JPH0628673U - Magnetostrictive torque sensor - Google Patents

Magnetostrictive torque sensor

Info

Publication number
JPH0628673U
JPH0628673U JP7051192U JP7051192U JPH0628673U JP H0628673 U JPH0628673 U JP H0628673U JP 7051192 U JP7051192 U JP 7051192U JP 7051192 U JP7051192 U JP 7051192U JP H0628673 U JPH0628673 U JP H0628673U
Authority
JP
Japan
Prior art keywords
core member
magnetic
magnetostrictive
core
surface side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7051192U
Other languages
Japanese (ja)
Inventor
敦巳 保科
Original Assignee
日本電子機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電子機器株式会社 filed Critical 日本電子機器株式会社
Priority to JP7051192U priority Critical patent/JPH0628673U/en
Publication of JPH0628673U publication Critical patent/JPH0628673U/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 磁歪シャフトの磁気抵抗が総磁気抵抗に占め
る割合を増大させ、トルクの検出感度を向上する。 【構成】 各コア部材21には、周方向に30°程度ず
つ離間した間隔をもって位置し、外面側から内面側に亘
って表皮深さS以上の深さ寸法hを有する複数の溝2
3,23,…を設ける構成とした。この各溝23によ
り、各コア部材21は周方向に離間する複数のコ字状コ
ア24,24,…として実質的に分割され、各コア部材
21内に入った磁束の流れが規制されることにより、各
コア部材21内の磁束の流れは最短距離たる直線状とな
り、磁路長が短くなる。
(57) [Summary] [Purpose] To increase the ratio of the magnetoresistance of the magnetostrictive shaft to the total magnetoresistance and improve the torque detection sensitivity. [Structure] Each core member 21 is provided with a plurality of grooves 2 that are located at intervals of about 30 ° in the circumferential direction and have a depth dimension h that is equal to or greater than the skin depth S from the outer surface side to the inner surface side.
3, 23, ... Are provided. By the grooves 23, the core members 21 are substantially divided into a plurality of U-shaped cores 24, 24, ... Which are spaced apart in the circumferential direction, and the flow of the magnetic flux entering each core member 21 is regulated. As a result, the flow of the magnetic flux in each core member 21 becomes a straight line which is the shortest distance, and the magnetic path length is shortened.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、例えば自動車用エンジンの出力軸等に発生するトルクを検出するの に用いて好適な磁歪式トルクセンサに関する。 The present invention relates to a magnetostrictive torque sensor suitable for use in detecting a torque generated in an output shaft of an automobile engine, for example.

【0002】[0002]

【従来の技術】[Prior art]

図3ないし図6に従来技術による磁歪式トルクセンサとして、2コイル型の磁 歪式トルクセンサを自動車用エンジンのトルク検出に用いた場合を例に挙げて示 す。 FIGS. 3 to 6 show examples of a magnetostrictive torque sensor according to the prior art in which a two-coil magnetostrictive torque sensor is used for detecting torque in an automobile engine.

【0003】 図において、1は自動車の車体(図示せず)に固定された筒状のケーシング、 2は該ケーシング1内に軸受3,3を介して回転自在に配設され、例えばプロペ ラシャフト、アウトプットシャフト、ドライブシャフト等をなす磁歪シャフトを それぞれ示し、該磁歪シャフト2は、例えばクロムモリブデン鋼等の正磁歪材料 から円柱状に形成され、軸方向中間にはセンサ部2Aが一体形成されている。ま た、該センサ部2Aの外周面には、下向き45°の角度をもって刻設された多数 の一側スリット溝4,4,…と、該各一側スリット溝4に対向して位置し、上向 き45°の角度をもって刻設された多数の他側スリット溝5,5,…とが設けら れている。In the figure, 1 is a cylindrical casing fixed to a vehicle body (not shown) of an automobile, 2 is rotatably disposed in the casing 1 through bearings 3 and 3, and is, for example, a propeller shaft, Magnetostrictive shafts that form an output shaft, a drive shaft, and the like are shown. The magnetostrictive shaft 2 is formed of a positive magnetostrictive material such as chrome-molybdenum steel in a cylindrical shape, and a sensor portion 2A is integrally formed in the axial middle thereof. . Further, on the outer peripheral surface of the sensor portion 2A, a large number of one-side slit grooves 4, 4, ... Engraved at an angle of 45 ° downward and located facing the respective one-side slit grooves 4, A large number of other side slit grooves 5, 5, ... Engraved at an angle of 45 ° upward are provided.

【0004】 6,6は軸方向に離間して位置し、磁歪シャフト2のセンサ部2A外周側を取 囲むようにケーシング1の内周面に設けられた筒状のコア部材、7,7は該各コ ア部材6をそれぞれ構成する一対のコア片を示し、該各コア片7は図4,図6に も示す如く、パーマロイ等の高透磁率軟磁性材料から有底筒状に形成され、その 中央部には磁歪シャフト2が挿通されるシャフト挿通穴7Aが軸方向に穿設され ると共に、その端部は磁歪シャフト2のセンサ部2Aと微小なエアギャップδを 介して対向する環状脚部7B,7Bとなっている。Reference numerals 6 and 6 are axially spaced from each other, and cylindrical core members 7 and 7 are provided on the inner peripheral surface of the casing 1 so as to surround the outer peripheral side of the sensor portion 2A of the magnetostrictive shaft 2. A pair of core pieces constituting each core member 6 are shown. Each core piece 7 is formed of a high magnetic permeability soft magnetic material such as permalloy into a bottomed cylindrical shape as shown in FIGS. A shaft insertion hole 7A through which the magnetostrictive shaft 2 is inserted is axially formed in the central portion thereof, and its end portion is opposed to the sensor portion 2A of the magnetostrictive shaft 2 via a small air gap δ. The legs 7B and 7B are formed.

【0005】 8,8は各コア部材6の内周側に設けられたコイルボビン、9,9は該各コイ ルボビン8に巻回された励磁および検出コイルとしてのコイルをそれぞれ示し、 該各コイル9は、調整抵抗と共にブリッジ回路に形成され、発振器および差動増 幅器等からなる検出回路(いずれも図示せず)に接続されている。ここで、該各 コイル9は、発振器からの高周波電圧により励磁されて磁束を発生する励磁コイ ルと、図5に示す磁気回路中を流れる磁束を検出する検出コイルとを兼ねて構成 されている。Reference numerals 8 and 8 denote coil bobbins provided on the inner peripheral side of each core member 6, and reference numerals 9 and 9 denote coils wound around the coil bobbins 8 as exciting and detecting coils, respectively. Is formed in a bridge circuit together with the adjusting resistor, and is connected to a detection circuit (not shown) including an oscillator and a differential amplifier. Here, each of the coils 9 serves as both an exciting coil which is excited by a high frequency voltage from an oscillator to generate a magnetic flux and a detecting coil which detects a magnetic flux flowing in the magnetic circuit shown in FIG. .

【0006】 10,10は各コア部材6の端部に設けられた外側スペーサ、11は各コア部 材6間に配設された内側スペーサをそれぞれ示し、該各スペーサ10,11は各 コア部材6を両側から挟持して固定するもので、該各スペーサ10,11によっ て一体化された各コア部材6等は、Cリング12,12によってケーシング1の 内周面に固定されている。Reference numerals 10 and 10 denote outer spacers provided at the ends of the core members 6, and 11 denote inner spacers disposed between the core members 6, respectively. The spacers 10 and 11 are core members. 6 is sandwiched and fixed from both sides, and the core members 6 and the like integrated by the spacers 10 and 11 are fixed to the inner peripheral surface of the casing 1 by the C rings 12 and 12.

【0007】 従来技術による磁歪式トルクセンサは上述の如き構成を有するもので、各コイ ル9に検出回路の発振器から交流電圧を印加すると、例えば図4中に二点鎖線で 示す如く、該各コイル9から生じた磁束により各コア部材6から磁歪シャフト2 に亘って磁気回路が形成される。The magnetostrictive torque sensor according to the prior art has the above-mentioned configuration, and when an AC voltage is applied to each coil 9 from the oscillator of the detection circuit, for example, as shown by a chain double-dashed line in FIG. A magnetic circuit is formed from each core member 6 to the magnetostrictive shaft 2 by the magnetic flux generated from the coil 9.

【0008】 ここで、この磁気回路は、図5に示す如く、トルクTに応じて変化する磁歪シ ャフト2の磁気抵抗R1 と、エアギャップδの磁気抵抗R2 ,R2 と、各コア部 材6の磁気抵抗R3 とから大略構成され、また、各コイルボビン8には各コア片 7の各環状脚部7B間をバイパスする磁束による磁気抵抗R4 が形成され、該各 磁気抵抗R1 ,R2 ,R3 ,R4 の値は、Here, as shown in FIG. 5, the magnetic circuit includes a magnetic resistance R1 of the magnetostrictive shaft 2 that changes according to the torque T, magnetic resistances R2 and R2 of the air gap δ, and core materials 6 of each. And a magnetic resistance R4 by a magnetic flux that bypasses between the annular leg portions 7B of the core pieces 7 is formed in each coil bobbin 8, and the magnetic resistances R1, R2, R3, The value of R4 is

【0009】[0009]

【数1】 R=A/μS 但し、A:磁路平均長さ(磁路長) S:磁路断面積 μ:透磁率 としてそれぞれ求められる。## EQU1 ## R = A / μS where A: average magnetic path length (magnetic path length) S: magnetic path cross-sectional area μ: magnetic permeability

【0010】 従って、主たる磁気抵抗R1 ,R2 ,R3 を合成した総磁気抵抗Rtは、各ス リット溝4,5間を流れる磁束の磁路長をA1 、エアギャップδ間を流れる磁束 の磁路長をA2 、コア部材6内を流れる磁束の磁路長をA3 とし、該各磁路にお ける磁路断面積および透磁率をそれぞれS1 、S2 、S3 、μ1 、μ2 、μ3 と すれば、Therefore, the total magnetic resistance Rt, which is a combination of the main magnetic resistances R1, R2, and R3, is the magnetic path length of the magnetic flux flowing between the slit grooves 4 and 5, and the magnetic path of the magnetic flux flowing between the air gaps δ. If the length is A2, the magnetic path length of the magnetic flux flowing in the core member 6 is A3, and the magnetic path cross-sectional area and permeability in each magnetic path are S1, S2, S3, μ1, μ2, μ3, respectively,

【0011】[0011]

【数2】 として求められる。[Equation 2] Is required as.

【0012】 一方、各コイル9の自己インダクタンスLは、コイル巻数をNとすると、On the other hand, if the number of coil turns is N, the self-inductance L of each coil 9 is

【0013】[0013]

【数3】 L=N2 /Rt として求めることができる。## EQU3 ## It can be obtained as L = N 2 / Rt.

【0014】 そして、磁歪シャフト2の一端側に図3に示す如く、反時計方向のトルクTが 加えられると、一側スリット溝4に沿って引っ張り応力+σが発生すると共に、 他側スリット溝5に沿って圧縮応力−σが発生する。これにより、一側スリット 4側の磁歪シャフト2の透磁率μ1 は引っ張り応力+σにより大きくなって該磁 歪シャフト2の磁気抵抗R1 が減少し、一方、他側スリット5側の磁歪シャフト 2の透磁率μ1 は圧縮応力−σにより小さくなって磁気抵抗R1 が増大する。When a counterclockwise torque T is applied to one end side of the magnetostrictive shaft 2 as shown in FIG. 3, a tensile stress + σ is generated along the one side slit groove 4 and the other side slit groove 5 is generated. A compressive stress −σ is generated along with. As a result, the magnetic permeability μ1 of the magnetostrictive shaft 2 on the one side slit 4 side increases due to the tensile stress + σ, and the magnetic resistance R1 of the magnetostrictive shaft 2 decreases, while the permeability μ1 of the magnetostrictive shaft 2 on the other side slit 5 side decreases. The magnetic susceptibility .mu.1 decreases due to the compressive stress-.sigma., And the magnetic resistance R1 increases.

【0015】 この結果、一側のコイル9は総磁気抵抗Rtが小さくなって自己インダクタン スLが増大し、一方、他側のコイル9は総磁気抵抗Rtが大きくなって自己イン ダクタンスLが減少するため、ブリッジ回路の平衡が崩れて差動増幅器にトルク Tに応じた出力電圧が現われる。As a result, the total magnetic resistance Rt of the coil 9 on one side decreases and the self-inductance L increases, whereas the total magnetic resistance Rt of the coil 9 on the other side increases and the self-inductance L increases. Since the voltage decreases, the balance of the bridge circuit is lost and an output voltage corresponding to the torque T appears in the differential amplifier.

【0016】 また、これとは逆に、磁歪シャフト2の一端側に時計方向のトルクを加えたと きは、一側スリット溝4に沿って生じる圧縮応力−σによって透磁率μ1 が小さ くなる一方、他側スリット溝5に沿って生じる引っ張り応力+σによって透磁率 μ1 が大きくなるから、一側のコイル9の自己インダクタンスLが減少し、他側 のコイル9の自己インダクタンスLが増大して、差動増幅器からこの逆向きのト ルクに応じた電圧が出力される。On the contrary, when a clockwise torque is applied to the one end side of the magnetostrictive shaft 2, the magnetic permeability μ 1 becomes smaller due to the compressive stress −σ generated along the one side slit groove 4. Since the magnetic permeability μ1 increases due to the tensile stress + σ generated along the other side slit groove 5, the self-inductance L of the coil 9 on the one side decreases and the self-inductance L of the coil 9 on the other side increases, resulting in The voltage corresponding to this reverse torque is output from the dynamic amplifier.

【0017】[0017]

【考案が解決しようとする課題】[Problems to be solved by the device]

ところで、上述した従来技術による磁歪式トルクセンサでは、各コイル9に交 流電圧を印加して磁束を生ぜしめ、各コア部材6、エアギャップδ、磁歪シャフ ト2に亘る磁気回路を形成することにより、トルクに応じて変化する磁歪シャフ ト2の磁気抵抗R1 を利用して、磁歪シャフト2に加わったトルクを検出してい る。 By the way, in the above-described conventional magnetostrictive torque sensor, an alternating voltage is applied to each coil 9 to generate a magnetic flux, and a magnetic circuit is formed across each core member 6, the air gap δ, and the magnetostrictive shaft 2. As a result, the torque applied to the magnetostrictive shaft 2 is detected by utilizing the magnetic resistance R1 of the magnetostrictive shaft 2 which changes according to the torque.

【0018】 しかし、前記数3に示す如く各コイル9の自己インダクタンスLを決定する総 磁気抵抗Rtは、磁歪シャフト2の磁気抵抗R1 のみならず、その他の各磁気抵 抗R2 ,R3 との合成値であるため、磁歪シャフト2の磁気抵抗R1 が応力σに よって変化する変化分ΔR1 が総磁気抵抗Rtに与える影響が小さく、即ち前記 数2のうちトルク依存性を有する右辺第1項の占める割合が低い。However, the total magnetic resistance Rt that determines the self-inductance L of each coil 9 as shown in the equation 3 is not only the magnetic resistance R1 of the magnetostrictive shaft 2 but also the other magnetic resistances R2 and R3. Since the value is a value, the change ΔR1 in which the magnetic resistance R1 of the magnetostrictive shaft 2 changes due to the stress σ has little influence on the total magnetic resistance Rt. The percentage is low.

【0019】 このため、上述した従来技術によるものでは、トルク検出とは無関係な各エア ギャップδの磁気抵抗R2 や各コア部材6の磁気抵抗R3 のために、トルクに応 じて変化する磁歪シャフト2の磁気抵抗R1 が総磁気抵抗Rtに与える影響が小 さくなって、トルクの検出感度が大幅に低下し、検出精度や信頼性が低いという 問題がある。Therefore, according to the above-described conventional technique, the magnetostrictive shaft that changes according to the torque due to the magnetic resistance R2 of each air gap δ and the magnetic resistance R3 of each core member 6 unrelated to the torque detection. There is a problem that the effect of the second magnetic resistance R1 on the total magnetic resistance Rt is reduced, the torque detection sensitivity is significantly reduced, and the detection accuracy and reliability are low.

【0020】 特に、図6中に二点鎖線で示す如く、磁歪シャフト2の表面では透磁率の低い 各スリット溝4,5によって磁束の流れが斜め方向に強制されるため、該磁歪シ ャフト2から各コア片7の環状脚部7Bを介してコア部材6内に入った磁束も、 この影響を受けて該コア部材6の表面を斜め方向に流れ易い。従って、該コア部 材6内の磁路長A3 が不必要に増大し易いから、前記数1よりコア部材6の磁気 抵抗R3 が大きくなって、相対的に磁歪シャフト2の磁気抵抗R1 が総磁気抵抗 Rtに占める割合が低下し、トルクの検出感度が大幅に低下するという問題があ る。In particular, as indicated by the chain double-dashed line in FIG. 6, since the flow of magnetic flux is forced in the oblique direction by the slit grooves 4 and 5 having low magnetic permeability on the surface of the magnetostrictive shaft 2, the magnetostrictive shaft 2 The magnetic flux that has entered into the core member 6 through the annular leg portions 7B of each core piece 7 easily flows diagonally on the surface of the core member 6 due to this influence. Therefore, since the magnetic path length A3 in the core member 6 tends to unnecessarily increase, the magnetic resistance R3 of the core member 6 becomes larger than the above-mentioned equation 1, and the magnetic resistance R1 of the magnetostrictive shaft 2 becomes relatively large. There is a problem that the ratio of the magnetic resistance Rt is reduced and the torque detection sensitivity is significantly reduced.

【0021】 本考案は上述した従来技術の問題に鑑みなされたもので、磁歪シャフトの磁気 抵抗が総磁気抵抗に占める割合を増大させることにより、トルクの検出感度を向 上できるようにした磁歪式トルクセンサを提供することを目的とする。The present invention has been made in view of the above-described problems of the prior art. The magnetostrictive type that improves the torque detection sensitivity by increasing the ratio of the magnetoresistance of the magnetostrictive shaft to the total magnetoresistance. An object is to provide a torque sensor.

【0022】[0022]

【課題を解決するための手段】[Means for Solving the Problems]

上述した課題を解決するために、本考案が採用する構成の特徴は、コア部材に は周方向に所定間隔離間して外面側から内面側に亘る複数の溝を設けたことにあ る。 In order to solve the above-mentioned problems, a feature of the structure adopted by the present invention is that the core member is provided with a plurality of grooves extending from the outer surface side to the inner surface side at predetermined intervals in the circumferential direction.

【0023】[0023]

【作用】[Action]

コア部材の外面側から内面側に亘って設けられた複数の溝は、その透磁率が空 気と実質的に等しくコア部材よりも小さいから、該各溝によりコア部材は周方向 に所定間隔離間して複数個に分割された状態となり、磁束は各溝によって流れ方 向が最短距離に規制される。 Since the plurality of grooves provided from the outer surface side to the inner surface side of the core member have magnetic permeability substantially equal to that of air and smaller than that of the core member, the core members are separated by a predetermined distance in the circumferential direction by each groove. Then, the magnetic flux is divided into a plurality of parts, and the magnetic flux is restricted to the shortest distance by the grooves.

【0024】[0024]

【実施例】【Example】

以下、本考案の実施例を図1および図2に基づき説明する。なお、実施例では 前述した図3ないし図6に示す従来技術と同一の構成要素に同一の符号を付し、 その説明を省略するものとする。 An embodiment of the present invention will be described below with reference to FIGS. In the embodiment, the same components as those of the conventional technique shown in FIGS. 3 to 6 are designated by the same reference numerals, and the description thereof will be omitted.

【0025】 図中、21,21は従来技術で述べたコア部材6に代えて本実施例に適用され る筒状のコア部材を示し、該各コア部材21は、従来技術で述べた各コア部材6 とほぼ同様に、磁歪シャフト2のセンサ部2A外周側を取囲むようにケーシング 1の内周面に軸方向に離間して設けられ、後述のコア片22,22を衝合するこ とによって筒状に形成されている。しかし、本実施例による各コア部材21には その外面側から内面側に亘って後述する複数の溝23,23,…が設けられてい る点で相違する。In the figure, reference numerals 21 and 21 denote cylindrical core members applied to this embodiment in place of the core member 6 described in the related art, and each core member 21 is each core described in the related art. Almost the same as the member 6, it is provided on the inner peripheral surface of the casing 1 so as to surround the outer peripheral side of the sensor portion 2A of the magnetostrictive shaft 2 so as to be spaced apart in the axial direction, and to collate core pieces 22, 22 described later. Is formed into a tubular shape. However, each core member 21 according to this embodiment is different in that a plurality of grooves 23, 23, which will be described later, are provided from the outer surface side to the inner surface side.

【0026】 22,22はパーマロイ等の高透磁率軟磁性材料から有底筒状に形成され、従 来技術で述べた各コア片7とほぼ同様にシャフト挿通穴22Aと環状脚部22B とが設けられたコア片、23,23,…は該各コア片22の外面側から内面側に 亘って設けられた12個の溝をそれぞれ示し、該各溝23は図2に示す如く、各 コア片22の中心に対して例えば周方向に30°程度ずつ離間した間隔をもって 位置し、該各コア片22の衝合面でそれぞれ対向する他方の溝23と接続されて いる。また、該各溝23はその断面がU字状ないし半円状に形成され、その深さ 寸法hは下記数4で求められる表皮深さS以上となっている(h≧S)。22 and 22 are formed of a high magnetic permeability soft magnetic material such as permalloy in a cylindrical shape with a bottom, and the shaft insertion hole 22A and the annular leg portion 22B are almost the same as each core piece 7 described in the prior art. The provided core pieces 23, 23, ... Denote 12 grooves provided from the outer surface side to the inner surface side of each core piece 22, respectively, and each groove 23 is formed as shown in FIG. For example, they are located at intervals of about 30 ° in the circumferential direction with respect to the center of the piece 22 and are connected to the other grooves 23 facing each other at the abutting surface of each core piece 22. Further, each groove 23 is formed in a U-shaped or semi-circular cross-section, and its depth dimension h is equal to or greater than the skin depth S calculated by the following equation 4 (h ≧ S).

【0027】[0027]

【数4】 [Equation 4]

【0028】 そして、前記各溝23は、その透磁率が内部にある空気の透磁率と実質的に等 しく、各コア部材21の磁気抵抗R3 よりも磁気抵抗が大きいから、各スリット 溝4,5と同様に各コア部材21内の磁束の流れを規制している。Since the magnetic permeability of each groove 23 is substantially equal to the magnetic permeability of the air inside, and the magnetic resistance is larger than the magnetic resistance R3 of each core member 21, each slit groove 4, As in the case of No. 5, the flow of magnetic flux in each core member 21 is regulated.

【0029】 即ち、磁束は表皮効果によって前記数4に示す所定の表皮深さS内を集中して 流れるから、この表皮深さS以上の深さ寸法hで設けられた各溝23により、磁 束にとって各コア部材21は、周方向に30度程度ずつ離間した間隔をもって位 置する12個のコ字状コア24,24,…にそれぞれ分割された状態と等しくな り、図2中に二点鎖線で示す如く、各コア部材21内に入射した磁束は各溝23 により、その流れ方向がコア部材21内での最短距離、即ち各環状脚部22B間 の最短距離たる直線状に規制されて各コ字状コア24内を流れるようになってい る。That is, since the magnetic flux concentrates and flows within the predetermined skin depth S shown in Formula 4 due to the skin effect, the magnetic flux is generated by the respective grooves 23 provided with the depth dimension h equal to or larger than the skin depth S. For the bundle, each core member 21 is equal to a state in which each core member 21 is divided into 12 U-shaped cores 24, 24, ... Positioned at intervals of about 30 degrees in the circumferential direction. As indicated by the dotted chain line, the magnetic flux that has entered each core member 21 is regulated by each groove 23 so that the flow direction is the shortest distance within the core member 21, that is, the straight line that is the shortest distance between the annular leg portions 22B. And flows in each U-shaped core 24.

【0030】 本実施例による磁歪式トルクセンサは上述の如き構成を有するもので、その基 本的な作動については従来技術によるものと格別差異はない。The magnetostrictive torque sensor according to the present embodiment has the above-mentioned configuration, and its basic operation is not significantly different from that according to the prior art.

【0031】 然るに、本実施例では、各コア部材21に周方向に30°程度ずつ離間した間 隔をもって位置し、外面側から内面側に亘って表皮深さS以上の深さ寸法hを有 する複数の溝23,23,…を設ける構成としたから、該各溝23により各コア 部材21を周方向に離間する複数のコ字状コア24として実質的にそれぞれ分割 することができ、各コア部材21内に入った磁束の流れを効果的に規制すること ができる。However, in the present embodiment, each core member 21 is located at intervals of about 30 ° in the circumferential direction and has a depth dimension h equal to or greater than the skin depth S from the outer surface side to the inner surface side. .. are provided, the core members 21 can be substantially divided by the grooves 23 into a plurality of U-shaped cores 24 that are spaced apart in the circumferential direction. It is possible to effectively regulate the flow of the magnetic flux that has entered the core member 21.

【0032】 この結果、図2に示す如く、各コア部材21内の磁束を各環状脚部22B間の 最短距離たる直線状に流すことができ、各コア部材21の磁路長A3 を大幅に短 くできるから、総磁気抵抗Rtに占める磁歪シャフト2の磁気抵抗R1 の割合を 相対的に大きくすることができ、磁歪シャフト2の透磁率μ1 の変化を効果的に 反映させて、トルクの検出感度を大幅に増大することができる。As a result, as shown in FIG. 2, the magnetic flux in each core member 21 can be made to flow in a straight line which is the shortest distance between the annular leg portions 22B, and the magnetic path length A3 of each core member 21 can be significantly increased. Since the length can be shortened, the ratio of the magnetic resistance R1 of the magnetostrictive shaft 2 to the total magnetic resistance Rt can be relatively increased, and the change in the magnetic permeability μ1 of the magnetostrictive shaft 2 can be effectively reflected to detect the torque. The sensitivity can be greatly increased.

【0033】 また、各溝23は各コア部材21の外面側から内面側に亘って周方向に複数個 形成されているから、該各溝23の分だけ各コア部材21の表面積を増大させる ことができ、該各溝23内を軸方向に流れる空気によって各コア部材21を効果 的に冷却することができ、エンジンからの熱等によって該各コア部材21が変形 等するのを防止することができる。Further, since each groove 23 is formed in a plurality in the circumferential direction from the outer surface side to the inner surface side of each core member 21, the surface area of each core member 21 should be increased by the amount of each groove 23. It is possible to effectively cool the core members 21 by the air flowing in the grooves 23 in the axial direction, and it is possible to prevent the core members 21 from being deformed by heat from the engine. it can.

【0034】 なお、前記実施例では、各溝23,23,…は周方向に30°程度ずつ離間し た間隔をもって12個設けるものとして述べたが、これに替えて、30°以下あ るいは30°以上ずつ周方向に離間した間隔をもって設けてもよい。It should be noted that, in the above-described embodiment, it has been described that twelve grooves 23, 23, ... Are provided at intervals of about 30 ° in the circumferential direction, but instead of this, 30 ° or less or 30 ° or less. They may be provided at intervals of 30 ° or more in the circumferential direction.

【0035】 また、前記実施例では、2コイル式の磁歪式トルクセンサを例に挙げて説明し たが、本考案はこれに限らず、例えば4コイル式の磁歪式トルクセンサに用いて もよい。Further, in the above embodiment, the two-coil type magnetostrictive torque sensor has been described as an example, but the present invention is not limited to this, and may be used, for example, in a four-coil type magnetostrictive torque sensor. .

【0036】 さらに、前記実施例では、自動車用エンジンのトルク検出に用いた場合を例に 挙げて説明したが、電動モータの回転軸のトルク等の他のトルク検出にも用いる ことができる。Further, in the above-described embodiment, the case where it is used to detect the torque of the automobile engine has been described as an example, but it can also be used to detect other torques such as the torque of the rotating shaft of the electric motor.

【0037】[0037]

【考案の効果】[Effect of device]

以上詳述した如く、本考案によれば、コア部材には周方向に所定間隔離間して 外面側から内面側に亘る複数の溝を設ける構成としたから、その透磁率が空気と 実質的に等しい該各溝により、表皮効果の影響を受ける磁束にとって該コア部材 を周方向に所定間隔離間する複数のコ字状コアとして実質的に分割することがで きる。この結果、各溝によってコア部材内の磁束の流れをコア部材内での最短距 離たる直線状に規制し、該コア部材内を流れる磁束の磁路長を短くして磁気抵抗 を小さくできるから、磁気回路の総磁気抵抗に占めるコア部材の磁気抵抗の低減 によって磁歪シャフトの磁気抵抗が占める割合を相対的に大きくすることができ 、磁歪シャフトの透磁率変化を効果的に反映させてトルクの検出感度を向上する ことができる。 As described above in detail, according to the present invention, the core member is provided with a plurality of grooves that are spaced from each other in the circumferential direction by a predetermined distance from the outer surface side to the inner surface side. By the equal grooves, it is possible to substantially divide the core member into a plurality of U-shaped cores that are separated from each other by a predetermined distance in the circumferential direction for the magnetic flux affected by the skin effect. As a result, the flow of magnetic flux in the core member is regulated by each groove to a straight line with the shortest distance in the core member, and the magnetic path length of the magnetic flux flowing in the core member can be shortened to reduce the magnetic resistance. By reducing the magnetic resistance of the core member in the total magnetic resistance of the magnetic circuit, the ratio of the magnetic resistance of the magnetostrictive shaft can be made relatively large, and the change in the magnetic permeability of the magnetostrictive shaft can be effectively reflected to reduce the torque. The detection sensitivity can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の実施例による磁歪式トルクセンサの要
部を拡大して示す縦断面図である。
FIG. 1 is an enlarged vertical cross-sectional view showing an essential part of a magnetostrictive torque sensor according to an embodiment of the present invention.

【図2】図1中のコア部材を拡大して示す一部破断の斜
視図である。
FIG. 2 is a partially cutaway perspective view showing an enlarged core member in FIG.

【図3】従来技術による磁歪式トルクセンサを示す縦断
面図である。
FIG. 3 is a vertical sectional view showing a magnetostrictive torque sensor according to a conventional technique.

【図4】図3中の要部を拡大して示す縦断面図である。FIG. 4 is a vertical sectional view showing an enlarged main part in FIG.

【図5】コア部材、磁歪シャフト等に形成される磁気回
路を示す回路図である。
FIG. 5 is a circuit diagram showing a magnetic circuit formed on a core member, a magnetostrictive shaft and the like.

【図6】図3中のコア部材を拡大して示す一部破断の斜
視図である。
FIG. 6 is a partially cutaway perspective view showing the core member in FIG. 3 in an enlarged manner.

【符号の説明】[Explanation of symbols]

1 ケーシング 2 磁歪シャフト 9 コイル(励磁および検出コイル) 21 コア部材 23 溝 1 Casing 2 Magnetostrictive shaft 9 Coil (excitation and detection coil) 21 Core member 23 Groove

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 筒状のケーシングと、該ケーシング内に
回転自在に配設された磁歪シャフトと、該磁歪シャフト
の外周側を取り囲むように前記ケーシング内に設けられ
た筒状のコア部材と、前記磁歪シャフトに作用するトル
クを電気信号として検出すべく、該コア部材の内周側に
設けられた少なくとも一対の励磁および検出コイルとか
らなる磁歪式トルクセンサにおいて、前記コア部材には
周方向に所定間隔離間して外面側から内面側に亘る複数
の溝を設けたことを特徴とする磁歪式トルクセンサ。
1. A tubular casing, a magnetostrictive shaft rotatably arranged in the casing, and a tubular core member provided in the casing so as to surround an outer peripheral side of the magnetostrictive shaft. In order to detect the torque acting on the magnetostrictive shaft as an electric signal, in a magnetostrictive torque sensor consisting of at least a pair of excitation and detection coils provided on the inner peripheral side of the core member, the core member is circumferentially arranged. A magnetostrictive torque sensor characterized in that a plurality of grooves extending from the outer surface side to the inner surface side are provided at predetermined intervals.
JP7051192U 1992-09-14 1992-09-14 Magnetostrictive torque sensor Pending JPH0628673U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7051192U JPH0628673U (en) 1992-09-14 1992-09-14 Magnetostrictive torque sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7051192U JPH0628673U (en) 1992-09-14 1992-09-14 Magnetostrictive torque sensor

Publications (1)

Publication Number Publication Date
JPH0628673U true JPH0628673U (en) 1994-04-15

Family

ID=13433634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7051192U Pending JPH0628673U (en) 1992-09-14 1992-09-14 Magnetostrictive torque sensor

Country Status (1)

Country Link
JP (1) JPH0628673U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10983019B2 (en) 2019-01-10 2021-04-20 Ka Group Ag Magnetoelastic type torque sensor with temperature dependent error compensation
US11486776B2 (en) 2016-12-12 2022-11-01 Kongsberg Inc. Dual-band magnetoelastic torque sensor
US11821763B2 (en) 2016-05-17 2023-11-21 Kongsberg Inc. System, method and object for high accuracy magnetic position sensing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11821763B2 (en) 2016-05-17 2023-11-21 Kongsberg Inc. System, method and object for high accuracy magnetic position sensing
US11486776B2 (en) 2016-12-12 2022-11-01 Kongsberg Inc. Dual-band magnetoelastic torque sensor
US10983019B2 (en) 2019-01-10 2021-04-20 Ka Group Ag Magnetoelastic type torque sensor with temperature dependent error compensation

Similar Documents

Publication Publication Date Title
US4803885A (en) Torque measuring apparatus
JP2001334948A5 (en)
KR860001339A (en) Non-contact torque sensor
JP2002513147A (en) Magnetic device for torque / force sensor
JP6483778B1 (en) Magnetostrictive torque detection sensor
JP3253947B2 (en) Torque detector
US7234361B2 (en) Magnetostrictive strain sensor (airgap control)
JPH0628673U (en) Magnetostrictive torque sensor
JPH04191630A (en) Magnetostriction type torque sensor
JP4305271B2 (en) Magnetostrictive torque sensor
JPS5946526A (en) Electromagnetic stress sensor
JPH0446185Y2 (en)
JP3094049B2 (en) Torque sensor
JPH0543040U (en) Magnetostrictive torque sensor
JPH064642U (en) Torque sensor
JPH01140036A (en) Torque sensor
JP2608498B2 (en) Magnetostrictive torque sensor
JP2584419Y2 (en) Magnetostrictive torque sensor
JPS6141936A (en) Torque sensor
JPH0647832U (en) Magnetostrictive torque sensor
JPH0446186Y2 (en)
JPH0545538U (en) Magnetostrictive torque sensor
JPH07333080A (en) Steering torque sensor
JPH0587544U (en) Magnetostrictive torque sensor
JP2002062203A (en) Torque sensor