JPH0747786B2 - Operation method of flash smelting furnace - Google Patents

Operation method of flash smelting furnace

Info

Publication number
JPH0747786B2
JPH0747786B2 JP2168845A JP16884590A JPH0747786B2 JP H0747786 B2 JPH0747786 B2 JP H0747786B2 JP 2168845 A JP2168845 A JP 2168845A JP 16884590 A JP16884590 A JP 16884590A JP H0747786 B2 JPH0747786 B2 JP H0747786B2
Authority
JP
Japan
Prior art keywords
oxygen
concentrate
furnace
smelting
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2168845A
Other languages
Japanese (ja)
Other versions
JPH0472024A (en
Inventor
伸正 家守
明彦 赤田
康裕 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2168845A priority Critical patent/JPH0747786B2/en
Priority to CA002039687A priority patent/CA2039687C/en
Priority to AU75337/91A priority patent/AU635128B2/en
Priority to KR1019910007546A priority patent/KR930012179B1/en
Publication of JPH0472024A publication Critical patent/JPH0472024A/en
Priority to US07/864,126 priority patent/US5174746A/en
Publication of JPH0747786B2 publication Critical patent/JPH0747786B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/22Arrangements of air or gas supply devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Gas Burners (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特に非鉄金属製錬を行なうための自熔製錬炉
の操業方法に関する。
TECHNICAL FIELD The present invention relates to a method for operating a flash smelting furnace for performing non-ferrous metal smelting.

〔従来の技術〕[Conventional technology]

硫化精鉱を原料とする製錬炉の一つに自熔製錬炉がある
が、第3図は所謂、オートクンプ式自熔製錬炉と呼ばれ
るこの種の自熔製錬炉の構成例を示しており、図におい
て、自熔製錬炉1は、頂部に精鉱バーナー2が設けられ
た反応塔3と該反応塔4の下部に一端が接続されると共
に側面部にカラミ抜き口4及びカワ抜き口5が設けられ
たセトラー6と該セトラー6の他端に接続された廃煙道
7とから基本的に構成されている。かかるオートクンプ
式自熔製錬炉の操業において、先づ、硫化精鉱,フラッ
クス及び補助燃料等の製錬原料8が反応用空気9の一部
と共に精鉱バーナー2を介して反応塔3に吹込まれる。
そしてこの反応塔3内では、補助燃料の燃焼によって昇
温せしめられた製錬原料8の可燃成分である硫黄と鉄
は、それと同様に昇温せしめられた反応用空気9と反応
して溶解した状態でセトラー6内に溜められる。更に湯
溜りとしてのセトラー6において、溜められた溶体はそ
の成分の比重差によりCu2S及びFeSの混合物であるカワ1
0と2FeO・SiO2を主成分とするカラミ11とに分離する。そ
してカラミ11はカラミ抜き口4から排出されて電気錬カ
ン炉12へ導入され、一方、カワ10はカワ抜き口5から次
の工程の転炉からの要求に応じて適宜排出される。電気
錬カン炉12に入ったカラミ11は更に、電極13からの通電
により生じた熱により加熱保持され、電気錬カン炉12に
必要に応じて投入される塊状鉱石又は塊状フラックス等
と混合せしめられるが、このとき銅成分は更に炉底に沈
積し、又、僅かに残った銅成分を含んだカラミのみが抜
き口14から炉外部へ排出される。尚、反応塔3内で発生
する高温廃ガス15はセトラー6及び廃煙道7を経由して
廃熱ボイラー16により冷却される。
One of the smelting furnaces that uses sulphide concentrate as a raw material is a flash smelting furnace, and Fig. 3 shows an example of the configuration of this type of flash smelting furnace called the so-called auto-kump flash smelting furnace. In the figure, the flash smelting furnace 1 has a reaction tower 3 provided with a concentrate burner 2 at the top and one end connected to the lower part of the reaction tower 4 and a side wall provided with a calami outlet 4 and It is basically composed of a settler 6 provided with a leather outlet 5 and a waste smoke path 7 connected to the other end of the settler 6. In the operation of such an auto-kump type flash smelting furnace, the smelting raw material 8 such as sulfide concentrate, flux and auxiliary fuel is blown to the reaction tower 3 through the concentrate burner 2 together with a part of the reaction air 9. Get caught.
Then, in the reaction tower 3, sulfur and iron, which are combustible components of the smelting raw material 8 heated by the combustion of the auxiliary fuel, react with the heated reaction air 9 and are melted. It is stored in the settler 6 in the state. Further, in the settler 6 as the hot water pool, the pooled solution is a mixture of Cu 2 S and FeS due to the difference in the specific gravity of its components.
Separated into 0 and Karami 11 containing 2FeO.SiO 2 as the main component. Then, the Karami 11 is discharged from the Karami discharge port 4 and introduced into the electric smelting furnace 12, while the river 10 is appropriately discharged from the Kawa discharge port 5 in accordance with the request from the converter in the next step. The kalami 11 that has entered the electrolysis furnace 12 is further heated and held by the heat generated by the energization from the electrode 13, and is mixed with the lump ore or lump flux that is charged into the electrolysis furnace 12 as necessary. However, at this time, the copper component is further deposited on the bottom of the furnace, and only the kelami containing the slightly remaining copper component is discharged from the outlet 14 to the outside of the furnace. The high temperature waste gas 15 generated in the reaction tower 3 is cooled by the waste heat boiler 16 via the settler 6 and the waste flue 7.

上記オートクンプ式自熔製錬炉は、製錬原料の酸化度の
調整と製錬温度の調整とが互いに独立して行えるため、
原料の組成が変化せざるを得ない買鉱製錬所用としては
好適である。
In the auto-kump type self-melting smelting furnace, since the adjustment of the degree of oxidation of the smelting raw material and the adjustment of the smelting temperature can be performed independently of each other,
It is suitable for purchasing mines and smelters where the composition of raw materials must be changed.

しかしながら、かかる従来の自熔製錬炉では、先づ製錬
原料8を溶解せしめる上で必要な熱量が十分に得られな
いという問題があった。即ち、通常、精鉱バーナー2を
介して吹き込まれる製錬原料8の粒子の滞溜時間は約1
秒程度であり、そしてこの間に該粒子をその着火温度ま
で昇温せしめて反応用空気9中の酸素と反応させること
により溶解しなければならないが、従ってこのために反
応用空気9を予加熱して着火温度まで速やかに昇温させ
る必要があるにも拘らず、製錬炉装置の材質の耐熱温度
等の関係で反応用空気9の上限温度が400〜500℃に制約
され、予加熱を十分に行なうことができない結果、煙灰
発生率が高くなるばかりか、酸素利用率即ち酸素効率も
低くならざるを得なかった。
However, in such a conventional flash smelting furnace, there has been a problem that a sufficient amount of heat for melting the smelting raw material 8 first cannot be obtained. That is, normally, the retention time of particles of the smelting raw material 8 blown through the concentrate burner 2 is about 1
Seconds, and during this time the particles have to be dissolved by elevating their temperature to their ignition temperature and reacting with the oxygen in the reaction air 9, for which purpose the reaction air 9 must be preheated. Although it is necessary to quickly raise the temperature to the ignition temperature, the upper limit temperature of the reaction air 9 is restricted to 400 to 500 ° C due to the heat resistant temperature of the material of the smelting furnace equipment, and the preheating is sufficient. As a result, it is inevitable that not only the smoke ash generation rate becomes high, but also the oxygen utilization rate, that is, the oxygen efficiency becomes low.

そこで、かかる問題を解決すべく反応用空気として酸素
富化した空気を用いる方法が実用化されてきており、例
えば特公昭59-41495号公報により開示された装置によれ
ば、工業用酸素と硫化精鉱との高反応性に着目して、酸
素富化用の酸素の全量若しくは一部を精鉱シュート内に
噴射すると共に空気若しくは酸素富化空気を精鉱バーナ
ーのベンチュリー部から送風し、これにより硫化精鉱等
の製錬原料と酸素との混合分散を均一に行なわしめて、
酸素効率の向上を図ったものがある。
Therefore, in order to solve such a problem, a method using oxygen-enriched air as a reaction air has been put into practical use. For example, according to the apparatus disclosed in Japanese Patent Publication No. 59-41495, industrial oxygen and sulfur are used. Focusing on the high reactivity with the concentrate, all or part of the oxygen for oxygen enrichment is injected into the concentrate chute and air or oxygen enriched air is blown from the venturi section of the concentrate burner. To uniformly mix and disperse the smelting raw material such as sulfide concentrate and oxygen,
There are some that are designed to improve oxygen efficiency.

一方、精鉱バーナー2から炉1の反応塔3内に吹き込ま
れた製錬原料と酸素富化用酸素又は酸素富化された反応
用空気との混合度合が乏しい場合、製錬原料と反応する
酸素の利用効率即ち酸素効率が低下する。酸素効率が低
い場合、必要以上の酸素富化用酸素又は酸素富化された
反応用空気を供給する必要が生じ、このことは余分に供
給する反応用空気を昇温させるための補助燃料の増加
と、廃ガス量の増加に伴う煙灰発生率の上昇につなが
る。
On the other hand, when the degree of mixing of the smelting raw material blown from the concentrate burner 2 into the reaction tower 3 of the furnace 1 and the oxygen-enriched oxygen or the oxygen-enriched reaction air is poor, the smelting raw material is reacted. The utilization efficiency of oxygen, that is, the oxygen efficiency decreases. When the oxygen efficiency is low, it becomes necessary to supply more oxygen-enriching oxygen or oxygen-enriched reaction air than necessary, and this increases the amount of auxiliary fuel for raising the temperature of the excess reaction air supplied. It also leads to an increase in the smoke ash generation rate with an increase in the amount of waste gas.

このような問題点を解消するものとして、従来例えば実
開平1-78161号公報,実開平1-78162号公報や特願平1-56
032号に記載のものがある。
In order to solve such problems, for example, Japanese Utility Model Laid-Open No. 1-78161, Japanese Utility Model Laid-Open No. 1-78162, and Japanese Patent Application No. 1-56
There is one described in No. 032.

実開平1-78161号公報と実開平1-78162号公報に記載のも
のは、送風管と、送風管の一端下面に同心円状に連接さ
れたベンチュリー部と、送風管の端部を上部から鉛直に
貫通してベンチュリー部に同心円状に延長された精鉱シ
ュートを備え、精鉱シュートとベンチュリー部の間を通
して送風管から送られてきた反応用空気を反応塔の頂部
内に吹き込む精鉱バーナー(以後、従来型精鉱バーナー
と言う。)において、ベンチュリー部に接近した送風管
内に1枚又は2枚の調風板を設け、ベンチュリー部から
の反応用空気の吹き出しが均一となるようにしたもので
ある。
The one described in Japanese Utility Model Laid-Open No. 1-78161 and Japanese Utility Model Laid-Open No. 1-78162 includes a blower pipe, a venturi portion concentrically connected to the lower surface of one end of the blower pipe, and an end portion of the blower pipe from the upper side. A concentrate burner that has a concentrate chute concentrically extended through the venturi section and penetrates into the venturi section and blows reaction air sent from a blower pipe between the concentrate chute and the venturi section into the top of the reaction tower ( Hereafter, referred to as a conventional concentrate burner.) In which one or two air conditioners were provided in the blower pipe close to the venturi section so that the reaction air could be blown out uniformly from the venturi section. Is.

又、特願平1-56032号に記載のものは、反応塔の側壁中
央部付近には該側壁の反応塔の中心点を通る鉛直線に線
対称となる位置に、夫々のノズルの送風軸方向が該鉛直
線方向となるようにして取付けられた一組の送風ノズル
の一組以上を設け且つ該送風ノズルは必要に応じ取付位
置を中心としてノズル送風軸方向を含む鉛直面内を回動
し得るようにして、反応用空気の一部を送風ノズルより
吹き込み、反応塔全域を乱流化することにより、精鉱バ
ーナーから反応塔内に吹き込まれた製錬原料は反応用空
気中に均一に分散され、且つ反応塔内での滞留時間も長
くなり、これによって精鉱等の製錬原料と反応用空気と
が充分に反応し、反応用空気の酸素効率が一段と改善さ
れ、その結果、煙灰発生率の低下及び未溶解物生成の防
止が行えるようにしたものである。
Further, the one described in Japanese Patent Application No. 1-56032 has a blower shaft of each nozzle in a position near the central portion of the side wall of the reaction tower at a position symmetrical to a vertical line passing through the center point of the reaction tower on the side wall. One or more sets of blower nozzles mounted so that the direction thereof is the vertical direction are provided, and the blower nozzles rotate within the vertical plane including the nozzle blow axis direction around the mounting position as necessary. As a result, by blowing a part of the reaction air from the blowing nozzle and making the entire reaction tower turbulent, the smelting raw material blown into the reaction tower from the concentrate burner is evenly distributed in the reaction air. , And the residence time in the reaction tower becomes longer, whereby the smelting raw material such as concentrate and the reaction air are sufficiently reacted, and the oxygen efficiency of the reaction air is further improved, and as a result, Made it possible to reduce the smoke ash generation rate and prevent the formation of undissolved substances. It is a thing.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ところが、特公昭59-41495号公報に記載の装置では、酸
素富化用の酸素を精鉱シュート内に噴射するようにして
いるので、精鉱シュートにおいて硫化精鉱が酸素と反応
して該シュート内に溶着し、精鉱シュートを閉塞せしめ
てしまい連続操業が不可能になるという問題があった。
そしてまた、この装置では、酸素気流中に精鉱粒子が充
分に懸垂しているので良好な炉内反応が行なわれ得るも
のの気流が拡がらないために燃焼によって発生するSO2
を含む排ガスと一緒に精鉱粒子が炉外部へ運び出され易
くなり、煙灰発生率を減少することができないばかり
か、操業条件によっては煙灰発生率が却って大きくなっ
てしまう等の不都合があった。
However, in the device described in Japanese Patent Publication No. 59-41495, since oxygen for oxygen enrichment is injected into the concentrate chute, the sulfide concentrate in the concentrate chute reacts with oxygen to cause the chute. There was a problem that it was welded inside and blocked the concentrate chute, making continuous operation impossible.
Further, in this apparatus, since the concentrate particles are sufficiently suspended in the oxygen stream, a good in-furnace reaction can be performed, but the air stream does not spread, so SO 2 generated by combustion is generated.
The concentrate particles are likely to be carried out to the outside of the furnace together with the exhaust gas containing, and not only the smoke ash generation rate cannot be reduced, but also the smoke ash generation rate rather increases depending on the operating conditions.

又、実開平1-78161号公報,実開平1-78162号公報に記載
のものは、従来型精鉱バーナーにおいて反応用空気のベ
ンチュリー部からの吹き出しを均一にするために調風板
を設置したものであり、従来型精鉱バーナーの持つ性能
を十分に発揮させるための技術ではあるが、従来型精鉱
バーナーの性能は、そもそも煙灰発生率で9%以上、酸
素効率で80%以下でしかなく、これ以上の性能は望めな
い。
In addition, in those disclosed in Japanese Utility Model Laid-Open No. 1-78161 and Japanese Utility Model Laid-Open No. 1-78162, a ventilation plate is installed in a conventional concentrate burner in order to make the ventilating section of reaction air uniform. Although it is a technology to make full use of the performance of the conventional concentrate burner, the performance of the conventional concentrate burner is only 9% or more in the smoke ash generation rate and 80% or less in the oxygen efficiency in the first place. There is no better performance than this.

又、特願平1-56032号の実施例によれば、この操業で得
られた最も良い結果として煙灰発生率では5.8%、酸素
効率では100%という値が報告されており、この発明に
よる自熔製錬炉並びに操業方法が従来型精鉱バーナーを
用いた自熔製錬炉並びに操業方法よりも優れていること
は明らかである。しかしながら、その後の研究によれ
ば、上記実施例による操業において、製錬原料として硫
化精鉱以外に加える硅酸鉱の比率を高めていくと、煙灰
発生率はそれほど変化しないが、酸素効率が低下してい
くことが明らかとなった。これは、以下に示すような理
由によるものと考えられる。
Further, according to the example of Japanese Patent Application No. 1-56032, the best result obtained in this operation was reported to be a value of 5.8% in smoke ash generation rate and 100% in oxygen efficiency. It is clear that the smelting furnace and operating method are superior to the flash smelting furnace and operating method using the conventional concentrate burner. However, according to the subsequent studies, in the operation according to the above-mentioned example, when the ratio of silicate ore other than the sulfurized concentrate as a smelting raw material was increased, the smoke ash generation rate did not change so much, but the oxygen efficiency decreased. It became clear that it would do. This is considered to be due to the following reasons.

この操業方法に従えば、精鉱バーナーにより形成される
ジェット流に反応用気体の一部分を送風ノズルから吹き
当ててこれを反応塔内全域に拡がる乱流とするために、
補助燃料や反応用空気と共に精鉱バーナーから反応塔内
に吹き込まれた製錬原料は反応用空気に均一に分散され
る。ここで、製錬原料として桑えられる硫化精鉱以外の
硅酸鉱,鉄精粉,銅さい,煙灰等は非自燃物であり、反
応塔内部での精鉱の燃焼を阻害する。とりわけ硅酸鉱
は、その主成分であるSiO2の融点が1720℃と高いため、
精鉱の燃焼性の阻害の度合が高いことは明らかであり、
この操業方法においては、加えらえる硅酸鉱の割合を増
していくと、反応塔内において燃焼している精鉱と硅石
が均一に分散されるため、硅酸鉱はあたかも粉末消化剤
として作用する。これにより、燃焼している精鉱粒子自
体の温度低下を招き、精鉱自身の酸化反応が抑制され、
酸素効率の低下となる。
According to this operating method, in order to blow a part of the reaction gas from the blowing nozzle to the jet stream formed by the concentrate burner and make it a turbulent flow that spreads throughout the reaction tower,
The smelting raw material blown into the reaction tower from the concentrate burner together with the auxiliary fuel and the reaction air is uniformly dispersed in the reaction air. Here, silicate ores other than sulphurized concentrate, iron refined powder, copper syrup, smoke ash, etc., which are mulched as smelting raw materials, are non-self-combustible substances and inhibit combustion of the concentrate inside the reaction tower. In particular, silicate ore has a high melting point of 1720 ° C, which is the main component of SiO 2 ,
It is clear that the degree of inhibition of the flammability of the concentrate is high,
In this operating method, when the proportion of silicate ore added is increased, the burning concentrate and silica are uniformly dispersed, so that the silicate ore acts as if it were a powder extinguishing agent. To do. As a result, the temperature of the burning concentrate particles itself is lowered, and the oxidation reaction of the concentrate itself is suppressed,
Oxygen efficiency is reduced.

本発明は、上記問題点に鑑み、反応用空気として酸素富
化空気を用いる非鉄金属硫化物用自熔炉において、酸素
効率の大幅な向上と煙灰発生率の減少を図ることができ
る自熔製錬炉の操業方法を提供することを目的としてい
る。
In view of the above problems, the present invention is a self-melting smelting furnace for non-ferrous metal sulfides that uses oxygen-enriched air as reaction air, which can significantly improve oxygen efficiency and reduce smoke ash generation rate. It is intended to provide a method of operating a furnace.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明による自熔製錬炉の操業方法の一つは、 反応塔と、該反応塔の下部に一端が接続されていて側面
部にカラミ抜き口及びカワ抜き口が設けられたセトラー
と、該セトラーの他端に接続された廃煙道と、前記反応
塔の頂部及び/又は前記セトラーの天井部に設けられた
少なくとも一個の精鉱バーナーとを備え、前記精鉱バー
ナーが、少なくとも、精鉱シュートと、該精鉱シュート
内に挿入された酸素吹き込み管と、該酸素吹き込み管内
に挿入された補助燃料バーナーとから構成されている、
自熔製錬炉の操業方法において、 前記酸素吹き込み管の下端部が前記精鉱シュートの下端
よりも下方に突出するようにし、製錬原料と補助燃料の
燃焼に必要な酸素量のうち少なくとも補助燃料のための
酸素量以上を工業用酸素として前記酸素吹き込み管を介
して炉内に吹き込むようにしたことを特徴としている。
One of the operating methods of the flash smelting furnace according to the present invention is a reaction tower, a settler having one end connected to a lower part of the reaction tower and a side wall provided with a drainage port and a drain port, A waste flue connected to the other end of the settler, and at least one concentrate burner provided at the top of the reaction tower and / or at the ceiling of the settler, wherein the concentrate burner is at least the concentrate. A chute, an oxygen blowing tube inserted into the concentrate chute, and an auxiliary fuel burner inserted into the oxygen blowing tube,
In a method of operating a flash smelting furnace, the lower end of the oxygen blowing pipe is made to project below the lower end of the concentrate chute, and at least the auxiliary amount of oxygen necessary for burning the smelting raw material and auxiliary fuel is supplemented. It is characterized in that an amount of oxygen for fuel or more is blown into the furnace as industrial oxygen through the oxygen blowing pipe.

又、他の一つは、上記構成に加えて、 製錬原料と補助燃料の燃焼に必要な酸素量の全てを工業
用酸素として前記酸素吹き込み管を介して炉内に吹き込
むようにしたことを特徴としている。
In addition to the above configuration, the other one is that all of the oxygen amount necessary for combustion of the smelting raw material and the auxiliary fuel is blown into the furnace as industrial oxygen through the oxygen blowing pipe. It has a feature.

更に、他の一つは、上記構成に加えて、 前記補助燃料バーナーの下端が前記酸素吹き込み管の下
端と同一レベルになるように構成したことを特徴として
いる。
Further, in addition to the above configuration, the other one is characterized in that the lower end of the auxiliary fuel burner is at the same level as the lower end of the oxygen blowing pipe.

〔作用〕[Action]

上記構成によれば、精鉱シュートから供給される製錬原
料のうち、自燃性を有する銅,ニッケル,鉛等の非鉄金
属硫化精鉱は、炉壁からの輻射熱又は高温の排ガス又は
補助燃料バーナーにより形成された火炎により急速に昇
温・着火する。そして、補助燃料の燃焼のための酸素量
以上の工業用酸素が酸素吹き込み管を介して吹き込むよ
うになっているので、着火した硫化精鉱は、酸素吹き込
み管より供給される工業用酸素と直ちに反応してカワと
カラミと排ガスを形成し、このうち高温のカワとカラミ
は反応塔内を落下する途中に互いに衝突して粒子が肥大
化し、又製錬原料として加えられる硅酸鉱,銅さい,鉄
精粉,煙灰等の非自燃物とも衝突してこれらを熔融させ
る。又、非自燃物の一部は、硫化精鉱の燃焼による輻射
熱や高温の排ガスによっても熔融させられる。ここで、
酸素吹き出し管より供給される工業用酸素は通常酸素温
度で90%以上のものを指すので、硫化精鉱の酸化反応
(燃焼)は空気や酸素富化空気のときの酸化反応に比べ
迅速である。その理由は、空気や酸素富化空気には酸素
以外の不活性な窒素を多く含むため、これが硫化精鉱と
酸素との反応を阻害するからである。又、硫化精鉱の燃
焼の際に放出されるSO2を主とする排ガスも、工業用酸
素の場合窒素等を昇温させる必要がないため、空気や酸
素富化空気を用いた際の排ガスよりも高温となる。以上
のような作用により、反応塔内に供給された製錬原料が
工業用酸素と効率よく反応するため、煙灰発生率が低く
且つ高酸素効率の自熔製錬が可能となる。
According to the above configuration, among the smelting raw materials supplied from the concentrate chute, the non-ferrous metal sulfide concentrate having self-combustibility such as copper, nickel and lead is radiant heat from the furnace wall or high temperature exhaust gas or auxiliary fuel burner. The temperature rises and ignites rapidly due to the flame formed by. Then, since industrial oxygen in excess of the amount of oxygen for combustion of the auxiliary fuel is blown through the oxygen blowing pipe, the ignited sulfide concentrate is immediately mixed with industrial oxygen supplied from the oxygen blowing pipe. Reacting to form Kawa, Karami and exhaust gas, of which Hot Kawa and Karami collide with each other while falling in the reaction tower and the particles become enlarged, and silicate ore and copper slag added as smelting raw materials. , Collides with non-self-burning substances such as iron refined powder and smoke ash, and melts them. Further, some of the non-self-burning substances are also melted by the radiant heat generated by the combustion of the sulfide concentrate and the high temperature exhaust gas. here,
Since the industrial oxygen supplied from the oxygen blow-out pipe is usually 90% or more at the oxygen temperature, the oxidation reaction (combustion) of the sulfide concentrate is quicker than the oxidation reaction in the case of air or oxygen-enriched air. . The reason is that air and oxygen-enriched air contain a large amount of inert nitrogen other than oxygen, and this hinders the reaction between the sulfide concentrate and oxygen. Exhaust gas mainly composed of SO 2 released during combustion of sulfide concentrate does not require heating of nitrogen or the like in the case of industrial oxygen, so exhaust gas generated when air or oxygen-enriched air is used. Will be hotter than. With the above-described action, the smelting raw material supplied into the reaction tower efficiently reacts with industrial oxygen, so that it is possible to carry out self-melting smelting with a low smoke ash generation rate and high oxygen efficiency.

特に、製錬原料と補助燃料の燃焼に必要な酸素量の全て
を工業用酸素として酸素吹き込み管を介して炉内に吹き
込めば、製錬原料として硫化精鉱以外の非自燃物の添加
割合を増加させても上記原理により低い煙灰発生率と高
い酸素効率が得られる。
In particular, if all the amount of oxygen required for combustion of the smelting raw material and the auxiliary fuel is blown into the furnace as oxygen for industrial use through the oxygen blowing pipe, the addition ratio of non-self-combustible substances other than the sulfide concentrate as the smelting raw material is increased. Even if it is increased, a low smoke ash generation rate and high oxygen efficiency can be obtained by the above principle.

更に、補助燃料バーナーの下端が酸素吹き込み管の下端
と同一レベルになるように構成すれば、最良の結果が得
られる。これは、該下端近傍に激しい重油燃焼フレーム
が形成され、このフレームの中を通過する製錬原料の反
応が極めて短時間で完了し、その結果反応塔内での粒子
間の相互衝突による肥大化のための時間を延長すること
ができるからである。
Further, best results are obtained if the lower end of the auxiliary fuel burner is at the same level as the lower end of the oxygen blowing tube. This is because a heavy fuel oil combustion frame is formed near the lower end, the reaction of the smelting raw material passing through this frame is completed in an extremely short time, and as a result, enlargement due to mutual collision between particles in the reaction tower. This is because the time for can be extended.

〔実施例〕〔Example〕

以下、図示した実施例に基づき本発明を詳細に説明す
る。
Hereinafter, the present invention will be described in detail based on the illustrated embodiments.

実施例1 第1図は本実施例で使用する自熔製錬炉の精鉱バーナー
2′の概略図であって、17は絞り部17aと下方に向けて
拡開する開口17bを有するウインドボックス、18は下端
が上記絞り部17aよりも僅かに下方に位置するようにウ
インドボックス17の中央部に垂設された精鉱シュート、
19は精鉱シュート18に同心に貫挿されていて該精鉱シュ
ート18の先端よりも下方に突出する下端部の外周に分散
コーン20を備えている酸素吹込み管、21は酸素吹込み管
19に同心に貫挿され且つその下端が該酸素吹込み管19の
下端と同一レベルになるように位置付けされた補助燃料
バーナーである。そして、かかる精鉱バーナー2′を頂
部に備えた内径1.5m及び高さ4.0mの反応塔3と内径1.5m
及び長さ5.25mのセトラー6(第3図参照)を備えた精
鉱処理量約0.8t/hの中規模試験炉を用いて、下記第1表
に示した条件で夫々4日間の試験操業を行った。
Embodiment 1 FIG. 1 is a schematic view of a concentrate burner 2'of a flash smelting furnace used in this embodiment, in which 17 is a wind box having a narrowed portion 17a and an opening 17b expanding downward. , 18 is a concentrate chute suspended in the central portion of the wind box 17 so that the lower end is located slightly below the narrowed portion 17a,
Reference numeral 19 is an oxygen blowing tube that is concentrically inserted into the concentrate chute 18 and has a dispersion cone 20 on the outer periphery of the lower end that projects downward from the tip of the concentrate chute 18, and 21 is an oxygen blowing tube.
The auxiliary fuel burner is concentrically inserted into 19 and positioned so that its lower end is at the same level as the lower end of the oxygen blowing pipe 19. And, a reaction tower 3 having an inside diameter of 1.5 m and a height of 4.0 m equipped with such a concentrate burner 2'at the top and an inside diameter of 1.5 m
And a medium-scale test furnace equipped with a settler 6 with a length of 5.25 m (see Fig. 3) and a throughput of about 0.8 t / h, and the test operation for 4 days under the conditions shown in Table 1 below. I went.

ここで、第1表中、工業用酸素量とは富化用酸素として
用いた工業用酸素の量をいい、又酸素吹込み管酸素量と
は該工業用酸素のうちの酸素吹込み管19から炉内に吹き
込んだ酸素の量をいう。そして、試験操業No.1(比較例
1)では、工業用酸素と空気とを混合し、その全量をウ
インドボックス17から供給し、又試験操業No.2では、補
助燃料としての重油の燃焼にのみ必要な酸素量(54Nm3/
h)を酸素吹込み管19から炉内に吹込み、残り分を空気
と混合してウインドボックス17から炉内に供給し、そし
て試験操業No.3では工業用酸素の全量(134Nm3/h)を酸
素吹込み管19から炉内に吹込んだ。尚、これらの場合
(No.1〜No.3)は、補助燃料バーナー21の下端部は酸素
吹込み管19の先端から下方へ突出するように調整されて
いる。更に、試験操業No.4は、補助燃料バーナー21の下
端が酸素吹込み管19の下端と同一レベルになるように位
置付けられている点以外は上記試験操業No.3の場合と同
様の操業条件である。
Here, in Table 1, the industrial oxygen amount means the amount of industrial oxygen used as the enrichment oxygen, and the oxygen blowing pipe oxygen amount means the oxygen blowing pipe 19 of the industrial oxygen. It means the amount of oxygen blown into the furnace. Then, in the test operation No. 1 (Comparative Example 1), industrial oxygen and air were mixed and the whole amount was supplied from the wind box 17, and in the test operation No. 2, for burning heavy oil as an auxiliary fuel. Only the amount of oxygen required (54 Nm 3 /
h) is blown into the furnace from the oxygen blowing pipe 19, the rest is mixed with air and fed into the furnace from the wind box 17, and in the test operation No. 3, the total amount of industrial oxygen (134 Nm 3 / h ) Was blown into the furnace through the oxygen blowing pipe 19. In these cases (No. 1 to No. 3), the lower end of the auxiliary fuel burner 21 is adjusted so as to project downward from the tip of the oxygen blowing pipe 19. Further, the test operation No. 4 is similar to the above-described test operation No. 3 except that the lower end of the auxiliary fuel burner 21 is positioned at the same level as the lower end of the oxygen blowing pipe 19. Is.

次に、上記各試験操業No.1〜No.4の結果を下記第2表に
示す。
Next, the results of each of the test operations No. 1 to No. 4 are shown in Table 2 below.

第2表に示された結果から明らかなように、補助燃料用
の酸素量以上の酸素を酸素吹込み管19から吹き込むこと
により、煙灰発生率が低減し、且つ酸素効率が向上する
ことは明らかである。即ち、通常、補助燃料の着火・燃
焼は精鉱の着火・燃焼に先行して生じるが、酸素吹込み
管19から吹き込む工業用酸素の量を少なくとも補助燃料
の燃焼に必要な酸素量以上にするとにより、発生した気
流中の酸素高濃度部分で精鉱と酸素とが激しく反応し、
これにより全体としての反応時間が著しく短縮される。
As is clear from the results shown in Table 2, it is clear that the smoke ash generation rate is reduced and the oxygen efficiency is improved by injecting oxygen in excess of the oxygen amount for the auxiliary fuel from the oxygen injection pipe 19. Is. That is, normally, the ignition / combustion of the auxiliary fuel occurs prior to the ignition / combustion of the concentrate, but if the amount of industrial oxygen blown from the oxygen blowing pipe 19 is at least the oxygen amount necessary for the combustion of the auxiliary fuel or more. As a result, the concentrate and oxygen react violently in the oxygen-rich portion of the generated air flow,
This significantly reduces the overall reaction time.

又、特に試験操業No.4の場合、富化用酸素の全量(134N
m3/h)を酸素吹込み管19から炉内に吹き込むだけでな
く、該酸素吹込み管19及び補助燃料バーナー21の下端を
同一レベルにしたことにより、最良の操業結果が得られ
る、これは、酸素吹込み管19と補助燃料バーナー21の先
端近傍に激しい重油燃焼フレームが形成され、このフレ
ームの中を通過する製錬原料が即座に加熱されて製錬原
料の反応が極めて短時間で完了し、この結果、反応塔3
内での粒子の相互衝突による肥大化のための時間を延長
することができるためである。
Also, especially in the case of test operation No. 4, the total amount of enriching oxygen (134N
m 3 / h) is not only blown into the furnace from the oxygen blowing pipe 19, but the lower end of the oxygen blowing pipe 19 and the auxiliary fuel burner 21 are at the same level, so that the best operation result is obtained. Is a violent heavy oil combustion frame is formed near the tip of the oxygen blowing pipe 19 and the auxiliary fuel burner 21, the smelting raw material passing through this frame is immediately heated, and the reaction of the smelting raw material occurs in an extremely short time. Completed, resulting in reaction tower 3
This is because it is possible to extend the time for enlargement due to mutual collision of particles inside.

更に、次の第3表及び第4表は、上記中規模試験炉にお
いて、酸素吹込み管19及び補助燃料バーナー21の下端を
同一レベルに調整し、且つ反応用空気として工業用酸素
のみを用いてその全量を酸素吹込み管19から炉内に吹き
込んで行なった試験操業No.5の操業条件並びにその操業
結果を示している。
Further, the following Tables 3 and 4 show that, in the above-mentioned medium-scale test furnace, the lower ends of the oxygen injection pipe 19 and the auxiliary fuel burner 21 were adjusted to the same level, and only the industrial oxygen was used as the reaction air. The operating conditions and results of test operation No. 5 performed by blowing the entire amount into the furnace from the oxygen injection pipe 19 are shown.

試験操業No.5によれば、煙灰発生率は格段に減少し、し
かも特に酸素利用効率を100%にすることができた。
According to the test operation No. 5, the smoke ash generation rate was remarkably reduced, and in particular, the oxygen utilization efficiency could be made 100%.

このように本実施例は酸素効率の向上を図ることができ
るが、上記自熔製錬炉における分散コーン20は製錬原料
を均一に分散せしめ、所謂ヒープ(未溶解物の塊り)の
発生を防止している。
As described above, in this embodiment, the oxygen efficiency can be improved, but the dispersion cone 20 in the flash smelting furnace uniformly disperses the smelting raw material, and so-called heap (lump of undissolved material) is generated. Is being prevented.

尚、上記試験操業No.5と同一条件にし、且つ酸素を酸素
吹込み管19の代わりに精鉱シュート18から炉内に吹き込
んだ場合、試験操業開始後2時間足らずで精鉱シュート
18内部で精鉱が燃焼して該精鉱シュート18は閉塞してし
まった。
When the same conditions as in the above-mentioned test operation No. 5 were applied and oxygen was blown into the furnace from the concentrate chute 18 instead of the oxygen blowing pipe 19, the concentrate chute was completed within 2 hours after the start of the test operation.
The concentrate burned inside 18 and the concentrate chute 18 was blocked.

実施例2 第2図は本実施例で使用する自熔製錬炉の精鉱バーナー
2″の概略図であって、これは実施例1の精鉱バーナー
(第1図)からウインドボックス17を除去して成るもの
である。そして、かかる精鉱バーナー2″を頂部に備え
た内径1.5m及び天井部からセトラー湯面までの高さが2.
5mの反応塔3と内径1.5m及び長さ5.25mのセトラー6を
備えた実験用小型自熔製錬炉を用いて、精鉱処理量を約
0.8t/hとし、目標とするカワ品位が50%となるように、
下記第1表に示す条件で操業を行なった。尚、試験操業
No.1は補助燃料バーナー21より7l/hの割合で重油を供給
して火炎を形成させたものであり、試験操業No.2は重油
を供給しない場合のもので、夫々3日間と2日間の操業
を行なった。
Example 2 FIG. 2 is a schematic view of a concentrate burner 2 ″ of a flash smelting furnace used in this example. It is made by removing the concentrate burner 2 ″ at the top with an inner diameter of 1.5 m and the height from the ceiling to the settler level is 2.
Using a small experimental flash smelting furnace equipped with a 5m reaction tower 3 and a settler 6 with an inner diameter of 1.5m and a length of 5.25m, the processing amount of the concentrate is about
0.8t / h, so that the target quality is 50%,
The operation was performed under the conditions shown in Table 1 below. In addition, test operation
No. 1 is the case where heavy oil is supplied from the auxiliary fuel burner 21 at a rate of 7 l / h to form a flame, and the test operation No. 2 is when no heavy oil is supplied, for 3 days and 2 days respectively. Was carried out.

その結果を下記第2表に示す。 The results are shown in Table 2 below.

比較例2 頂部に1基の従来型精鉱バーナーを配した実施例2と同
じ実験用小型自熔炉を用いて、目標とするカワ品位が58
%となるように下記第3表に示す条件No.3で2日間操業
を行なった。又、特願平1-56032号に示した頂部に1基
の精鉱バーナーとその側壁中央部付近に1組の送風ノズ
ルを設けた実施例2と同じ実験用小型自熔炉を用いて、
目標とするカワ品位が55%となるように下記第3表に示
す条件No.4で3日間操業を行なった。尚、下記第3表中
のLは反応塔の高さ、Iは反応塔の天井部から送風ノズ
ルまでの距離である。
Comparative Example 2 Using the same small experimental flash furnace as in Example 2 with one conventional concentrate burner on the top, the target Kawa quality was 58.
The operation was carried out for 2 days under the condition No. 3 shown in Table 3 below so that the ratio would be%. Further, using the same small flash furnace for experiment as in Example 2 in which one concentrate burner at the top and one set of air-blowing nozzles near the center of the side wall thereof were provided in Japanese Patent Application No. 1-56032,
The operation was carried out for 3 days under the condition No. 4 shown in Table 3 below so that the target quality of Kawa was 55%. In Table 3 below, L is the height of the reaction tower, and I is the distance from the ceiling of the reaction tower to the blowing nozzle.

その結果を下記第4表に示す。 The results are shown in Table 4 below.

実施例2と比較例2の結果の比較から明らかなように、
本発明の操業方法により、これまでの自熔製錬炉のより
も煙灰発生率が低く且つ酸素効率の高い操業が可能であ
ることが分かる。
As is clear from the comparison of the results of Example 2 and Comparative Example 2,
It can be seen that the operation method of the present invention enables operation with a lower smoke ash generation rate and higher oxygen efficiency than in conventional flash smelting furnaces.

実施例3 実施例2と同じ実験用小型自熔炉を用いて下記第1表に
示す操業条件によって、目標とするカワ品位が50%とな
るように操業を行なった。試験操業No.1は精鉱に対する
硅酸鉱添加率を高めたもの、試験操業No.2は硅石と鉄精
粉を添加して非自燃物の添加割合を高めたもので、夫々
2日間,3日間の操業を行なった。
Example 3 Using the same small experimental flash furnace as in Example 2, operation was carried out under the operating conditions shown in Table 1 below so that the target quality of the river would be 50%. The test operation No. 1 is the one in which the addition rate of silicate ore to the concentrate is increased, and the test operation No. 2 is the one in which silica and iron refined powder are added to increase the addition rate of the non-self-burning substances, for 2 days each. It was operated for 3 days.

その結果を下記第2表に示す。 The results are shown in Table 2 below.

比較例3 比較例2の試験操業No.4と同じく、頂部に1基の精鉱バ
ーナーとその側壁中央部付近に1組の送風ノズルを設け
た実験用小型自熔炉を用いて、下記第3表に示す操業条
件によって、目標とするカワ品位が55%となるように操
業を行なった。試験操業No.3は精鉱に対する硅酸鉱添加
率を高めたもの、試験操業No.4は硅酸鉱と鉄精粉を添加
して非自燃物の添加割合を高めたもので、夫々2日間,3
日間の操業を行なった。尚、下記第3表中Lは反応塔の
高さ、Iは反応塔の天井部から逆風ノズルまでの距離で
ある。
Comparative Example 3 Similar to the test operation No. 4 of Comparative Example 2, a small experimental flash furnace equipped with one concentrate burner at the top and a pair of blower nozzles near the center of the side wall of the burner was used. Under the operating conditions shown in the table, the operation was carried out so that the target quality of Kawa was 55%. Test operation No. 3 is for increasing the addition rate of silicate ore to concentrate, and test operation No. 4 is for increasing the addition rate of non-self-burning substances by adding silicate ore and iron refined powder. Days, 3
It was operated for a day. In Table 3 below, L is the height of the reaction tower, and I is the distance from the ceiling of the reaction tower to the backflow nozzle.

その結果を下記第4表に示す。 The results are shown in Table 4 below.

実施例3と比較例3の結果の比較から明らかなように本
発明の操業方法により、精鉱に対する非自燃物の添加割
合を高めても、従来の操業方法では不可能であった低煙
灰発生率且つ高酸素効率の自熔炉操業が可能であること
が分かる。
As is clear from the comparison between the results of Example 3 and Comparative Example 3, even if the operation method of the present invention increases the proportion of the non-self-burning substance added to the concentrate, low smoke ash generation was impossible with the conventional operation method. It is understood that it is possible to operate the flash furnace with high efficiency and high oxygen efficiency.

尚、従来型精鉱バーナーを備えた比較例2の試験操業N
o.3と同じ実験用小型自熔炉を用いて精鉱処理量0.823t/
h,硅酸鉱処理量0.115t/hの精鉱バーナー条件での操業を
行なったところ、反応塔直下の湯面上に未熔解物が堆積
し、4時間しか操業することができなかった。
The test operation N of Comparative Example 2 equipped with a conventional concentrate burner N
Using the same experimental small flash furnace as in o.3, the processing amount of concentrate was 0.823t /
When the operation was carried out under the conditions of a concentrate burner with a h, silicate ore processing amount of 0.115 t / h, unmelted matter was deposited on the surface of the molten metal directly under the reaction tower, and the operation could only be performed for 4 hours.

〔発明の効果〕〔The invention's effect〕

上述の如く、本発明による自熔製錬炉の操業方法によれ
ば、反応用空気として酸素富化空気を用いる非鉄金属酸
化物用自熔炉において、酸素効率の大幅な上昇と煙灰発
生率の減少を図ることができるという実用上重要な利点
を有している。
As described above, according to the method for operating a flash smelting furnace according to the present invention, in a flash furnace for non-ferrous metal oxides that uses oxygen-enriched air as reaction air, the oxygen efficiency is greatly increased and the smoke ash generation rate is reduced. It has an important practical advantage of being able to achieve

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例1で使用する自熔製錬炉の精鉱バーナー
の概略図、第2図は実施例2及び3で使用する自熔製錬
炉の精鉱バーナーの概略図、第3図は従来の自熔製錬炉
の構成を示す図である。 1……自熔製錬炉、2′,2″……精鉱バーナー、3……
反応塔、4……カラミ抜き口、5……カワ抜き口、6…
…セトラー、7……廃煙道、8……製錬原料、10……カ
ワ、11……カラミ、12……電気錬カン炉、13……電極、
14……抜き口、16……廃熱ボイラー、17……ウインドボ
ックス、18……精鉱シュート、19……酸素吹込み管、20
……分散コーン、21……補助燃料バーナー。
FIG. 1 is a schematic diagram of a concentrate burner of a flash smelting furnace used in Example 1, FIG. 2 is a schematic diagram of a concentrate burner of a flash smelting furnace used in Examples 2 and 3, and FIG. The figure is a diagram showing a configuration of a conventional flash smelting furnace. 1 …… Smelting and smelting furnace, 2 ′, 2 ″ …… Concentration burner, 3 ……
Reaction tower, 4 ... Karami outlet, 5 ... Kawa outlet, 6 ...
… Settler, 7 …… Waste flue, 8 …… Smelting raw material, 10 …… Kawa, 11 …… Kalami, 12 …… Electric smelting furnace, 13 …… Electrode,
14 …… Vent, 16 …… Waste heat boiler, 17 …… Windbox, 18 …… Concentrate chute, 19 …… Oxygen blowing pipe, 20
…… Dispersion cone, 21 …… Auxiliary fuel burner.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】反応塔と、該反応塔の下部に一端が接続さ
れていて側面部にカラミ抜き口及びカワ抜き口が設けら
れたセトラーと、該セトラーの他端に接続された廃煙道
と、前記反応塔の頂部及び/又は前記セトラーの天井部
に設けられた少なくとも一個の精鉱バーナーとを備え、
前記精鉱バーナーが、少なくとも、精鉱シュートと、該
精鉱シュート内に挿入された酸素吹き込み管と、該酸素
吹き込み管内に挿入された補助燃料バーナーとから構成
されている、自熔製錬炉の操業方法において、 前記酸素吹き込み管の下端部が前記精鉱シュートの下端
よりも下方に突出するようにし、製錬原料と補助燃料の
燃焼に必要な酸素量のうち少なくとも補助燃料のための
酸素量以上を工業用酸素として前記酸素吹き込み管を介
して炉内に吹き込むようにしたことを特徴とする自熔製
錬炉の操業方法。
1. A reaction tower, a settler having one end connected to a lower portion of the reaction tower and having a side opening provided with a drainage port and a drainage port, and a waste flue connected to the other end of the settler. And at least one concentrate burner provided on the top of the reaction tower and / or the ceiling of the settler,
A smelting and refining furnace in which the concentrate burner is composed of at least a concentrate chute, an oxygen blowing tube inserted into the concentrate chute, and an auxiliary fuel burner inserted into the oxygen blowing tube. In the operating method, the lower end of the oxygen blowing pipe is made to project below the lower end of the concentrate chute, and at least oxygen for the auxiliary fuel is contained in the amount of oxygen required for combustion of the smelting raw material and the auxiliary fuel. A method for operating a flash smelting furnace, characterized in that an amount of not less than industrial oxygen is blown into the furnace through the oxygen blowing pipe.
【請求項2】製錬原料と補助燃料の燃焼に必要な酸素量
の全てを工業用酸素として前記酸素吹き込み管を介して
炉内に吹き込むようにしたことを特徴とする請求項
(1)に記載の自熔製錬炉の操業方法。
2. The whole amount of oxygen required for combustion of the smelting raw material and the auxiliary fuel is blown into the furnace as industrial oxygen through the oxygen blowing pipe. The operating method of the described self-smelting and smelting furnace.
【請求項3】前記補助燃料バーナーの下端が前記酸素吹
き込み管の下端と同一レベルになるように構成したこと
を特徴とする請求項(1)又は(2)に記載の自熔製錬
炉の操業方法。
3. The flash smelting furnace according to claim 1, wherein the lower end of the auxiliary fuel burner is at the same level as the lower end of the oxygen blowing pipe. Operating method.
JP2168845A 1990-05-11 1990-06-27 Operation method of flash smelting furnace Expired - Fee Related JPH0747786B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2168845A JPH0747786B2 (en) 1990-05-11 1990-06-27 Operation method of flash smelting furnace
CA002039687A CA2039687C (en) 1990-05-11 1991-04-03 Method for operation of flash smelting furnace
AU75337/91A AU635128B2 (en) 1990-05-11 1991-04-23 Method for operation of flash smelting furnace
KR1019910007546A KR930012179B1 (en) 1990-05-11 1991-05-10 Method for operation of flash-smelting furnace
US07/864,126 US5174746A (en) 1990-05-11 1992-04-06 Method of operation of flash smelting furnace

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-121934 1990-05-11
JP12193490 1990-05-11
JP2168845A JPH0747786B2 (en) 1990-05-11 1990-06-27 Operation method of flash smelting furnace

Publications (2)

Publication Number Publication Date
JPH0472024A JPH0472024A (en) 1992-03-06
JPH0747786B2 true JPH0747786B2 (en) 1995-05-24

Family

ID=26459178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2168845A Expired - Fee Related JPH0747786B2 (en) 1990-05-11 1990-06-27 Operation method of flash smelting furnace

Country Status (4)

Country Link
JP (1) JPH0747786B2 (en)
KR (1) KR930012179B1 (en)
AU (1) AU635128B2 (en)
CA (1) CA2039687C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281252A (en) * 1992-12-18 1994-01-25 Inco Limited Conversion of non-ferrous sulfides
JP3852388B2 (en) * 2001-09-13 2006-11-29 住友金属鉱山株式会社 Concentrate burner for flash smelting furnace
FI118540B (en) * 2006-04-04 2007-12-14 Outotec Oyj Method and apparatus for treating process gas
JP5502047B2 (en) * 2011-09-30 2014-05-28 パンパシフィック・カッパー株式会社 How to operate a copper smelting flash furnace
CN112981133B (en) * 2021-02-06 2023-01-03 易门铜业有限公司 Method for reducing smoke dust rate of copper smelting bottom blowing furnace

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256538A (en) * 1985-09-05 1987-03-12 Sumitomo Metal Mining Co Ltd Self fluxing smelting furnace
JPS63199829A (en) * 1987-02-13 1988-08-18 Sumitomo Metal Mining Co Ltd Method for operating flash-smelting furnace

Also Published As

Publication number Publication date
KR910020185A (en) 1991-12-19
AU7533791A (en) 1991-11-14
CA2039687A1 (en) 1991-11-12
JPH0472024A (en) 1992-03-06
CA2039687C (en) 1997-03-25
AU635128B2 (en) 1993-03-11
KR930012179B1 (en) 1993-12-24

Similar Documents

Publication Publication Date Title
JPS6227138B2 (en)
EP2051946B1 (en) Process for making mineral fibres
CN112080645A (en) Method and device for recovering zinc oxide and iron from zinc-containing soot
US5181955A (en) Method and apparatus for heating and smelting pulverous solids and for volatilizing the volatile ingredients thereof in a suspension smelting furnace
US4824362A (en) Method for operation of flash smelting furnace
US9322552B2 (en) Method and equipment for treating process gas
JPH0136539B2 (en)
Bryk et al. Flash smelting copper concentrates
US4848754A (en) Flash smelting furnace
JPH0747786B2 (en) Operation method of flash smelting furnace
US5174746A (en) Method of operation of flash smelting furnace
US4101313A (en) Process and apparatus for the production of steel
US4614541A (en) Method of continuous metallurgical processing of copper-lead matte
US3663203A (en) Melting of fusible materials
CN85105034A (en) Shuiko mountain method of smelt lead
JPH0563531B2 (en)
JP2861500B2 (en) Melt desulfurization of zinc concentrate
JP3307427B2 (en) Operating method of flash smelting furnace
JPH0519326Y2 (en)
CN212476844U (en) Device for recovering zinc oxide and iron from zinc-containing soot
JP2952248B2 (en) Method and apparatus for depleting metal from molten glass or molten slag
JPH0740513Y2 (en) Self-smelting furnace
US2056564A (en) Apparatus for roasting ores
EP0040285A1 (en) Metallurgical process and furnace
US1215672A (en) Process for treating metalliferous ores.

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees