JPS637124B2 - - Google Patents

Info

Publication number
JPS637124B2
JPS637124B2 JP15382282A JP15382282A JPS637124B2 JP S637124 B2 JPS637124 B2 JP S637124B2 JP 15382282 A JP15382282 A JP 15382282A JP 15382282 A JP15382282 A JP 15382282A JP S637124 B2 JPS637124 B2 JP S637124B2
Authority
JP
Japan
Prior art keywords
crystal
single crystal
crystal orientation
plane
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15382282A
Other languages
Japanese (ja)
Other versions
JPS5942916A (en
Inventor
Tadao Komi
Kazuhiro Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57153822A priority Critical patent/JPS5942916A/en
Publication of JPS5942916A publication Critical patent/JPS5942916A/en
Publication of JPS637124B2 publication Critical patent/JPS637124B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

【発明の詳細な説明】 (発明の技術分野) 本発明はLiNb3やLiTaO3等の単結晶の加工方
法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to an improvement in a method for processing single crystals such as LiNb 3 and LiTaO 3 .

(発明の技術的背景及びその問題点) 近年LiNb3やLiTaO3等の単結晶を加工した部
品が広く弾性表面素子として用いられている。
(Technical background of the invention and its problems) In recent years, parts processed from single crystals such as LiNb 3 and LiTaO 3 have been widely used as elastic surface elements.

これら単結晶を弾性表面波素子として利用する
には多くの場合結晶を一定結晶面に沿つて切断や
切削等の加工を行わなければならない。例えば
LiNbO3単結晶をウエハ加工するにはX線を用い
た装置(特公昭50−14143号公報)により結晶方
位を測定し、再び加工用保持具に戻して前記測定
データに基いて結晶の保持角度を補正し、加工を
行う方法が考えられる。しかしこの方法では結晶
方位を測定するために加工用保持具から取外さな
ければならず、そのため再び結晶を保持具に戻し
て補正を行なつてもその精度は十分でなく、加工
面と結晶面とのずれのばらつきは±0.5゜以内にす
ることが困難である。このばらつきが大きいと弾
性表面波素子の特性劣化の原因につながる。
In order to utilize these single crystals as surface acoustic wave elements, in many cases the crystal must be processed by cutting, cutting, etc. along a certain crystal plane. for example
To process a LiNbO 3 single crystal into a wafer, the crystal orientation is measured using a device that uses X-rays (Japanese Patent Publication No. 14143/1983), and the crystal orientation is returned to the processing holder and the holding angle of the crystal is determined based on the measurement data. One possible method is to correct this and perform processing. However, with this method, the crystal must be removed from the processing holder in order to measure the crystal orientation, so even if the crystal is returned to the holder and corrected, the accuracy is not sufficient, and the It is difficult to keep the variation in deviation within ±0.5°. If this variation is large, it will lead to deterioration of the characteristics of the surface acoustic wave element.

一方内周刃カツターでウエハを1枚づつ切り出
し、直ちに結晶方位の測定を行い、この結果に基
いて保持角度の補正を行う方法を採用すれば、ば
らつきの問題は解消するがLiTaO3やLiNbO3
結晶を内周刃加工することは量産性がないので好
ましくない。
On the other hand, if a method is adopted in which the wafers are cut out one by one with an inner peripheral blade cutter, the crystal orientation is immediately measured, and the holding angle is corrected based on this result, the problem of variation can be solved, but LiTaO 3 and LiNbO 3 Machining a single crystal with an inner peripheral blade is not suitable for mass production, so it is not preferable.

(発明の目的) 本発明は以上のような欠点をなくすためになさ
れたもので、単結晶の結晶面と加工面との方向の
差が少なく(方位精度がよく)なり、かつ量産性
を有する加工方法を提供することを目的とする。
(Objective of the Invention) The present invention has been made to eliminate the above-mentioned drawbacks, and has a method that reduces the difference in direction between the crystal plane of a single crystal and the processed surface (good orientation accuracy), and has mass productivity. The purpose is to provide a processing method.

(発明の概要) 本発明は単結晶を保持具に保持し一定の結晶面
に沿つて加工を行うに当り、前もつて結晶方位を
測定し、この測定情報に基いて単結晶の保持具へ
の保持角度の補正を行なつてから前記加工を行な
う工程を備えた単結晶の加工方法において、 前記単結晶にあらかじめ平担部を形成し、この
単結晶を固定部及び可動調節部よりなる保持具の
可動調節部に装着し、結晶方位測定装置の所定位
置に前記固定部を設置し、 一方表裏2つの基準平面を有しかつ前記単結晶
と同一の結晶面を有し、かつこの結晶面と基準平
面との関係が既知の標準板を用意し、 前記結晶方位測定装置に装着した前記単結晶の
平担部の結晶方位及び前記標準板をこの平担部に
当接せしめたときの標準板の結晶方位を測定し、
これらの測定値及びこの測定値の基準値からのず
れ情報に基いて可動調節部を調節して補正を行う
ことを特徴とする単結晶の加工方法である。
(Summary of the Invention) The present invention measures the crystal orientation in advance when holding a single crystal in a holder and processing it along a certain crystal plane, and then attaches the single crystal to the holder based on this measurement information. A single crystal processing method comprising the step of performing the processing after correcting the holding angle of the single crystal, wherein a flat part is formed in advance on the single crystal, and the single crystal is held by a holding part consisting of a fixed part and a movable adjustment part. The fixed part is attached to the movable adjustment part of the tool, and the fixed part is installed at a predetermined position of the crystal orientation measuring device, and has two reference planes, front and back, and has the same crystal plane as the single crystal, and this crystal plane. Prepare a standard plate with a known relationship between the plane and the reference plane, and measure the crystal orientation of the flat part of the single crystal attached to the crystal orientation measuring device and the standard when the standard plate is brought into contact with this flat part. Measure the crystal orientation of the plate,
This single crystal processing method is characterized in that correction is performed by adjusting a movable adjustment section based on these measured values and information on the deviation of these measured values from a reference value.

(発明の実施例) 実施例 1 第1図は本発明に係る結晶方位測定装置の平面
図、第2図は第1図の側面図である。
(Embodiments of the Invention) Example 1 FIG. 1 is a plan view of a crystal orientation measuring device according to the present invention, and FIG. 2 is a side view of FIG. 1.

育成されたX軸引上のLiTaO3単結晶boule1
を1400℃でアニールを行ない、アニール終了後固
定部2及び可動調整部3よりなる保持具の可動調
整部3に固定する。結晶方位測定装置のベース4
に前記固定部2を装着しX線発生装置7及びデイ
フラクトメータ8を用いてほゞX面の回折角度θ
=36.77゜に合わせ、可動調節部3の止めねじ3−
1を固定する。次に固定部2のねじ5を外し、図
示しない端面加工機にねじ止めし、X面方位加工
して単結晶の平担部1−1を形成する。次に固定
部2の止めねじ5を外して再び結晶方位測定装置
のベース4に固定部2をねじ止めする。
Grown X-axis LiTaO 3 single crystal boule 1
is annealed at 1400° C., and after the annealing is completed, it is fixed to a movable adjustment portion 3 of a holder consisting of a fixed portion 2 and a movable adjustment portion 3. Base 4 of crystal orientation measuring device
The fixing part 2 is attached to the
= 36.77°, set screw 3- of movable adjustment part 3.
Fix 1. Next, the screws 5 of the fixing part 2 are removed, the screws are screwed into an end face processing machine (not shown), and processing is performed in the X-plane direction to form a single crystal flat part 1-1. Next, the set screw 5 of the fixed part 2 is removed, and the fixed part 2 is screwed again to the base 4 of the crystal orientation measuring device.

一方LiTaO3結晶を用いX面方向に精度よく
(±0.02゜)加工した50mm×50mm×1mmのX面標準
板6をあらかじめ用意しておく。
On the other hand, an X-plane standard plate 6 of 50 mm x 50 mm x 1 mm, which is processed with high accuracy (±0.02°) in the X-plane direction using LiTaO 3 crystal, is prepared in advance.

次に前記装置に装着された保持具の可動調節部
3の結晶平担部1−1の結晶方位を測定したとこ
ろ回折角度は37.70゜であつた。次にこの平担部1
−1に前記標準板6を水滴を介して密着させ、測
定したところ、標準板6の回折角度は37.40゜であ
つた。この結果から補正角度は(基準値−標準板
の値)−(基準直−平担部の値)(36.77−37.40)−
(36.77−37.70)=0.30が算出され、0.30°補正すれ
ばよいことがわかる。
Next, when the crystal orientation of the crystal flat portion 1-1 of the movable adjustment portion 3 of the holder attached to the device was measured, the diffraction angle was 37.70°. Next, this flat part 1
When the standard plate 6 was brought into close contact with the sample plate 6 through water droplets and measured, the diffraction angle of the standard plate 6 was 37.40°. From this result, the correction angle is (reference value - value of standard plate) - (reference straight - value of flat part) (36.77 - 37.40) -
(36.77−37.70)=0.30 is calculated, which indicates that a correction of 0.30° is sufficient.

可動調節部3のねじ3−1を外し、0.30°の補
正を行つてから可動調節部3を固定部2にねじ止
めする。補正を終了した保持具の固定部2を再び
図示しない加工機にかけ、100本のワイヤソーの
ついたカツターでスライス加工したところ出来上
つたウエハーの方位精度は±0.02゜以内であり、
これをくり返しても同じような精度が得られた。
Remove the screw 3-1 of the movable adjustment part 3, make a correction of 0.30°, and screw the movable adjustment part 3 to the fixed part 2. After the correction, the fixing part 2 of the holder was again put into a processing machine (not shown) and sliced with a cutter equipped with 100 wire saws.The orientation accuracy of the resulting wafer was within ±0.02°.
Similar accuracy was obtained even after repeating this process.

実施例 2 育成された128゜Y軸引上のLiNbO3単結晶boule
1を1200℃でアニールを行ない、アニール終了後
固定部2及び可動調整部3よりなる保持具の可動
調整部3に固定する。結晶方位測定装置のベース
に前記固定部2を装着しほゞX面の回折角度2θ=
32.63゜に合わせ可動調節部3の止めねじ3−1を
固定する。次に固定部2のねじ5を外し端面加工
機にねじ止めし、128゜Y面方位加工して平担部1
−1を形成する。次に固定部2の止めねじ5を外
して再び結晶方位測定装置のベース4に固定部2
をねじ止めする。
Example 2 LiNbO 3 single crystal boule grown on 128° Y-axis
1 is annealed at 1200° C., and after the annealing is completed, it is fixed to a movable adjustment portion 3 of a holder consisting of a fixed portion 2 and a movable adjustment portion 3. Attach the fixing part 2 to the base of the crystal orientation measuring device and find the diffraction angle 2θ=
Adjust the set screw 3-1 of the movable adjustment part 3 to 32.63° and fix it. Next, remove the screw 5 of the fixed part 2, screw it into the end face processing machine, and process it in the 128° Y plane direction to flatten the flat part 1.
-1 is formed. Next, remove the setscrew 5 of the fixed part 2 and attach the fixed part 2 to the base 4 of the crystal orientation measuring device again.
Screw it on.

一方LiNbO3結晶を用い128゜Y面方向に精度よ
く(±0.02°)加工した50mm×50mm×1mmの128゜Y
面標準板6をあらかじめ用意しておく。
On the other hand, a 128° Y of 50 mm x 50 mm x 1 mm was machined with precision (±0.02°) in the 128° Y plane direction using LiNbO 3 crystal.
A surface standard plate 6 is prepared in advance.

次に前記装置に装着された保持具の可動調節部
3の結晶平担部1−1の結晶方位を測定したとこ
ろ回折角度は32.6゜であつた。次にこの平担部1
−1に前記標準板6を水滴を介して密着させ、測
定したところ、標準板6の回折角度は33.1゜であ
つた。この結果から補正角度は(基準値−標準板
の値)−(基準値−平担部の値)(32.63−33.1)−
(32.63−32.6)=−0.5が算出され、0.5゜逆方向に補
正すればよいことがわかる。
Next, when the crystal orientation of the crystal flat portion 1-1 of the movable adjustment portion 3 of the holder attached to the device was measured, the diffraction angle was 32.6°. Next, this flat part 1
When the standard plate 6 was brought into close contact with the sample plate 6 through water droplets and measured, the diffraction angle of the standard plate 6 was 33.1°. From this result, the correction angle is (reference value - value of standard plate) - (reference value - value of flat part) (32.63 - 33.1) -
(32.63−32.6)=−0.5 is calculated, and it can be seen that the correction should be made in the opposite direction by 0.5°.

可動調節部のねじ3−1を外し、0.5゜の補正を
行つてから可動調節部を固定部にねじ止めする。
補正を終了した保持具の固定部2を再び図示しな
い加工機にかけ、100本のワイヤソーのついたカ
ツターでスライス加工したところ出来上つたウエ
ハーの方位精度は±0.02゜以内であり、これをく
り返しても同じような精度が得られた。
Remove the screw 3-1 from the movable adjustment part, make a 0.5 degree correction, and then screw the movable adjustment part to the fixed part.
After the correction, the fixed part 2 of the holder was again put into a processing machine (not shown) and sliced with a cutter equipped with 100 wire saws. A similar accuracy was obtained.

(発明の効果) 以上の通り本発明の加工方法によれば結晶面と
加工面との方向がよくそろう(方位精度がよい)
ので品質のよいウエハを効率よく製作することが
できる。
(Effect of the invention) As described above, according to the processing method of the present invention, the directions of the crystal plane and the processed surface are well aligned (good orientation accuracy)
Therefore, high quality wafers can be manufactured efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る結晶方位装置の平面図、
第2図は第1図の側面図である。 1……単結晶、2……固定部、3……可動調節
部、6……標準板。
FIG. 1 is a plan view of a crystal orientation device according to the present invention;
FIG. 2 is a side view of FIG. 1. 1...Single crystal, 2...Fixed part, 3...Movable adjustment part, 6...Standard plate.

Claims (1)

【特許請求の範囲】 1 単結晶を保持具に保持し一定の結晶面に沿つ
て加工を行うに当り、前もつて結晶方位を測定
し、この測定情報に基いて単結晶の保持具への保
持角度の補正を行なつてから前記加工を行なう工
程を備えた単結晶の加工方法において、 前記単結晶にあらかじめ平担部を形成し、この
単結晶を固定部及び可動調節部よりなる保持具の
可動調節部に装着して結晶方位測定装置の所定位
置に前記固定部を設置し、 一方表裏2つの基準平面を有しかつ前記単結晶
と同一の結晶面を有し、かつこの結晶面と基準平
面との関係が既知の標準板を用意し、 前記結晶方位測定装置に装着した前記単結晶の
平担部の結晶方位及び前記標準板をこの平担部に
当接せしめたときの標準板の結晶方位を測定し、
これらの測定値及びこの測定値の基準値からのず
れ情報に基いて可動調節部を調節して補正を行う
ことを特徴とする単結晶の加工方法。
[Claims] 1. When holding a single crystal in a holder and processing it along a certain crystal plane, the crystal orientation is measured in advance and the single crystal is placed in the holder based on this measurement information. A single crystal processing method comprising the step of performing the processing after correcting the holding angle, wherein a flat portion is formed in advance on the single crystal, and the single crystal is held in a holder consisting of a fixed portion and a movable adjustment portion. The fixing part is attached to the movable adjustment part of the crystal orientation measuring device and installed at a predetermined position of the crystal orientation measuring device, and has two reference planes, front and back, and has the same crystal plane as the single crystal, and has the same crystal plane as the single crystal. Prepare a standard plate whose relationship with the reference plane is known, and determine the crystal orientation of the flat part of the single crystal attached to the crystal orientation measuring device and the standard plate when the standard plate is brought into contact with this flat part. Measure the crystal orientation of
A method for processing a single crystal, comprising adjusting a movable adjustment section based on these measured values and information on the deviation of the measured values from a reference value.
JP57153822A 1982-09-06 1982-09-06 Method of processing single crystal Granted JPS5942916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57153822A JPS5942916A (en) 1982-09-06 1982-09-06 Method of processing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57153822A JPS5942916A (en) 1982-09-06 1982-09-06 Method of processing single crystal

Publications (2)

Publication Number Publication Date
JPS5942916A JPS5942916A (en) 1984-03-09
JPS637124B2 true JPS637124B2 (en) 1988-02-15

Family

ID=15570846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57153822A Granted JPS5942916A (en) 1982-09-06 1982-09-06 Method of processing single crystal

Country Status (1)

Country Link
JP (1) JPS5942916A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110910A (en) * 1987-10-26 1989-04-27 Toshiba Corp Method and apparatus for slicing thin sheet
US7972196B2 (en) * 2007-06-25 2011-07-05 Saint-Gobain Ceramics & Plastics, Inc. Methods of crystallographically reorienting single crystal bodies
CN102785298B (en) * 2012-07-09 2015-10-28 浙江上城科技有限公司 A kind of sapphire workpiece viscose glue platform
CN110065171B (en) * 2019-04-25 2021-12-24 西安奕斯伟材料科技有限公司 Cutting device and crystal bar cutting method

Also Published As

Publication number Publication date
JPS5942916A (en) 1984-03-09

Similar Documents

Publication Publication Date Title
KR970009861B1 (en) Method of manufacturing a semiconductor wafer
JP3213563B2 (en) Manufacturing method of notchless wafer
JP2805370B2 (en) Method of slice-cutting a rod-shaped workpiece into a thin plate using an inner peripheral saw
JPS637124B2 (en)
JP3205402B2 (en) Method and apparatus for determining crystal orientation
TW201936350A (en) Semiconductor single crystal ingot slicing method
US4755314A (en) Single crystal wafer of lithium tantalate
US4165402A (en) Chip-removing machining method and apparatus for semiconducting crystals, specifically suited for the production of force and pressure measuring cells
CN109967788B (en) Energy storage polar plate cutter position calibration device and calibration method thereof
JP3635870B2 (en) Method for bonding and slicing semiconductor single crystal ingot
JP3918216B2 (en) Single crystal cutting apparatus and method
JP2909945B2 (en) Seed bar cutting method
JP4525061B2 (en) Quartz lumbard ore, method for producing quartz plate, and quartz lumbard ore
JP2002164311A (en) Method and apparatus of orientation flat machining of ingot
US2392271A (en) Manufacture of piezoelectric elements
JP2001272359A (en) Monocrystal ingot processing device and its method
JPS5849904A (en) Metallic mirror
JPH10119032A (en) Matching method for crystal orientation in cutting of single crystal ingot having cleavability
JPS63149072A (en) Cutting out method for plate
KR20050020271A (en) A Manufacturing Method And Device For Silicon Single Crystal Wafer
JP4797276B2 (en) Cutting method of single crystal ingot
KR0178787B1 (en) Method of cutting litao3 crystal
JP2002139463A (en) Single-crystal accurate direction angle-measuring device
KR900002079B1 (en) Wafer manufacturing method
JPS6333992B2 (en)