JPH0747712Y2 - Magnetostrictive torque sensor - Google Patents

Magnetostrictive torque sensor

Info

Publication number
JPH0747712Y2
JPH0747712Y2 JP1989056722U JP5672289U JPH0747712Y2 JP H0747712 Y2 JPH0747712 Y2 JP H0747712Y2 JP 1989056722 U JP1989056722 U JP 1989056722U JP 5672289 U JP5672289 U JP 5672289U JP H0747712 Y2 JPH0747712 Y2 JP H0747712Y2
Authority
JP
Japan
Prior art keywords
core
bobbin
casing
magnetostrictive
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989056722U
Other languages
Japanese (ja)
Other versions
JPH02146339U (en
Inventor
一誠 樋上
秀樹 上岡
一光 小林
Original Assignee
株式会社ユニシアジェックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニシアジェックス filed Critical 株式会社ユニシアジェックス
Priority to JP1989056722U priority Critical patent/JPH0747712Y2/en
Publication of JPH02146339U publication Critical patent/JPH02146339U/ja
Application granted granted Critical
Publication of JPH0747712Y2 publication Critical patent/JPH0747712Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、例えば自動車用エンジンの出力軸等に発生す
るトルクを検出するための磁歪式トルクセンサに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a magnetostrictive torque sensor for detecting torque generated in an output shaft of an automobile engine, for example.

〔従来の技術〕[Conventional technology]

一般に、自動変速機構を備えたオートマチック車にあっ
ては、プロペラシャフトにトルクセンサを取付け、自動
変速機構の変速タイミングの適正化を図っている。
Generally, in an automatic vehicle equipped with an automatic transmission mechanism, a torque sensor is attached to a propeller shaft to optimize the shift timing of the automatic transmission mechanism.

このようなトルクセンサとして、従来第3図および第4
図に示すブリッジ回路型の磁歪式トルクセンサが知られ
ている。
As such a torque sensor, as shown in FIG. 3 and FIG.
A bridge circuit type magnetostrictive torque sensor shown in the figure is known.

第3図において、1は筒状のケーシングを示し、該ケー
シング1は非磁性のステンレス鋼等により図示の如く段
付円筒状に形成され、車体(図示せず)等に固定して取
付られるようになっている。2は例えばクロムモリブデ
ン鋼等の磁歪材料から形成された回転軸としての磁歪シ
ャフトで、該磁歪シャフト2は例えばプロペラシャフト
の途中に設けられるもので、両端が入力側取付部2A,出
力側取付部2Bとなり、これらの中間はスリット形成部2C
となり、該スリット形成部2Cの外周には下向き45°に刻
設した第1のスリット3と、上向き45°に刻設した第2
のスリット4とが対向して設けられている。そして、該
磁歪シャフト2はケーシング1内に軸受5,5を介して回
転自在に配設されている。
In FIG. 3, reference numeral 1 denotes a cylindrical casing. The casing 1 is made of non-magnetic stainless steel or the like in a stepped cylindrical shape as shown in the figure, and is fixedly mounted on a vehicle body (not shown) or the like. It has become. Reference numeral 2 denotes a magnetostrictive shaft as a rotary shaft formed of a magnetostrictive material such as chrome molybdenum steel. The magnetostrictive shaft 2 is provided, for example, in the middle of a propeller shaft, and both ends thereof are an input side mounting portion 2A and an output side mounting portion. 2B, and the middle of these is the slit forming part 2C.
Thus, the outer circumference of the slit forming portion 2C has a first slit 3 engraved downward 45 ° and a second slit 3 engraved upward 45 °.
The slits 4 are provided so as to face each other. The magnetostrictive shaft 2 is rotatably arranged in the casing 1 via bearings 5, 5.

6は磁歪シャフト2とケーシング1との間に位置してケ
ーシング1の内周面に固着されたコア部材としてのコア
筒を示し、該コア筒6は、例えばニッケルと鉄の合金か
らなるPBパーマロイ等の磁性材料によって段付円筒状に
形成され、その半縦断面形状は図示の如くE字形状とな
っている。そして、該コア筒6は磁歪シャフト2のスリ
ット3,4のうち、スリット3と径方向で対向する第1の
コア部6Aと、スリット4と径方向で対向する第2のコア
部6Bとからなり、該コア部6A,6Bは一体に形成されてい
る。
Reference numeral 6 denotes a core cylinder as a core member which is located between the magnetostrictive shaft 2 and the casing 1 and fixed to the inner peripheral surface of the casing 1. The core cylinder 6 is a PB permalloy made of, for example, an alloy of nickel and iron. It is formed into a stepped cylindrical shape by a magnetic material such as, and has a semi-longitudinal sectional shape of E shape as shown in the drawing. The core tube 6 includes a first core portion 6A of the slits 3 and 4 of the magnetostrictive shaft 2 that faces the slit 3 in the radial direction and a second core portion 6B that faces the slit 4 in the radial direction. The core portions 6A and 6B are integrally formed.

7,7はコア筒6のコア部6A,6B内にそれぞれ設けられた一
対のコイルボビンを示し、該各コイルボビン7は非磁性
で透磁率の高い、例えば樹脂材料等を用いて筒状に形成
され、その半断面形状はコ字形状となっている。8,9は
各コイルボビン7に巻回された一対の検出コイルを示
し、該検出コイル8,9は各コイルボビン7と共にコア筒
の各コア部6A,6B内に配設され、磁歪シャフト2のスリ
ット3,4と径方向で対向するようになっている。そし
て、該検出コイル8,9はその自己インダクタンスがL1L2
となり、その鉄損および直流抵抗分はそれぞれr,rとし
て示される。
Reference numerals 7 and 7 denote a pair of coil bobbins respectively provided in the core portions 6A and 6B of the core tube 6, and each coil bobbin 7 is formed in a tubular shape using a non-magnetic material and a high magnetic permeability, for example, a resin material or the like. , Its half-section is U-shaped. Reference numerals 8 and 9 denote a pair of detection coils wound around the coil bobbins 7, and the detection coils 8 and 9 are arranged in the core portions 6A and 6B of the core cylinder together with the coil bobbins 7, and the slits of the magnetostrictive shaft 2 are provided. It is arranged to face 3, 4 in the radial direction. The self-inductance of the detection coils 8 and 9 is L 1 L 2
And the iron loss and the direct current resistance are shown as r and r, respectively.

また、第4図は検出回路を示し、該検出回路はブリッジ
回路10、交流電源11および差同増幅器12等から構成され
ている。ここで、ブリッジ回路10は検出コイル8,9、各
検出コイル8,9の鉄損および直流抵抗分r、固定抵抗R,R
および電圧調整抵抗R0をもって図示の如きブリッジとし
て結線され、接続点a,b間は周波数f,電圧Vの交流電源1
1と接続され、接続点c,dは検出コイル8,9の出力電圧
V1,V2を導出する出力端子となり、該接続点c,dは差同
増幅器12の入力側と接続され、該差動増幅器12の出力端
子13からは検出トルクに対応したセンサ出力電圧E0を出
力するようになっている。なお、電圧調整抵抗R0は磁歪
シャフト2に作用するトルクが零のとき出力電圧E0が零
となるように調整される。
Further, FIG. 4 shows a detection circuit, which is composed of a bridge circuit 10, an AC power supply 11, a differential amplifier 12, and the like. Here, the bridge circuit 10 includes detection coils 8 and 9, iron loss and DC resistance r of each detection coil 8 and 9, fixed resistances R and R.
And a voltage adjusting resistor R 0 are connected as a bridge as shown in the figure. Between the connection points a and b, an AC power supply 1 of frequency f and voltage V
It is connected to 1, and the connection points c and d are the output voltage of the detection coils 8 and 9.
It serves as an output terminal for deriving V 1 and V 2 , the connection points c and d are connected to the input side of the differential amplifier 12, and the sensor output voltage E corresponding to the detected torque is output from the output terminal 13 of the differential amplifier 12. It is designed to output 0 . The voltage adjusting resistor R 0 is adjusted so that the output voltage E 0 becomes zero when the torque acting on the magnetostrictive shaft 2 is zero.

このように構成されるブリッジ回路型の磁歪式トルクセ
ンサにおいては、検出コイル8,9に交流電源11の交流電
圧Vを印加すると、磁歪シャフト2の表面に磁路が形成
されるが、スリット形成部2Cの表面に45°方向のスリッ
ト3,4が設けられているため、表面磁界による磁路はこ
のスリット3,4に沿って形成される。
In the bridge circuit type magnetostrictive torque sensor configured as described above, when an AC voltage V of the AC power supply 11 is applied to the detection coils 8 and 9, a magnetic path is formed on the surface of the magnetostrictive shaft 2, but a slit is formed. Since the slits 3 and 4 in the 45 ° direction are provided on the surface of the portion 2C, the magnetic path due to the surface magnetic field is formed along the slits 3 and 4.

一方、磁歪シャフト2の入力側取付部2Aに図中矢示方向
のトルクTを加えたとすると、スリット3には引張り応
力+σが発生し、スリット4には圧縮応力−σが発生す
る。そして、磁歪シャフト2に正の磁歪材を用いている
場合、引張り応力+σにより透磁率μが増加し、圧縮応
力−σにより透磁率μが減小することが知られている。
On the other hand, if a torque T in the direction of the arrow in the drawing is applied to the input side mounting portion 2A of the magnetostrictive shaft 2, a tensile stress + σ is generated in the slit 3 and a compressive stress −σ is generated in the slit 4. When a positive magnetostrictive material is used for the magnetostrictive shaft 2, it is known that the tensile stress + σ increases the magnetic permeability μ and the compressive stress −σ decreases the magnetic permeability μ.

然るに、検出コイル8,9の自己インダクタンスL1,L
2は、 ただし、μ:透磁率 N :コイル巻線数 S :磁路断面積 l :磁路平均長さ となり、ブリッジ回路10においてL1とR、L2とRは直列
接続となっているから、検出コイル8,9を流れる電流
i1,i2は、 となる。
Therefore, the self-inductance of the detection coils 8 and 9 L 1 and L
2 is However, μ: permeability N: number of coil windings S: magnetic path cross-sectional area l: average magnetic path length, and in bridge circuit 10, L 1 and R and L 2 and R are connected in series, so Current flowing through coils 8 and 9
i 1 and i 2 are Becomes

また、接続点c,dの出力電圧V1,V2は、 V1=i1R,V2=i2R … (3) となり、差動増幅器12の出力端子13から出力されるセン
サ出力電圧E0は、増幅率をαとすると下記(4)式とな
る。
Further, the output voltages V 1 and V 2 at the connection points c and d are V 1 = i 1 R, V 2 = i 2 R (3), and the sensor output from the output terminal 13 of the differential amplifier 12 The voltage E 0 is given by the following equation (4) when the amplification factor is α.

E0=α×(V2−V1) … (4) かくして、磁歪シャフト2にトルクTを加えた場合、ス
リット3側では引張り応力+σにより透磁率μが増加す
る結果、検出コイル8の自己インダクタンスL1が増加
し、電流i1が減小し、出力電圧V1が減小する。また、ス
リット4側では圧縮応力−σにより透磁率μが減小する
結果、検出コイル9の自己インダクタンスL2が減小し、
電流i2が増加し、出力電圧V2が増加する。これにより、
前記(4)式のセンサ出力電圧E0はE0>0となり、前記
トルクTに比例した検出信号をセンサ出力電圧E0として
出力することができる。
E 0 = α × (V 2 −V 1 ) ... (4) Thus, when the torque T is applied to the magnetostrictive shaft 2, the permeability μ increases due to the tensile stress + σ on the slit 3 side. The inductance L 1 increases, the current i 1 decreases, and the output voltage V 1 decreases. On the slit 4 side, the magnetic permeability μ decreases due to the compressive stress −σ, and as a result, the self-inductance L 2 of the detection coil 9 decreases.
The current i 2 increases and the output voltage V 2 increases. This allows
The sensor output voltage E 0 of the equation (4) is E 0 > 0, and a detection signal proportional to the torque T can be output as the sensor output voltage E 0 .

〔考案が解決しようとする課題〕[Problems to be solved by the device]

ところで、上述した従来技術では、検出コイル8側のコ
ア部6Aと検出コイル9側のコア部6Bとをコア筒6によっ
て一体に形成しているから、コア部6A,6Bのそれぞれの
磁束が互いに干渉して検出コイル8,9の相互インダクタ
ンスLMが大きくなり、前記(3)式に示す出力電圧V1
V2が相互インダクタンスLMに影響され、出力電圧V2,V1
間の差が小さくなって初期特性出力が低下するという問
題がある。
By the way, in the above-mentioned conventional technique, since the core portion 6A on the detection coil 8 side and the core portion 6B on the detection coil 9 side are integrally formed by the core tube 6, the magnetic fluxes of the core portions 6A and 6B are mutually different. Due to the interference, the mutual inductance L M of the detection coils 8 and 9 increases, and the output voltage V 1 shown in the equation (3),
V 2 is affected by mutual inductance L M , and output voltage V 2 , V 1
There is a problem that the difference between the two becomes small and the initial characteristic output decreases.

即ち、検出コイル8,9間の電磁的な結合度合をコイルの
結合係数K0(K0≦1)とすると、相互インダクタンスLM
は、 となり、従来技術では、コア部6A,6Bが一体に形成され
ているから、コイルの結合係数K0は実質的にK0=1とな
って大きくなり、初期特性出力を向上できないという問
題がある。
That is, assuming that the degree of electromagnetic coupling between the detection coils 8 and 9 is the coil coupling coefficient K 0 (K 0 ≦ 1), the mutual inductance L M
Is Therefore, in the conventional technique, since the core portions 6A and 6B are integrally formed, the coupling coefficient K 0 of the coil is substantially increased to K 0 = 1 and the initial characteristic output cannot be improved. .

本考案は上述した従来技術の問題に鑑みなされたもの
で、本考案は一対の検出コイルの相互インダクタンスを
減少させることができ、初期特性出力を効果的に向上で
きるようにした磁歪式トルクセンサを提供するものであ
る。
The present invention has been made in view of the above-mentioned problems of the prior art. The present invention provides a magnetostrictive torque sensor that can reduce the mutual inductance of a pair of detection coils and effectively improve the initial characteristic output. It is provided.

〔課題を解決するための手段〕[Means for Solving the Problems]

上述した課題を解決するために本考案は、筒状のケーシ
ングと、該ケーシング内に回転自在に配設された磁歪シ
ャフトと、該磁歪シャフトの外周側を囲繞するように前
記ケーシング内に設けられ、軸方向中間部が該ケーシン
グに固定される固定部となり、軸方向両側に一対のコイ
ルボビン部が形成された非磁性材料からなる単一かつ筒
状のボビン部材と、該ボビン部材の固定部を挟んで軸方
向両側に位置するコイルボビン部にそれぞれ巻回された
一対の検出コイルと、該検出コイルと共に各コイルボビ
ン部を外側から覆うため前記ボビン部材の軸方向両側に
離間した状態で該ボビン部材にぞれぞれ設けられた磁性
材料からなる一対のコア筒とから構成したことにある。
In order to solve the above-mentioned problems, the present invention provides a tubular casing, a magnetostrictive shaft rotatably disposed in the casing, and a magnetostrictive shaft provided in the casing so as to surround an outer peripheral side thereof. A single and cylindrical bobbin member made of a non-magnetic material in which a pair of coil bobbin portions are formed on both sides in the axial direction, and a fixed portion of the bobbin member. A pair of detection coils wound around the coil bobbin portions located on both sides in the axial direction with sandwiching them, and the bobbin member in a state of being spaced apart on both sides in the axial direction of the bobbin member in order to cover each coil bobbin portion together with the detection coil from the outside. It is composed of a pair of core cylinders each made of a magnetic material.

〔作用〕[Action]

上記構成により、非磁性材料からなる単一で筒状となっ
たボビン材料には、軸方向中間の固定部を挟んで軸方向
両側に一対のコイルボビン部を一体に形成した上で、該
各コイルボビン部には各検出コイルと共に別体のコア筒
を互いに離間して設けるようにしたから、これら検出コ
イル間の電磁的な結合度合を示す結合係数を大幅に小さ
くでき、当該検出コイル間の相互インダクタンスを減少
させることができる。
With the above structure, a single tubular bobbin material made of a non-magnetic material is integrally formed with a pair of coil bobbin portions on both sides in the axial direction with an axially fixed portion sandwiched therebetween, and then each of the coil bobbins is formed. Since a separate core cylinder is provided in each part along with each detection coil, the coupling coefficient indicating the degree of electromagnetic coupling between these detection coils can be significantly reduced, and the mutual inductance between the detection coils can be significantly reduced. Can be reduced.

〔実施例〕〔Example〕

以下、本考案の実施例を第1図および第2図に基づいて
説明する。なお、実施例では前述した第3図、第4図に
示す従来技術と同一の構成要素に同一の符合を付し、そ
の説明を省略するものとする。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. In the embodiment, the same components as those of the prior art shown in FIG. 3 and FIG. 4 described above are designated by the same reference numerals and the description thereof will be omitted.

而して、第1図は本考案の第1の実施例を示している。Thus, FIG. 1 shows a first embodiment of the present invention.

図中、21はケーシング1内に回転自在に配設された磁歪
シャフトを示し、該磁歪シャフト21は従来技術で述べた
磁歪シャフト2とほぼ同様に形成され、そのスリット形
成部21Cには軸方向に所定寸法離間して第1のスリット2
2と第2のスリット23とが設けられている。
In the figure, reference numeral 21 designates a magnetostrictive shaft rotatably arranged in the casing 1. The magnetostrictive shaft 21 is formed in substantially the same manner as the magnetostrictive shaft 2 described in the prior art, and its slit forming portion 21C has an axial direction. First slit 2 with a predetermined distance
2 and a second slit 23 are provided.

24は磁歪シャフト21の外周面を小さな隙間を介して囲繞
するようにケーシング1内に設けられたボビン部材を示
し、該ボビン部材24は、例えば樹脂材料等の非磁性材料
を用いて段付円筒状に形成され、その両端側はスリット
22,23と対向する位置まで磁歪シャフト21の軸方向に伸
長している。ここで、該ボビン部材24は、軸方向中間部
に位置し、ケーシング1の内径に対応する外径をもって
厚肉円筒状に形成された固定部24Aと、軸方向両端側に
位置し、半縦断面が2字形状となるように段付円筒状に
形成された一対のコイルボビン部24B,24Bと、該各コイ
ルボビン部24Bと固定部24Aとの間を連結した薄肉円筒状
の連結部24C,24Cとから構成されている。
Reference numeral 24 denotes a bobbin member provided in the casing 1 so as to surround the outer peripheral surface of the magnetostrictive shaft 21 with a small gap, and the bobbin member 24 is a stepped cylinder made of a nonmagnetic material such as a resin material. Shaped like a slit, with both ends slit
It extends in the axial direction of the magnetostrictive shaft 21 to a position facing 22,23. Here, the bobbin member 24 is located at an intermediate portion in the axial direction and has a fixing portion 24A formed in a thick-walled cylindrical shape with an outer diameter corresponding to the inner diameter of the casing 1, and is located at both axial end portions, and has a semi-longitudinal section. A pair of coil bobbin portions 24B, 24B formed in a stepped cylindrical shape so that the surface has a two-character shape, and thin-walled cylindrical connecting portions 24C, 24C connecting the coil bobbin portions 24B and the fixing portion 24A. It consists of and.

そして、該ボビン部材24の固定部24A外周には円錐状の
凹部24D,24,…が周方向に所定間隔をもって形成され、
該ボビン部材24は後述の各コア筒28等と共にケーシング
1内に固定部24Aを介して嵌挿し、組込むときに、各凹
部24Dに図示の如く固定ねじ25,25,…の先端を係合させ
ることにより、ケーシング1内に高精度に位置決めされ
る。
Further, conical recesses 24D, 24, ... Are formed on the outer periphery of the fixed portion 24A of the bobbin member 24 at predetermined intervals in the circumferential direction,
The bobbin member 24 is fitted and inserted into the casing 1 through the fixing portions 24A together with the core cylinders 28 and the like, which will be described later, and when assembled, the tips of the fixing screws 25, 25, ... As a result, the casing 1 is positioned with high accuracy.

26,27はボビン部材24の各コイルボビン部24Bに巻回され
た一対の検出コイルを示し、該検出コイル26,27は従来
技術で述べた検出コイル8,9と同様に形成され、磁歪シ
ャフト21のスリット22,23と径方向で対向するようにな
っている。28,29は検出コイル26,27を外側から覆うよう
にボビン部材24の各コイルボビン部24Bに設けられた一
対のコア筒を示し、該各コア筒28は、例えばニッケルと
鉄の合金からなるPBパーマロイ等の磁性材料を用ちいて
形成され、半縦断面が略L字形状となったコア部材29
と、一対の半割リングをボビン部材24の連結部24C外周
に径方向外側から嵌合させることによって該連結部24C
外周に設けられたコアリング30とから構成されている。
Reference numerals 26 and 27 denote a pair of detection coils wound around each coil bobbin portion 24B of the bobbin member 24. The detection coils 26 and 27 are formed in the same manner as the detection coils 8 and 9 described in the prior art, and the magnetostrictive shaft 21 The slits 22 and 23 are opposed to each other in the radial direction. Reference numerals 28 and 29 denote a pair of core cylinders provided in each coil bobbin portion 24B of the bobbin member 24 so as to cover the detection coils 26 and 27 from the outside, and each core cylinder 28 is, for example, PB made of an alloy of nickel and iron. A core member 29 made of a magnetic material such as permalloy and having a semi-longitudinal section of a substantially L shape.
And a pair of half rings are fitted to the outer periphery of the connecting portion 24C of the bobbin member 24 from the outside in the radial direction, thereby connecting the connecting portion 24C.
It is composed of a core ring 30 provided on the outer periphery.

ここで、該各コア筒28は各コア部材29の先端側に形成し
たカシメ部29Aを各コアリング30の外周にカシメ固定す
ることによってボビン部材24の各コイルボビン部24Bに
固着され、各コア部材29は各コアリング30と共に各コイ
ルボビン部24Bを軸方向で挟持するようになっている。
そして、該各コア筒28は検出コイル26,27等と共に磁歪
シャフト21のスリット22,23周囲を取囲み、検出コイル2
6,27で発生した磁界に基づく磁路を磁歪シャフトシャフ
ト21の表面に形成するようになっている。また、該各コ
ア筒28はボビン部材24を介して軸方向に離間してケーシ
ング1内に配設されている。また、各コア部材29の底部
側には検出コイル26,27用のハーネスを取出すためのハ
ーネス取出口29B,29Bが軸方向に穿設されている。
Here, each core cylinder 28 is fixed to each coil bobbin portion 24B of the bobbin member 24 by crimping the crimping portion 29A formed on the tip side of each core member 29 to the outer periphery of each core ring 30, and each core member 29 is adapted to sandwich each coil bobbin portion 24B together with each core ring 30 in the axial direction.
Then, each core cylinder 28 surrounds the slits 22, 23 of the magnetostrictive shaft 21 together with the detection coils 26, 27, etc.
A magnetic path based on the magnetic field generated at 6, 27 is formed on the surface of the magnetostrictive shaft 21. Further, the core cylinders 28 are arranged in the casing 1 so as to be axially separated from each other via the bobbin member 24. Harness outlets 29B and 29B for taking out harnesses for the detection coils 26 and 27 are axially formed on the bottom side of each core member 29.

本実施例による磁歪式トルクセンサは上述の如き構成を
有するもので、その基本的検出動作については従来技術
によるものと格別差異はない。
The magnetostrictive torque sensor according to the present embodiment has the above-mentioned configuration, and the basic detecting operation is not different from that according to the prior art.

然るに本実施例では、ボビン部材24の軸方向両端側に形
成した各コイルボビン部24Bに検出コイル26,27を巻回
し、該検出コイル26,27の外側を覆うように各コイルボ
ビン部24Bに別体のコア筒28,28を設け、該各コア筒28と
共にボビン部材24をケーシング1と磁歪シャフト21との
間に挿通し、これらをボビン部材24の固定部24Aにより
各固定ねじ25を介してケーシング1内に固定して取付け
る構成としたから、別体のコア筒28,28を非磁性材料か
らなるボビン部材ポンプ24によって磁歪シャフト21の軸
方向に大きく離間させることができ、検出コイル26,27
によって各コア筒28に発生する磁束が互いに干渉するの
を防止でき、相互インダクタンスLMを効果的に減少させ
ることができる。即ち、本実施例によれば各コア筒28を
検出コイル26,27と共にボビン部材24の固定部24Aを挟ん
で軸方向に離間させたから、検出コイル26,27間の電磁
的な結合度合を示す前記(5)式中の結合係数K0を大幅
に小さくして、相互インダクタンスLMを減少させること
ができ、前記(3)式に示す出力電圧V2,V1間の差を可
及的に大きくすることができ、初期特性出力を向上させ
ることができる。
Therefore, in this embodiment, the detection coils 26 and 27 are wound around the coil bobbin portions 24B formed on both axial sides of the bobbin member 24, and the coil bobbin portions 24B are separately provided so as to cover the outer sides of the detection coils 26 and 27. Core barrels 28, 28 are provided, the bobbin member 24 is inserted between the casing 1 and the magnetostrictive shaft 21 together with the core barrels 28, and these are fixed by the fixing portion 24A of the bobbin member 24 via the fixing screws 25 to the casing. Since it is configured to be fixedly mounted inside 1, the separate core cylinders 28, 28 can be largely separated in the axial direction of the magnetostrictive shaft 21 by the bobbin member pump 24 made of a non-magnetic material, and the detection coils 26, 27
Thus, the magnetic fluxes generated in the core cylinders 28 can be prevented from interfering with each other, and the mutual inductance L M can be effectively reduced. That is, according to the present embodiment, the core cylinders 28 are axially separated from each other with the fixed portions 24A of the bobbin member 24 sandwiched between the detection coils 26 and 27, which indicates the electromagnetic coupling degree between the detection coils 26 and 27. The coupling coefficient K 0 in the equation (5) can be significantly reduced to reduce the mutual inductance L M, and the difference between the output voltages V 2 and V 1 shown in the equation (3) can be minimized. Therefore, the initial characteristic output can be improved.

また、各コイルボビン部24Bをボビン部材24Bの軸方向両
端側に一体に形成し、該各コイルボビン部24Bに別体の
コア筒28,28を組み付けるようにしたから、ボビン部材2
4に対する各コア筒28のラジアル方向、スラスト方向の
組み付け精度を向上できる。そして、ボビン部材24の固
定部24A外周には円錐状の各凹部24Dを形成し、ケーシン
グ1に螺合する各固定ねじ25の先端を該各凹部24Dに径
合させたから、ケーシング1内に各コア筒28等と共にボ
ビン部材を高精度に位置決めでき、磁歪シャフト21に対
するラジアル方向の偏心誤差やスラスト方向(スリット
22,23に対する)誤差等を効果的に低減でき、組み付け
精度を向上できる等、種々の効果を奏する。
Further, since each coil bobbin portion 24B is integrally formed on both axial ends of the bobbin member 24B and the core barrels 28, 28 which are separate bodies are attached to the respective coil bobbin portions 24B, the bobbin member 2
It is possible to improve the assembling accuracy in the radial direction and the thrust direction of each core cylinder 28 with respect to 4. Then, conical recesses 24D are formed on the outer periphery of the fixed portion 24A of the bobbin member 24, and the tips of the fixing screws 25 screwed into the casing 1 are fitted into the recesses 24D. The bobbin member can be positioned with high accuracy together with the core cylinder 28, etc., and the eccentricity error in the radial direction with respect to the magnetostrictive shaft 21 and the thrust direction (slit
It is possible to effectively reduce errors and the like (with respect to 22,23) and improve the assembling accuracy, so that various effects can be obtained.

次に、第2図は本考案の第2の実施例を示し、本実施例
で前記第1の実施例と同一の構成要素に同一の符合を付
し、その説明を省略するものとするに、本実施例の特徴
は、各コア筒31を一対のコア半割体32,32によって形成
し、該コア半割体32,32を衝合面32A,32Aの部位で互いに
衝合、分割可能としたことにある。ここで、該コア筒31
はコア半割体32,32を分割した状態でボビン部材24のコ
イルボビン部24Bに径方向外側から嵌合し、該コイルボ
ビン部24Bの外周で第2図に示す如く衝合させることに
よって組立てられ、接着剤等で強固に結合されるように
なっている。そして、該コア筒31のコア半割体32,32に
は軸方向両端側に半円形状の鍔部32B,32B,32C,32Cが一
体に形成され、該各鍔部32Cは前記第1の実施例で述べ
たコア筒28のコアリング30に対応する部位を構成してい
る。33,33はコイル26,27用のハーネス取出口を示してい
る。
Next, FIG. 2 shows a second embodiment of the present invention. In this embodiment, the same components as those of the first embodiment are designated by the same reference numerals and the description thereof will be omitted. The feature of this embodiment is that each core cylinder 31 is formed by a pair of core halves 32, 32, and the core halves 32, 32 can be abutted against each other at the abutting surfaces 32A, 32A and can be divided. There is that. Here, the core tube 31
Is assembled by splitting the core halves 32, 32 into the coil bobbin portion 24B of the bobbin member 24 from the outside in the radial direction, and abutting the outer periphery of the coil bobbin portion 24B as shown in FIG. It is firmly bonded with an adhesive or the like. And, semicircular collar parts 32B, 32B, 32C, 32C are integrally formed on the core half-split bodies 32, 32 of the core cylinder 31 at both axial ends, and each of the collar parts 32C is the first one. It constitutes a portion corresponding to the core ring 30 of the core cylinder 28 described in the embodiment. Reference numerals 33 and 33 denote harness outlets for the coils 26 and 27.

かくして、このように構成される本実施例でも、前記第
1の実施例とほぼ同様の作用効果を得ることができる
が、特に本実施例では、コア筒31を各コア半割体32によ
って構成し、これらに各鍔部32B,32Cを一体に形成した
から、第1の実施例で用いたコア筒28のようにコア部材
29とコアリング30との間で磁路が分断されたりする等の
可能性をなくすことができる。
Thus, in this embodiment configured as described above, substantially the same operation and effect as in the first embodiment can be obtained. In particular, in this embodiment, the core cylinder 31 is composed of the core halves 32. However, since the collar portions 32B and 32C are integrally formed on these, a core member like the core cylinder 28 used in the first embodiment is formed.
It is possible to eliminate the possibility that the magnetic path is divided between the 29 and the core ring 30.

〔考案の効果〕[Effect of device]

以上詳述した通り、本考案によれば、非磁性材料からな
る単一かつ筒状のボビン部材の固定部を挟んで軸方向両
側に各コイルボビン部を一体に形成し、該各コイルボビ
ン部に巻回した各検出コイルを覆うように、ボビン部材
とは別体の磁性材料からなるコア筒を固定部を挟んで軸
方向両側に離間して設ける構成としたから、各検出コイ
ルに磁界を発生させたとき各コア筒に形成される磁束が
互いに干渉するのを防止して、相互インダクタンスの結
合係数を小さくすることにより、該各検出コイル間の相
互インダクタンスを減少させることができ、初期特性出
力を向上できる上に、ボビン部材に対する各コア筒の組
み付け精度を高めることができ、これらをケーシング内
に高精度に位置決めできる等の効果を奏する。
As described above in detail, according to the present invention, the coil bobbin portions are integrally formed on both sides in the axial direction with the fixed portion of the single and cylindrical bobbin member made of a non-magnetic material sandwiched between the coil bobbin portions. Since a core tube made of a magnetic material separate from the bobbin member is provided on both sides in the axial direction so as to cover the rotated detection coils, the magnetic field is generated in each detection coil. At this time, the magnetic fluxes formed in the core cylinders are prevented from interfering with each other, and the mutual inductance between the detection coils can be reduced by reducing the coupling coefficient of the mutual inductance, and the initial characteristic output can be reduced. In addition to the improvement, the accuracy of assembling each core cylinder with respect to the bobbin member can be improved, and these can be positioned in the casing with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の第1の実施例を示す磁歪式トルクセン
サの縦断面図、第2図は第2の実施例を示すコア筒の斜
視図、第3図および第4図は従来技術を示し、第3図は
磁歪式トルクセンサの縦断面図、第4図は検出回路の回
路構成図である。 1…ケーシング、21…磁歪シャフト、22,23…スリッ
ト、24…ボビン部材、24A…固定部、24B…コイルボビン
部、26,27…検出コイル、28,31…コア筒。
FIG. 1 is a longitudinal sectional view of a magnetostrictive torque sensor showing a first embodiment of the present invention, FIG. 2 is a perspective view of a core cylinder showing a second embodiment, and FIGS. 3 and 4 are prior arts. FIG. 3 is a longitudinal sectional view of the magnetostrictive torque sensor, and FIG. 4 is a circuit configuration diagram of the detection circuit. 1 ... Casing, 21 ... Magnetostrictive shaft, 22,23 ... Slit, 24 ... Bobbin member, 24A ... Fixed part, 24B ... Coil bobbin part, 26, 27 ... Detection coil, 28, 31 ... Core cylinder.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】筒状のケーシングと、該ケーシング内に回
転自在に配設された磁歪シャフトと、該磁歪シャフトの
外周側を囲繞するように前記ケーシング内に設けられ、
軸方向中間部が該ケーシングに固定される固定部とな
り、軸方向両側に一対のコイルボビン部が形成された非
磁性材料からなる単一かつ筒状のボビン部材と、該ボビ
ン部材の固定部を挟んで軸方向両側に位置するコイルボ
ビン部にそれぞれ巻回された一対の検出コイルと、該各
検出コイルと共に各コイルボビン部を外側から覆うため
前記ボビン部材の軸方向両側に離間した状態で該ボビン
部材にぞれぞれ設けられた磁性材料からなる一対のコア
筒とから構成してなる磁歪式トルクセンサ。
1. A tubular casing, a magnetostrictive shaft rotatably disposed in the casing, and a magnetostrictive shaft provided in the casing so as to surround an outer peripheral side thereof.
A single and cylindrical bobbin member made of a non-magnetic material having a pair of coil bobbin portions formed on both sides in the axial direction serves as a fixing portion fixed to the casing, and the fixing portion of the bobbin member is sandwiched. A pair of detection coils respectively wound around the coil bobbin portions located on both sides in the axial direction, and the bobbin member in a state of being spaced apart on both axial directions of the bobbin member in order to cover each coil bobbin portion together with the respective detection coils from the outside. A magnetostrictive torque sensor including a pair of core cylinders each made of a magnetic material.
JP1989056722U 1989-05-17 1989-05-17 Magnetostrictive torque sensor Expired - Lifetime JPH0747712Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989056722U JPH0747712Y2 (en) 1989-05-17 1989-05-17 Magnetostrictive torque sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989056722U JPH0747712Y2 (en) 1989-05-17 1989-05-17 Magnetostrictive torque sensor

Publications (2)

Publication Number Publication Date
JPH02146339U JPH02146339U (en) 1990-12-12
JPH0747712Y2 true JPH0747712Y2 (en) 1995-11-01

Family

ID=31580798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989056722U Expired - Lifetime JPH0747712Y2 (en) 1989-05-17 1989-05-17 Magnetostrictive torque sensor

Country Status (1)

Country Link
JP (1) JPH0747712Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176748A (en) * 2015-03-19 2016-10-06 本田技研工業株式会社 Magnetostrictive torque sensor and electrically driven power steering device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5977326A (en) * 1982-10-27 1984-05-02 Nissan Motor Co Ltd Magneto-striction type torque sensor
JPH0533946Y2 (en) * 1986-09-17 1993-08-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176748A (en) * 2015-03-19 2016-10-06 本田技研工業株式会社 Magnetostrictive torque sensor and electrically driven power steering device

Also Published As

Publication number Publication date
JPH02146339U (en) 1990-12-12

Similar Documents

Publication Publication Date Title
US4907460A (en) Torque sensor
US4572005A (en) Magnetostriction torque sensor
EP0502722B1 (en) Torque sensor
US5493921A (en) Sensor for non-contact torque measurement on a shaft as well as a measurement layer for such a sensor
EP0888529A1 (en) Magnetoelastic torque sensor with shielding flux guide
JPH08285706A (en) Torque sensor and strain detection element
US6370967B1 (en) Torque sensor with joint means for producing a consistent magnetic effect
US5062306A (en) Apparatus for detecting torque of rotating shaft
JP3583671B2 (en) Torque detector
US20050150312A1 (en) Torque detecting apparatus
JPH0747712Y2 (en) Magnetostrictive torque sensor
US4942771A (en) Magnetostriction type torque sensor
JP3216982B2 (en) Magnetostrictive torque detector
JP2608498B2 (en) Magnetostrictive torque sensor
JP3692494B2 (en) Torque sensor
JP2584419Y2 (en) Magnetostrictive torque sensor
JPH05240721A (en) Torque measuring device
JPS6141936A (en) Torque sensor
JPH0674844A (en) Magnetostrictive type torque sensor
JP2548452Y2 (en) Magnetostrictive torque sensor
JPH07333080A (en) Steering torque sensor
JPH0628673U (en) Magnetostrictive torque sensor
JPS61137036A (en) Steering force detector
JPH04158232A (en) Strain gauge
JP3734397B2 (en) Torque sensor