガーネット単結晶の製造方法に関するものであり、これ
は融液中に浸漬した基板を回転および/または反転させ
ながら、この基板上に酸化物ガーネット単結晶を成長さ
せる液相エピタキシャル法による酸化物ガーネット単結
晶の製造方法において、基板の回転軸を融液槽の中心軸
から5mm以上偏心させることを特徴とするものであり、
これはまたこの液相エピタキシャル法において基板の回
転軸と融液槽の中心軸とを交錯させることを特徴とする
ものである。
[Means for Solving the Problems] The present invention relates to a method for producing an oxide garnet single crystal capable of solving such disadvantages, which involves rotating and / or inverting a substrate immersed in a melt. While producing, in the method for producing an oxide garnet single crystal by the liquid phase epitaxial method of growing an oxide garnet single crystal on this substrate, the rotation axis of the substrate is eccentric from the central axis of the melt tank by 5 mm or more, Is what
This is also characterized in that in this liquid phase epitaxial method, the rotation axis of the substrate and the central axis of the melt bath are crossed.

すなわち、本発明者らはLPE法により得られる酸化物ガ
ーネット単結晶の膜厚を均一にする方法について種々検
討した結果、LPE法における基板の回転軸を融液槽の中
心軸から5mm以上、好ましくは12mm以上偏心させるか、
基板の回転軸を融液槽の中心軸と交錯させると得られる
酸化物ガーネット単結晶の磁性膜はその同一膜内での膜
厚のバラ付きが±3%以内になって均一な膜厚をもつも
のになるということを見出し、したがってこれによれば
磁性特性のバラ付きの少ない酸化物ガーネット単結晶が
得られることを確認して本発明を完成させた。
That is, the present inventors have variously studied the method of making the film thickness of the oxide garnet single crystal obtained by the LPE method uniform, the rotational axis of the substrate in the LPE method from the central axis of the melt tank 5mm or more, preferably Is eccentric by 12 mm or more,
The oxide garnet single crystal magnetic film obtained when the rotation axis of the substrate intersects with the center axis of the melt tank has a uniform film thickness because the variation in film thickness within the same film is within ± 3%. The present invention has been completed by discovering that the oxide garnet single crystal can be obtained, and therefore, according to this, it is possible to obtain an oxide garnet single crystal with less variation in magnetic properties.

以下にこれをさらに詳述する。This will be described in more detail below.

[作用] 本発明による酸化物ガーネット単結晶の製造はLPE法に
よるものであるが、目的とする酸化物ガーネット単結晶
を育成するために使用するガーネット基板単結晶は公知
のものでよくこれには例えばガドリニウム・ガリウム・
ガーネット(以下GGGと略記する)、サマリウム・ガリ
ウム・ガーネット(以下SGGと略記する)、ネオジム・
ガリウム・ガーネット(以下NGGと略記する)、上記し
たGGGにCa,Mg,ZrまたはYを置換したGGG系のSOG,NOG,YO
G[いずれも信越化学工業(株)商品名]とすればよ
く、これらはGd2O3,Sm2O3,Nd2O3または必要に応じCaO,W
gO,ZrO2,Y2O3などの置換元素をそれぞれGa2O3の所定量
と共にルツボに仕込み、高周波誘導でそれぞれの融点以
上に加熱して溶融したのち、この融液からチョクラルス
キー法で単結晶を引上げることによって得ることができ
る。
[Operation] Although the oxide garnet single crystal according to the present invention is produced by the LPE method, the garnet substrate single crystal used for growing the target oxide garnet single crystal may be a known one, and Gadolinium gallium
Garnet (hereinafter abbreviated as GGG), samarium gallium garnet (hereinafter abbreviated as SGG), neodymium
Gallium garnet (hereinafter abbreviated as NGG), GGG-based SOG, NOG, YO in which Ca, Mg, Zr or Y is substituted for the above GGG
G [all are trade names of Shin-Etsu Chemical Co., Ltd.], and these are Gd 2 O 3 , Sm 2 O 3 , Nd 2 O 3 or, if necessary, CaO, W.
Substituting elements such as gO, ZrO 2 and Y 2 O 3 together with a predetermined amount of Ga 2 O 3 were charged into a crucible and heated to a temperature higher than the melting point of each by high frequency induction to melt, and then the Czochralski method was used from this melt. Can be obtained by pulling a single crystal with.

また、この基板単結晶上に液相エピタキシャル法でエピ
タキシャル成長させる、酸化物ガーネット単結晶膜も公
知のものでよく、これについては例えば組成式がY3Fe5O
12または(YMFe)8O12で示され、このMがLa,Bi,Gd,Lu,S
m,Ca,Ge,Ga,Al,Sc,Inの少なくとも1種の元素であるも
のが選択されるが、この式Y3Fe5O12または(YMFe)8O12
示される単結晶は白金ルツボ中に各成分の金属酸化物の
所要量をフラックス成分のPbO,B2O3と共に仕込み、900
〜1,200℃に加熱してこれを融解させることによって融
液とすればよい。
Further, a known oxide garnet single crystal film, which is epitaxially grown on the substrate single crystal by the liquid phase epitaxial method, may have a composition formula of, for example, Y 3 Fe 5 O 3.
12 or (YMFe) 8 O 12 , where M is La, Bi, Gd, Lu, S
Although at least one element selected from m, Ca, Ge, Ga, Al, Sc, and In is selected, the single crystal represented by the formula Y 3 Fe 5 O 12 or (YMFe) 8 O 12 is platinum. Charge the required amount of metal oxide of each component into the crucible together with the flux components PbO and B 2 O 3 , and add 900
A melt may be prepared by heating the mixture to 1,200 ° C to melt it.

本発明による酸化物ガーネット単結晶の製造はこのよう
にして作られた融液中に上記したガーネット基板を浸漬
し、これを回転および/または反転させながら引上げて
この基板上に酸化物ガーネット単結晶を成長させて酸化
物ガーネット単結晶を製造するに当り、この基板の回転
軸を融液槽の中心軸から5mm以上、好ましくは12mm以上
偏心させるか交錯させるのであるが、この偏心量は5mm
未満ではマイナスの効果となるので、これは5mm以上と
することが必要であり、またこの交錯については交錯角
度が2°未満では効果が低く、6°以上とするとルツボ
の保持構造の設計が困難となるわりには効果がうすくな
るので、この交錯角θは2°≦θ≦6°とすることが必
要である。
The oxide garnet single crystal according to the present invention is produced by immersing the above-mentioned garnet substrate in the melt thus prepared, and pulling it while rotating and / or inverting the oxide garnet single crystal. In producing an oxide garnet single crystal by growing, the rotational axis of this substrate is 5 mm or more from the center axis of the melt tank, preferably 12 mm or more eccentric or crossed, but this eccentric amount is 5 mm.
If it is less than 2 °, the effect is low, and if it is more than 6 °, it is difficult to design the crucible holding structure. However, the crossing angle θ needs to be 2 ° ≦ θ ≦ 6 ° because the effect becomes thin.

なお、第1図は本発明によるLPE法による酸化物ガーネ
ット単結晶製造装置の縦断面図を示したものであり、こ
れは例えば白金で作られたルツボ1の中に酸化物ガーネ
ット単結晶に相当する所定量の金属酸化物をPbO,B2O3
どのフラックス成分と共に溶融した融液2が収容されて
おり、これが加熱器3を備えた縦型成長炉4の中に装備
されている。酸化物ガーネット単結晶のLPE法による成
長は棒状把持部5にホルダー6をもつ引上機にガーネッ
ト基板7を取りつけ、これを融液2の中に浸漬してから
回転および/また反転させながら引上げてこの基板上に
酸化物ガーネット単結晶を成長させるのであるが、本発
明の方法ではこの基板の回転軸Aが融液槽の中心軸Bと
は図示されているように5mm以上、好ましくは12mm以上
偏心していることが必要であり、この偏心が5mm以上と
されていると、この基板7の上に成長される酸化物ガー
ネット単結晶の膜厚は±3%以内の均一な厚さのものと
なる。なお、この基板の回転軸Aと融液槽との中心軸と
を交錯させるものは図示されていないが、これは例えば
ルツボの保持台(図示せず)を2°〜6°傾斜させれば
よい。
FIG. 1 is a vertical sectional view of an oxide garnet single crystal production apparatus by the LPE method according to the present invention, which corresponds to an oxide garnet single crystal in a crucible 1 made of platinum, for example. A melt 2 in which a predetermined amount of metal oxide is melted together with flux components such as PbO and B 2 O 3 is housed, and the melt 2 is installed in a vertical growth furnace 4 equipped with a heater 3. To grow an oxide garnet single crystal by the LPE method, a garnet substrate 7 is attached to a pulling machine having a holder 6 on a rod-shaped grip portion 5, the garnet substrate 7 is immersed in the melt 2, and then pulled while rotating and / or inverting. The oxide garnet single crystal is grown on the lever substrate. In the method of the present invention, the rotation axis A of the substrate and the center axis B of the melt tank are 5 mm or more, preferably 12 mm, as shown in the drawing. It is necessary to be eccentric as described above, and if the eccentricity is set to 5 mm or more, the oxide garnet single crystal grown on the substrate 7 has a uniform thickness within ± 3%. Becomes It is to be noted that although the rotation axis A of the substrate and the center axis of the melt tank are not shown in the drawing, this is not the case if, for example, a crucible holding table (not shown) is tilted by 2 ° to 6 °. Good.

[実施例] つぎに本発明の実施例をあげる。[Examples] Next, examples of the present invention will be described.

実施例1 エピタキシャル膜の成分となるY2O315.8g、Sm2O312.8
g、Lu2O329.1g、CaCO329.2g、Fe2O3862g、Ge2O2161gと
フラックス成分としてのPbO9,312g、B2O3124gを秤取し
たのち、これらを白金ルツボ内に装入し、縦型環状炉内
で1,100℃まで加熱してこれを溶融した。
Example 1 Y 2 O 3 15.8 g and Sm 2 O 3 12.8 which are components of an epitaxial film
g, Lu 2 O 3 29.1 g, CaCO 3 29.2 g, Fe 2 O 3 862 g, Ge 2 O 2 161 g and PbO 9,312 g and B 2 O 3 124 g as flux components were weighed and placed in a platinum crucible. And was heated to 1,100 ° C in a vertical annular furnace to melt it.

ついでこの融液の温度を過飽和温度以上の一定温度に保
ち、ここに3インチφのGGGウエーハを挿入し、このGGG
基板を60rpmに回転させながら引上げてこの基板上に(YS
mLuCa)3(FeGe)5O12の酸化物ガーネット単結晶を膜状に
成長させ、このようにして得たエピタキシャルウエーハ
の膜厚およびコラップス磁界の測定を第2図に示した
〜の5箇所を測定点として行ない、この実験を基板の
回転軸と融液槽の中心軸との相対位置を換えて行なった
ところ、基板の回転軸と融液槽中心軸との偏心(ズレ)
に応じて が第3図に示したように変化すること、またコラップス
磁界差(Oe)が第4図に示したように変化することが確
認された。
Then, keep the temperature of this melt at a constant temperature above the supersaturation temperature, insert a 3-inch φ GGG wafer into this GGG.
While pulling the substrate while rotating it to 60 rpm, (YS
mLuCa) 3 (FeGe) 5 O 12 oxide garnet single crystal was grown in a film shape, and the thickness and the collapse magnetic field of the epitaxial wafer thus obtained were measured at the 5 points of ~ shown in Fig. 2. As a measurement point, this experiment was carried out by changing the relative position between the substrate rotation axis and the melt tank center axis. The eccentricity (deviation) between the substrate rotation axis and the melt tank center axis
In response to the Was confirmed to change as shown in FIG. 3, and the collapse magnetic field difference (Oe) was changed as shown in FIG.

実施例2 実施例1と同様に操作したが、実施例1におけるルツボ
の保持台を0°,2°,4°,6°傾斜させてGGG基板の回転
軸と融液槽の中心軸をこの傾斜角で交錯させるようにし
たところ、得られたエピタキシャルウエーハのコラップ
ス磁界差(Oe)がこのツルボ支持台傾斜角度の変化に応
じて第5図に示したように変化することが確認された。
Example 2 The operation was performed in the same manner as in Example 1, but the crucible holding base in Example 1 was tilted at 0 °, 2 °, 4 °, and 6 ° so that the rotation axis of the GGG substrate and the central axis of the melt bath were set to this. It was confirmed that the collapsible magnetic field difference (Oe) of the obtained epitaxial wafer was changed as shown in FIG. 5 according to the change of the tilt angle of the trough support when the tilt angle was changed.

[発明の効果] 本発明による酸化物ガーネット単結晶の製造は、前記し
たように公知の液相エピタキシャル法において酸化物ガ
ーネット単結晶を成長させる基板の回転軸と融液槽の中
心軸とを5mm以上偏心させるか交錯させるというもので
あるが、これによれば得られる酸化物ガーネット単結晶
はその膜厚が±3%以内で均一となり、磁性特性のバラ
付きも少ないものとなるので、これはバブルメモリ、磁
気光学素子、マイクロ波素子として使用することができ
るようになるという有利性が与えられる。
[Effects of the Invention] As described above, the oxide garnet single crystal according to the present invention is manufactured by using the known liquid phase epitaxial method, in which the axis of rotation of the substrate on which the oxide garnet single crystal is grown and the central axis of the melt tank are 5 mm. The eccentricity or crossing is performed as described above. According to this method, the oxide garnet single crystal obtained has a uniform film thickness within ± 3%, and there is little variation in magnetic properties. It offers the advantage of being able to be used as bubble memory, magneto-optical element, microwave element.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施に使用される酸化物ガーネット単
結晶製造装置の縦断面図、第2図は実施例で得られた酸
化物ガーネット単結晶ウエーハの膜厚およびコラップス
磁界の測定点を示す平面図、第3図は実施例1における
基板回転軸と融液槽中心軸との偏心(ズレ)と膜厚差と
の関係グラフ、第4図はこの偏心(ズレ)とコラップス
磁界差との関係グラフ、第5図は実施例2におけるルツ
ボ保持台の傾斜角度とコラップス磁界差との関係グラフ
を示したものである。
FIG. 1 is a vertical cross-sectional view of an oxide garnet single crystal production apparatus used for carrying out the present invention, and FIG. 2 shows the measurement points of the film thickness and the collapse magnetic field of the oxide garnet single crystal wafer obtained in the example. FIG. 3 is a plan view showing the relationship between the eccentricity (deviation) between the substrate rotation axis and the melt bath central axis and the film thickness difference in Example 1, and FIG. 4 shows the eccentricity (deviation) and the collapse magnetic field difference. 5 is a relationship graph between the inclination angle of the crucible holding base and the collapse magnetic field difference in the second embodiment.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】融液中に浸漬した基板を回転および/また
は反転させながら引上げ、この基板上に酸化物ガーネッ
ト単結晶を成長させる液相エピタキシャル法による酸化
物ガーネット単結晶の製造方法において、基板の回転軸
を融液槽の中心軸から5mm以上偏心させることを特徴と
する酸化物ガーネット単結晶の製造方法。
1. A method for producing an oxide garnet single crystal by a liquid phase epitaxial method in which a substrate immersed in a melt is pulled while rotating and / or inverting to grow an oxide garnet single crystal on the substrate. A method for producing an oxide garnet single crystal, characterized in that the rotation axis of is eccentric with respect to the central axis of the melt tank by 5 mm or more.
【請求項2】融液中に浸漬した基板を回転および/また
は反転させながら引上げ、この基板上に酸化物ガーネッ
ト単結晶を成長させる液晶エピタキシャル法による酸化
物ガーネット単結晶の製造方法において、基板の回転軸
と融液槽の中心軸とを交錯させることを特徴とする酸化
物ガーネット単結晶の製造方法。
2. A method for producing an oxide garnet single crystal by a liquid crystal epitaxial method, wherein a substrate immersed in a melt is pulled while rotating and / or inverting, and an oxide garnet single crystal is grown on the substrate. A method for producing an oxide garnet single crystal, characterized by intersecting a rotation axis and a central axis of a melt tank.
【請求項3】交錯角度θが2°≦θ≦6°とされる請求
項2に記載の酸化物ガーネット単結晶の製造方法。
3. The method for producing an oxide garnet single crystal according to claim 2, wherein the intersecting angle θ is 2 ° ≦ θ ≦ 6 °.
JP1053306A 1989-03-06 1989-03-06 Method for producing oxide garnet single crystal Expired - Fee Related JPH0748441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1053306A JPH0748441B2 (en) 1989-03-06 1989-03-06 Method for producing oxide garnet single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1053306A JPH0748441B2 (en) 1989-03-06 1989-03-06 Method for producing oxide garnet single crystal

Publications (2)

Publication Number Publication Date
JPH02232913A JPH02232913A (en) 1990-09-14
JPH0748441B2 true JPH0748441B2 (en) 1995-05-24

Family

ID=12939037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1053306A Expired - Fee Related JPH0748441B2 (en) 1989-03-06 1989-03-06 Method for producing oxide garnet single crystal

Country Status (1)

Country Link
JP (1) JPH0748441B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6259740B2 (en) * 2014-09-11 2018-01-10 国立大学法人名古屋大学 Silicon carbide crystal manufacturing method and crystal manufacturing apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4951595A (en) * 1972-09-25 1974-05-18
JPS49123500A (en) * 1973-04-02 1974-11-26

Also Published As

Publication number Publication date
JPH02232913A (en) 1990-09-14

Similar Documents

Publication Publication Date Title
JPH0354198A (en) Oxide garnet single crystal
Shone The technology of YIG film growth
US4293371A (en) Method of making magnetic film-substrate composites
US4092208A (en) Method of growing single crystals of rare earth metal iron garnet materials
JPH0748441B2 (en) Method for producing oxide garnet single crystal
US4323618A (en) Single crystal of calcium-gallium germanium garnet and substrate manufactured from such a single crystal and having an epitaxially grown bubble domain film
Giess Liquid phase epitaxy of magnetic garnets
JPS5918199A (en) Liquid phase epitaxial growth of garnet film
JPS6360195A (en) Liquid phase epitaxy
JP2756273B2 (en) Oxide garnet single crystal and method for producing the same
US3873463A (en) Method of and device for manufacturing substituted single crystals
JP2800974B2 (en) Garnet single crystal film and method for producing the same
JPH11171689A (en) Production of oxide single crystal film
JPH0631197B2 (en) Method for producing oxide garnet single crystal
JP3089742B2 (en) Materials for magnetostatic wave devices
JPS63144189A (en) Apparatus for liquid epitaxy
JPH02248398A (en) Oxide garnet single crystal film and its production
JPH01230498A (en) Method for forming garnet membrane
JP2000357622A (en) Method for manufacturing magnetic garnet single crystal film, and the magnetic garnet single crystal film
JPS63233094A (en) Method for liquid phase epitaxy
JPH0748442B2 (en) Method for manufacturing single crystal magnetic film
Davies et al. The stability of the supersaturated state in isothermal fluxed melts used for magnetic garnet LPE
JP3089741B2 (en) Materials for magnetostatic wave devices
JPH11171690A (en) Holder for growing oxide single crystal
JPS5910131Y2 (en) Single crystal growth equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees