JPH0747541A - Processing of single crystal - Google Patents

Processing of single crystal

Info

Publication number
JPH0747541A
JPH0747541A JP5197126A JP19712693A JPH0747541A JP H0747541 A JPH0747541 A JP H0747541A JP 5197126 A JP5197126 A JP 5197126A JP 19712693 A JP19712693 A JP 19712693A JP H0747541 A JPH0747541 A JP H0747541A
Authority
JP
Japan
Prior art keywords
single crystal
processing
orientation
plane
linbo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5197126A
Other languages
Japanese (ja)
Inventor
Tadao Komi
忠雄 小見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5197126A priority Critical patent/JPH0747541A/en
Publication of JPH0747541A publication Critical patent/JPH0747541A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize the highly accurate azimuth processing of a single crystal having a special crystal azimuth. CONSTITUTION:When the surface 3 of a single crystal 1 different from the specific surface thereof is processed, the crystal surface 2 parallel to the surface azimuth A of the processing surface 3 and inclined within a range of an angle thetaof + or -10 deg.C from the processing surface 3 is set to a reference surface and the alignment of the single crystal 1 is performed using the reference surface 2 to process the processing surface 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、単結晶の方位加工方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal orientation processing method.

【0002】[0002]

【従来の技術】引上げ法等で育成された単結晶体は、そ
の方位が種結晶から数度ずれていたり、また肩部やテー
ル部の形状がインゴット毎に異なることから、単結晶体
(単結晶ボール)をスライス加工する際には、正確に方
位出しした後にスライス加工を行っている。具体的に
は、まず単結晶ボールの端面を加工し、この端面を利用
してX線回折等によって、単結晶ボールの正確な方位出
しを行った後、端面の面加工(基準面加工)およびオリ
フラ加工を行い、上記基準面を元にしてスライス加工を
行っている。
2. Description of the Related Art A single crystal grown by a pulling method or the like has its orientation deviated from the seed crystal by a few degrees, and the shape of the shoulder or tail differs from ingot to single crystal. When slicing a crystal ball), slicing is performed after the orientation is accurately set. Specifically, first, the end face of the single crystal ball is processed, the single crystal ball is accurately oriented by X-ray diffraction using this end face, and then the end face is processed (reference surface processing) and The orientation flat processing is performed, and the slice processing is performed based on the reference plane.

【0003】ところで、実際の加工面がX線反射が取れ
る面の場合、例えばX面、Y面、Z面等である場合に
は、問題なくスライス加工を行うことができる。しか
し、特殊な結晶方位を有する単結晶ボールをスライス加
工する場合には、加工面でX線反射が取れないため、加
工方位と平行でX線反射の強い面で方位を測定した後、
ゴニオメータを回転させて加工方位を合わせたり、ある
いは方位精度が出しにくいラウエ装置で加工方位を合わ
せている。
By the way, if the actual processed surface is a surface capable of X-ray reflection, for example, if it is an X surface, a Y surface, a Z surface, etc., slice processing can be performed without any problem. However, when slicing a single crystal ball having a special crystal orientation, X-ray reflection cannot be obtained on the processed surface, so after measuring the orientation on a surface parallel to the processing orientation and having strong X-ray reflection,
The goniometer is rotated to match the processing direction, or the processing direction is adjusted with a Laue device that is difficult to obtain the direction accuracy.

【0004】例えば、64°Y LiTaO3 単結晶において
は、Z面で方位出しを行ったとしても、そこからゴニオ
メータで26°回転させて加工方位を合わせなければなら
ず、ゴニオメータの回転誤差が出やすいため、分以下の
加工精度は困難であり、またスライス後のウェーハでの
方位確認も精度を出しにくいという欠点があった。特
に、面方位の傾角は、測定面が傾くために、X線ディフ
ラクトメータのX線反射強度が低下し、方位誤差が大き
くなってしまう。
For example, in the case of a 64 ° Y LiTaO 3 single crystal, even if orientation is performed in the Z plane, it is necessary to rotate it by 26 ° with a goniometer to match the processing orientation, and a rotation error of the goniometer appears. Since it is easy, processing accuracy of less than a minute is difficult, and it is difficult to confirm the orientation of the sliced wafer. In particular, regarding the tilt angle of the plane direction, the X-ray reflection intensity of the X-ray diffractometer is reduced and the direction error is increased because the measurement surface is tilted.

【0005】これは、X線ディフラクトメータのX線源
がライン状になっていることに加えて、測定面が例えば
15°以上傾くと、吸収係数が大きい LiTaO3 単結晶や L
iNbO3 単結晶等では反射強度が弱くなり、方位測定が困
難となることによる。
This is because in addition to the X-ray source of the X-ray diffractometer being linear, the measurement surface is, for example,
When tilted at 15 ° or more, the absorption coefficient of LiTaO 3 single crystal and L
This is because iNbO 3 single crystals and the like have weak reflection intensity, which makes it difficult to measure orientation.

【0006】[0006]

【発明が解決しようとする課題】上述したような単結晶
のスライス加工における結晶方位の精度は、Siウェーハ
等ではそれほど重要とはなっていないが、弾性表面波や
振動子等に用いられる酸化物(圧電)単結晶では、分以
下の方位精度が要求されている。しかし、上述したよう
な従来の方位加工方法では、加工面で直接X線反射が取
れない場合には分以下の精度で加工することが非常に困
難であり、特に傾角が大きい場合については困難をきわ
めた加工となっていた。
The accuracy of the crystal orientation in the slicing process of a single crystal as described above is not so important in a Si wafer or the like, but it is an oxide used in surface acoustic waves or vibrators. For (piezoelectric) single crystals, azimuth accuracy of a minute or less is required. However, with the conventional azimuth processing method as described above, it is extremely difficult to perform processing with accuracy of less than a minute when X-ray reflection cannot be directly obtained on the processing surface, and particularly when the inclination angle is large. It was a fine process.

【0007】このようなことから、36°Y LiTaO3 、36
°Y LiNbO3 、41°Y LiNbO3 、64°Y LiNbO3 、 131
°Y LiNbO3 等のように、特殊な結晶方位を有する単結
晶体を、高精度に方位加工することを可能にした加工方
法の出現が強く望まれている。
From the above, 36 ° Y LiTaO 3 , 36
° Y LiNbO 3 , 41 ° Y LiNbO 3 , 64 ° Y LiNbO 3 , 131
There is a strong demand for the appearance of a processing method that enables highly accurate orientation processing of a single crystal body having a special crystal orientation such as ° Y LiNbO 3 .

【0008】本発明は、このような課題に対処するため
になされたもので、特殊な結晶方位を有する単結晶体の
高精度な方位加工を実現した単結晶の加工方法を提供す
ることを目的としている。
The present invention has been made in order to solve such a problem, and an object of the present invention is to provide a single crystal processing method which realizes highly accurate orientation processing of a single crystal body having a special crystal orientation. I am trying.

【0009】[0009]

【課題を解決するための手段】本発明の単結晶の加工方
法は、単結晶体の結晶方位加工方法において、結晶方位
が特定面とは異なる面を加工する際に、加工面の面方位
と平行で、かつ加工面からの傾きが±10°以内の結晶面
を基準面とし、前記基準面を用いて前記単結晶体の位置
合わせを行った後、前記加工面を加工することを特徴と
している。
A method for processing a single crystal according to the present invention is a method for processing a crystal orientation of a single crystal, wherein when a surface having a crystal orientation different from a specific plane is processed, In parallel, and the inclination from the processed surface is a crystal plane within ± 10 ° as a reference plane, after performing the alignment of the single crystal body using the reference plane, characterized in that the processed surface is processed There is.

【0010】[0010]

【作用】例えば、36°Y LiTaO3 単結晶の端面加工を行
う際に、Y軸からゴニオメータを回す場合には傾角の反
射強度が十分に取れず、また36°も回転させるためにゴ
ニオメータの角度誤差が大きくなると共に、ゴニオメー
タのバランスも悪くなり、さらに加工時に加圧された際
のずれも大きくなる。これに対して、例えば図1に示す
ように、 LiTaO3 単結晶1の(011(バー)2)面2を基準
面として使用すれば33°Y面であるために、差角が 3°
程度しかなく、傾角を合わす時にも通常のX線強度(例
えば10kV, 10mA)で十分に反射強度を得ることができ
る。また、64°Y LiNbO3 単結晶の端面加工において
も、Z軸から26°回転させた場合には、傾角は反射強度
が取れず、精度が悪い背面ラウエ法で方位合わせをする
か、あるいは加工した後にウェーハ 1枚 1枚の方位を調
べる以外に方位合わせをする方法がなかったのに対し、
(011(バー)8)面を基準面とすれば、加工面から 5°程
度しかずれていないために、反射強度も十分に取れて、
傾角も分以下の精度で合わすことができ、面精度を大幅
に向上させることが可能となる。
[Function] For example, when processing the end face of a 36 ° Y LiTaO 3 single crystal, when the goniometer is turned from the Y-axis, the reflection intensity of the tilt angle cannot be sufficiently obtained, and the angle of the goniometer is rotated to rotate 36 °. As the error increases, the balance of the goniometer becomes poor, and the deviation when pressed during processing also increases. On the other hand, for example, as shown in FIG. 1, if the (011 (bar) 2) plane 2 of the LiTaO 3 single crystal 1 is used as a reference plane, it is 33 ° Y plane, so the difference angle is 3 °.
There is only a small degree, and even when the tilt angles are matched, a sufficient reflection intensity can be obtained with a normal X-ray intensity (for example, 10 kV, 10 mA). Also, in the end face processing of a 64 ° Y LiNbO 3 single crystal, when it is rotated by 26 ° from the Z axis, the tilt angle does not have the reflection intensity and the orientation is adjusted by the back laue method, which is inaccurate. After that, there was no way to align the orientation other than checking the orientation of each wafer,
If the (011 (bar) 8) plane is used as the reference plane, it is only offset by about 5 ° from the machined surface, so sufficient reflection intensity can be obtained,
The tilt angle can be adjusted with accuracy of less than a minute, and the surface accuracy can be significantly improved.

【0011】このように、単結晶体の結晶方位が特定面
とは異なる面を加工する際に、図1に示したように、加
工面3の面方位(図中、矢印Aで示す)と平行で、かつ
加工面3からの傾きθが±10°以内の結晶面2を基準面
とし、この基準面2を用いて単結晶体1の位置合わせを
行うことによって、36°Y LiTaO3 、36°Y LiNbO3、4
1°Y LiNbO3 、64°Y LiNbO3 、 131°Y LiNbO3
のように、特殊な結晶方位を有する単結晶体を正確に方
位合わせすることができる。このようにして位置合わせ
を行った後に、面加工を行うことで、面精度を大幅に向
上させることが可能となる。よって、例えば単結晶ボー
ルのスライス加工を精度よく行うことができ、効率よく
ウェーハ加工ができると共に、高精度方位のウェーハを
得ることが可能となる。なお、図1中の矢印Bは、単結
晶体1の結晶方位である。
As described above, when processing the surface of the single crystal body whose crystal orientation is different from the specific surface, as shown in FIG. 1, the surface orientation of the processing surface 3 (indicated by arrow A in the drawing) By using the crystal plane 2 that is parallel and has an inclination θ within ± 10 ° from the processing plane 3 as a reference plane and aligning the single crystal body 1 using this reference plane 2, 36 ° Y LiTaO 3 , 36 ° Y LiNbO 3 , 4
A single crystal body having a special crystal orientation such as 1 ° Y LiNbO 3 , 64 ° Y LiNbO 3 , 131 ° Y LiNbO 3 and the like can be accurately aligned. By performing the surface processing after the alignment as described above, the surface accuracy can be significantly improved. Therefore, for example, slicing of a single crystal ball can be performed accurately, wafer processing can be performed efficiently, and a wafer with a highly accurate orientation can be obtained. The arrow B in FIG. 1 indicates the crystal orientation of the single crystal body 1.

【0012】ここで、図2に加工面と基準面との差角と
方位精度との関係を示す。加工面と基準面との差角が±
10°以内であれば、単結晶体を左右に回転させても反射
強度が通常レベルのX線出力で取れることから、図2か
ら明らかなように、傾角の方位精度が向上し、正確に方
位加工を行うことができる。
FIG. 2 shows the relationship between the angle of difference between the machined surface and the reference surface and the azimuth accuracy. The difference between the machined surface and the reference surface is ±
If the angle is within 10 °, the reflection intensity can be obtained at the normal level of X-ray output even if the single crystal body is rotated to the left or right, and as is clear from FIG. Processing can be performed.

【0013】なお、本発明でいう特定面とは、例えばX
面、Y面、Z面等のように、直接X線反射が取れる面を
指すものとする。
The specific surface referred to in the present invention is, for example, X
A surface on which X-ray reflection can be taken directly, such as a surface, a Y surface, and a Z surface.

【0014】[0014]

【実施例】以下、本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0015】実施例1 直径 3インチ× 100mmの36°Y LiTaO3 単結晶ボ−ルを
ゴニオメータに固定し、まず端面を数mm加工する。加工
後、X線ディフラクトメータの角度を(011(バー)2)面
の反射角度に合わせる。また、基準板を用いて、試料側
の角度を合わせる。なお、この実施例では、加工面であ
る36°Y面からのずれ(差角)が 3° 4′の(011(バ
ー)2)面を基準面としている。
Example 1 A 36 ° Y LiTaO 3 single crystal ball having a diameter of 3 inches × 100 mm was fixed to a goniometer, and the end face was first processed by several mm. After processing, the angle of the X-ray diffractometer is adjusted to the reflection angle of the (011 (bar) 2) surface. In addition, the angle on the sample side is adjusted using the reference plate. In this embodiment, the (011 (bar) 2) plane whose deviation (difference angle) from the 36 ° Y plane, which is the machined surface, is 3 ° 4'is used as the reference plane.

【0016】次に、ゴニオメータをX線回折装置に取り
付け、試料の LiTaO3 単結晶ボ−ルを最初に左右で最大
のX線強度の位置に合わせる。 3軸ゴニオメータを90°
左に回転させ、次いで90°右に回転させ、左右同じ位置
で最大ピークとなるように傾きを変化させて方位を合わ
せる。
Next, the goniometer is attached to the X-ray diffractometer, and the LiTaO 3 single crystal ball of the sample is first adjusted to the position of the maximum X-ray intensity on the left and right. 90 degree 3-axis goniometer
Rotate to the left, then to the right 90 °, and change the tilt so that the maximum peak appears at the same position on the left and right, and adjust the bearing.

【0017】このようにして、(011(バー)2)面の結晶
方位に対して、それぞれ10″以内に合わせた後に、 3°
4′ずらして36°Yに LiTaO3 単結晶ボ−ルの方位を合
わせる。この後、 LiTaO3 単結晶ボ−ルを治具で固定
し、端面加工機で正確な端面加工を行う。
In this way, the crystal orientation of the (011 (bar) 2) plane is adjusted within 10 ″, and then 3 °
The orientation of the LiTaO 3 single crystal ball is adjusted to 36 ° Y by shifting 4 ′. After that, the LiTaO 3 single crystal ball is fixed with a jig, and the end face processing machine performs accurate end face processing.

【0018】以上の操作により、正確に端面加工を行っ
た LiTaO3 単結晶ボ−ルに、オリフラ加工を行った後、
36°Y LiTaO3 単結晶ボ−ルをワイヤーソーにより0.85
mm幅にスライス加工した。
By the above operation, the LiTaO 3 single crystal ball, which has been subjected to the end face processing accurately, is subjected to the orientation flat processing,
36 ° Y LiTaO 3 single crystal ball with wire saw 0.85
Sliced into mm width.

【0019】得られたスライスウェーハの結晶方位を調
べたところ、いずれも30″以内と高精度に加工されてい
ることを確認した。
When the crystal orientations of the sliced wafers thus obtained were examined, it was confirmed that they were all processed with high precision within 30 ″.

【0020】実施例2 直径 3インチ× 110mmの64°Y LiNbO3 単結晶ボ−ルを
ゴニオメータに固定し、まず端面を数mm加工する。加工
後、X線ディフラクトメータの角度を(011(バー)8)面
反射の角度に合わせる。また、基準板を用いて、試料側
の角度を合わせる。なお、この実施例では、加工面であ
る64°Y面からのずれ(差角)が 4°45′の(011(バ
ー)8)面を基準面としている。
Example 2 A 64 ° Y LiNbO 3 single crystal ball having a diameter of 3 inches × 110 mm was fixed to a goniometer, and the end face was first processed by several mm. After processing, adjust the angle of the X-ray diffractometer to the angle of (011 (bar) 8) plane reflection. In addition, the angle on the sample side is adjusted using the reference plate. In this embodiment, the (011 (bar) 8) surface whose deviation (difference angle) from the 64 ° Y surface, which is the processed surface, is 4 ° 45 'is used as the reference surface.

【0021】次に、ゴニオメータをX線回折装置に取り
付け、試料の LiNbO3 単結晶ボ−ルを最初に左右で最大
のX線強度の位置に合わせる。 3軸ゴニオメータを90°
左に回転させ、次いで90°右に回転させ、左右同じ位置
で最大ピークとなるように傾きを変化させて方位を合わ
せる。
Next, the goniometer is attached to the X-ray diffractometer, and the LiNbO 3 single crystal ball of the sample is first adjusted to the position of the maximum X-ray intensity on the left and right. 90 degree 3-axis goniometer
Rotate to the left, then to the right 90 °, and change the tilt so that the maximum peak appears at the same position on the left and right, and adjust the bearing.

【0022】このようにして、(011(バー)8)面の結晶
方位に対してそれぞれ10″以内に合わせた後に、 4°4
5′ずらして64°Yに LiNbO3 単結晶ボ−ルの方位を合
わせる。この後、 LiNbO3 単結晶ボ−ルを治具で固定
し、端面加工機で正確な端面加工を行う。
In this way, after adjusting the crystal orientations of the (011 (bar) 8) plane within 10 ″ respectively, 4 ° 4
The orientation of the LiNbO 3 single crystal ball is adjusted to 64 ° Y by shifting 5 ′. After that, the LiNbO 3 single crystal ball is fixed with a jig, and the end face processing machine performs accurate end face processing.

【0023】以上の操作により、正確に端面加工を行っ
た LiNbO3 単結晶ボ−ルに、オリフラ加工を行った後、
64°Y LiNbO3 単結晶ボ−ルをワイヤーソーにより0.85
mm幅にスライス加工した。
By the above operation, the LiNbO 3 single crystal ball whose end face was accurately processed was subjected to orientation flat processing,
64 ° Y LiNbO 3 single crystal ball 0.85 with wire saw
Sliced into mm width.

【0024】得られたスライスウェーハの結晶方位を調
べたところ、いずれも32″以内と高精度に加工されてい
ることを確認した。
When the crystal orientations of the obtained sliced wafers were examined, it was confirmed that they were all processed with high precision within 32 ″.

【0025】比較例1 実施例2と同様な64°Y LiNbO3 単結晶ボ−ルをゴニオ
メータに固定し、まず端面を数mm加工する。加工後、背
面ラウエ法で位置合わせした後に、X線ディフラクトメ
ータの角度を(0006)面の反射角度に合わせる。また、基
準板により試料側の角度を合わせる。
Comparative Example 1 The same 64 ° Y LiNbO 3 single crystal ball as in Example 2 was fixed to a goniometer, and the end face was first processed by several mm. After processing, the back Laue method is used for alignment, and then the angle of the X-ray diffractometer is adjusted to the reflection angle of the (0006) plane. In addition, the angle on the sample side is adjusted by the reference plate.

【0026】次に、ゴニオメータをX線回折装置に取り
付け、試料の LiNbO3 単結晶ボ−ルの方位が(0006)面に
合うように調整した後、 LiNbO3 単結晶ボ−ルを治具で
固定し、端面加工機で端面加工を行う。この後、 LiNbO
3 単結晶ボ−ルにオリフラ加工を行い、さらに64°Y L
iNbO3 単結晶ボ−ルをワイヤーソーにより0.85mm幅にス
ライス加工した。
Next, the goniometer was attached to an X-ray diffractometer, the orientation of the LiNbO 3 single crystal ball of the sample was adjusted so as to match the (0006) plane, and then the LiNbO 3 single crystal ball was jigged. Fix and perform end face processing with the end face processing machine. After this, LiNbO
3 Single crystal balls were subjected to orientation flat processing and further 64 ° Y L
The iNbO 3 single crystal ball was sliced with a wire saw to a width of 0.85 mm.

【0027】得られたスライスウェーハの結晶方位を調
べたところ、左右に15′ずれ、また傾きは25′ずれてお
り、正確な方位加工が行われていないことを確認した。
When the crystal orientation of the obtained sliced wafer was examined, it was confirmed that the orientation was not accurately processed because it was shifted to the left and right by 15 'and the inclination was shifted by 25'.

【0028】なお、上記実施例においては、36°Y LiT
aO3 単結晶および64°Y LiNbO3 単結晶の加工に本発明
を適用した例について説明したが、本発明はこれらに限
定されるものではなく、36°Y LiNbO3 、41°Y LiNbO
3 、 131°Y LiNbO3 等についても、加工面の面方位と
平行で、かつ加工面からの傾きが±10°以内の結晶面を
基準面とすれば、同様に高精度な方位加工を行うことが
できる。例えば、36°Y LiNbO3 単結晶であれば基準面
として(011(バー)2)面(加工面との差角:3°4′)
を、また41°Y LiNbO3 単結晶であれば基準面として(0
11(バー)2)面(加工面との差角:7°56′)を、 131°
Y LiNbO3 単結晶であれば基準面として128°Y面を用
いれば、同様に高精度に方位加工を行うことができる。
In the above embodiment, 36 ° Y LiT
The examples of applying the present invention to the processing of aO 3 single crystal and 64 ° Y LiNbO 3 single crystal have been described, but the present invention is not limited to these, and 36 ° Y LiNbO 3 and 41 ° Y LiNbO 3 are used .
3 , 131 ° Y LiNbO 3 etc. are also processed with high precision by using a crystal plane parallel to the plane orientation of the machined surface and having an inclination of ± 10 ° from the machined surface as the reference plane. be able to. For example, in the case of 36 ° Y LiNbO 3 single crystal, the (011 (bar) 2) plane as the reference plane (angle difference from the machined surface: 3 ° 4 ')
If a 41 ° Y LiNbO 3 single crystal is used, (0
11 (bar) 2) surface (difference with processed surface: 7 ° 56 ′), 131 °
If the Y LiNbO 3 single crystal is used as the reference plane and the 128 ° Y plane is used, it is possible to perform orientation processing with high accuracy.

【0029】[0029]

【発明の効果】以上説明したように、本発明の単結晶の
加工方法によれば、特殊な結晶方位の単結晶体を、高精
度にかつ再現性よく結晶方位加工することができる。こ
れによって、例えば結晶方位精度に優れた単結晶ウェー
ハを再現性よく得ることができ、SAWデバイスや振動
子等の特性安定化に大きく寄与する。
As described above, according to the single crystal processing method of the present invention, a single crystal body having a special crystal orientation can be processed with high precision and reproducibility. As a result, for example, a single crystal wafer having excellent crystal orientation accuracy can be obtained with good reproducibility, which greatly contributes to the stabilization of the characteristics of SAW devices, vibrators, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による単結晶の加工方法を説明するた
めの図である。
FIG. 1 is a diagram for explaining a method for processing a single crystal according to the present invention.

【図2】 加工面と基準面との差角と方位精度との関係
を示す図である。
FIG. 2 is a diagram showing a relationship between a difference angle between a processed surface and a reference surface and azimuth accuracy.

【符号の説明】[Explanation of symbols]

1……単結晶体 2……基準面 3……加工面 A……加工面の面方位 B……単結晶体の結晶方位 θ……基準面の加工面からの傾き 1 …… single crystal 2 …… reference plane 3 …… processing surface A …… plane orientation of processing surface B …… crystal orientation of single crystal θ …… inclination of reference surface from processing surface

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 単結晶体の結晶方位加工方法において、 結晶方位が特定面とは異なる面を加工する際に、加工面
の面方位と平行で、かつ加工面からの傾きが±10°以内
の結晶面を基準面とし、前記基準面を用いて前記単結晶
体の位置合わせを行った後、前記加工面を加工すること
を特徴とする単結晶の加工方法。
1. A method for processing a crystallographic orientation of a single crystal body, wherein when a surface having a crystallographic orientation different from a specific surface is processed, it is parallel to the surface orientation of the processed surface and the inclination from the processed surface is within ± 10 °. 2. The method for processing a single crystal, wherein the crystal plane is used as a reference plane, the single crystal body is aligned using the reference plane, and then the processed surface is processed.
JP5197126A 1993-08-09 1993-08-09 Processing of single crystal Pending JPH0747541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5197126A JPH0747541A (en) 1993-08-09 1993-08-09 Processing of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5197126A JPH0747541A (en) 1993-08-09 1993-08-09 Processing of single crystal

Publications (1)

Publication Number Publication Date
JPH0747541A true JPH0747541A (en) 1995-02-21

Family

ID=16369179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5197126A Pending JPH0747541A (en) 1993-08-09 1993-08-09 Processing of single crystal

Country Status (1)

Country Link
JP (1) JPH0747541A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09262825A (en) * 1996-03-29 1997-10-07 Shin Etsu Handotai Co Ltd Method of slicing semiconductor single crystal ingot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09262825A (en) * 1996-03-29 1997-10-07 Shin Etsu Handotai Co Ltd Method of slicing semiconductor single crystal ingot

Similar Documents

Publication Publication Date Title
CN109591211B (en) Crystal cutting device and method
US20210181126A1 (en) Control apparatus, system, method, and program
JPH0747541A (en) Processing of single crystal
US4961210A (en) High resolution technique and instrument for measuring lattice parameters in single crystals
JPH0855825A (en) Formation of silicon wafer
CN114571619A (en) Monochromator crystal orientation method
JPS62220848A (en) Device for measuring azimuth of bulk single crystal material
CA1040748A (en) Apparatus and method for orienting monocrystalline material for sawing
JP3352905B2 (en) Method for adjusting crystal tilt angle of single crystal sample in X-ray diffraction measurement
JPH06122119A (en) Seed rod cutting method
Nittono et al. An X-ray double-crystal method utilizing non-parallel setting for measuring local lattice mismatches between epitaxial films and substrates
JP2001272359A (en) Monocrystal ingot processing device and its method
CN211930601U (en) Directional smelting tool of crystal bar for surface acoustic wave filter
JP3250316B2 (en) Ion analyzer
JPS637124B2 (en)
JPH05273120A (en) Polarization analyzer
JP2610264B2 (en) Method for manufacturing semiconductor device
CN116399890A (en) Crystal three-dimensional orientation method and crystal processing method
US2392271A (en) Manufacture of piezoelectric elements
Berger X-ray orientation determination of single crystals by means of the $\Omega $-Scan Method
JPH05180697A (en) Adjustment method of polarization measurement device
JPS5640703A (en) Measuring method of degenerated layer of mirror polishment machining for ferrite
KR100198241B1 (en) Method for deciding crystal orientation flat for litao3 single crystal
JP2002139463A (en) Single-crystal accurate direction angle-measuring device
Green et al. Laser Aligned Laue Technique for Small Crystals

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020903