JPH0747496B2 - Method for producing glass having refractive index distribution - Google Patents

Method for producing glass having refractive index distribution

Info

Publication number
JPH0747496B2
JPH0747496B2 JP2274223A JP27422390A JPH0747496B2 JP H0747496 B2 JPH0747496 B2 JP H0747496B2 JP 2274223 A JP2274223 A JP 2274223A JP 27422390 A JP27422390 A JP 27422390A JP H0747496 B2 JPH0747496 B2 JP H0747496B2
Authority
JP
Japan
Prior art keywords
glass
refractive index
treated
index distribution
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2274223A
Other languages
Japanese (ja)
Other versions
JPH04149033A (en
Inventor
直之 北村
健一 衣川
純 松岡
幸平 福味
功 近藤
三郎 小瀬
博志 山下
実 木下
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP2274223A priority Critical patent/JPH0747496B2/en
Publication of JPH04149033A publication Critical patent/JPH04149033A/en
Priority to US08/013,554 priority patent/US5261938A/en
Priority to US08/103,130 priority patent/US5392375A/en
Publication of JPH0747496B2 publication Critical patent/JPH0747496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は屈折率分布を有するガラスの製造方法に関す
る。
The present invention relates to a method for producing glass having a refractive index distribution.

〔従来の技術〕 従来、たとえば多モード光ファイバーにおいては、コア
ークラッド間に不連続な屈折率差があるとモード変換が
生じやすく、曲げに対する損失も大きかった。このた
め、コア部の屈折率がパラボリックに分布する光ファイ
バーによりこの問題を解決していた。
[Prior Art] Conventionally, for example, in a multimode optical fiber, when there is a discontinuous refractive index difference between the core and the clad, mode conversion is likely to occur, and bending loss is large. Therefore, this problem has been solved by an optical fiber in which the refractive index of the core part is distributed in a parabolic manner.

屈折率を分布させる方法としては、CVD法でコア部を積
層させるときに反応ガスの成分を変化させ屈折率を分布
させる方法、電子分極率の大きいTl+等のイオンをドー
プしたガラスロッドを、KNO3などの融液中に浸漬し、Tl
+とK+を拡散によりイオン交換させ、ドープされたイオ
ンの濃度をパラボリックに分布させる方法、電解により
イオン濃度を分布させる方法などが知られている。
As a method of distributing the refractive index, a method of changing the components of the reaction gas to distribute the refractive index when stacking the core portion by the CVD method, a glass rod doped with ions such as Tl + having a large electronic polarizability, Immerse it in a melt such as KNO 3 and
It is known that + and K + are ion-exchanged by diffusion so that the concentration of doped ions is distributed parabolicly, and that the concentration of ions is distributed by electrolysis.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

CVD法においては、反応ガスの流量を制御して分布をつ
けるが、その制御は極めて高度な技術を要す。また、イ
オン交換を利用する方法では拡散速度の異なるイオンの
組合せが必要で、多大の時間を要するとともに、分布の
制御も難しい。さらに、ガラスの組成を変化させる方法
で電解によりイオン分布をつける方法も、電解勾配のつ
け方が難しく、思い通りの屈折率分布をつけるのは至難
の技である。
In the CVD method, the flow rate of the reaction gas is controlled to give a distribution, but the control requires an extremely advanced technique. Further, in the method utilizing ion exchange, it is necessary to combine ions having different diffusion rates, which requires a lot of time, and it is difficult to control the distribution. Further, in the method of changing the composition of the glass to give an ion distribution by electrolysis, it is difficult to give an electrolytic gradient, and it is extremely difficult to give a desired refractive index distribution.

本発明は、これら従来技術の問題点を解消し、屈折率分
布を有するガラスの製造方法を提供することを目的とす
る。
An object of the present invention is to solve these problems of the prior art and to provide a method for producing glass having a refractive index distribution.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的を達成する本第1の発明の屈折率分布を有する
ガラスの製造方法は、ガラス転移点より低い温度でガラ
スを圧力処理して、ガラスの表層部ほど密度の大きなガ
ラス形成せしめることからなる。
The method for producing a glass having a refractive index distribution of the first aspect of the present invention which achieves the above object comprises pressure-treating the glass at a temperature lower than the glass transition point to form a glass having a higher density in the surface layer portion of the glass. .

また本第2の発明の屈折率分布を有するガラスの製造方
法は、ガラス転移点近傍の温度またはそれ以上の温度で
ガラスを加圧処理して密度が均質に高められた処理ガラ
スを製造し、この処理ガラスをガラス転移点より低い温
度で熱処理して中心部ほど密度の大きなガラスを形成せ
しめることからなる。
The method for producing a glass having a refractive index distribution of the second aspect of the present invention is to produce a treated glass having a uniformly increased density by pressure-treating the glass at a temperature near the glass transition point or a temperature higher than the glass transition point, This treated glass is heat-treated at a temperature lower than the glass transition point to form a glass having a higher density in the central portion.

本第1および第2の発明においては、アンビルタイプや
ベルトタイプ等の高圧装置もしくは熱間等方加圧(HI
P)装置を用いてガラスを加圧処理する。
In the first and second aspects of the present invention, a high pressure device such as an anvil type or a belt type or hot isostatic pressing (HI
P) Pressurize the glass using the equipment.

被処理ガラスとしては石英ガラス(Tg〜1100℃)、BK7
(Tg〜560℃)などの様に熱処理により結晶化しにくい
ものが好ましい。被処理ガラスの形状は特に限定されな
いが、被処理ガラスが破壊されないよう、周囲から均等
に加圧することが必要である。処理圧力は高圧装置によ
り異なり、アンビルタイプやベルトタイプの高圧装置で
は最大50GPa、HIP装置では最大1GPa程度であり、必要と
する屈折率分布において、最大屈折率値に応じて使用装
置は決められる。
Quartz glass (Tg ~ 1100 ° C), BK7 as the glass to be treated
(Tg to 560 ° C.) and the like, which are difficult to crystallize by heat treatment, are preferred. The shape of the glass to be treated is not particularly limited, but it is necessary to uniformly apply pressure from the surroundings so as not to destroy the glass to be treated. The processing pressure varies depending on the high-pressure device, and is 50 GPa at maximum for anvil-type or belt-type high-pressure devices and about 1 GPa at maximum for HIP devices, and the device used is determined according to the maximum refractive index value in the required refractive index distribution.

また経年変化が少なく透明性が良い処理ガラスを得るに
は、ガラス転移点(Tg)に対して処理温度(Tp)は 0.7≦Tp/Tg≦1.3(温度はK) 程度であることが望ましい。Tp/Tgが0.7より小さいと安
定に使用できる温度範囲が狭くなり、1.3より大きいと
ガラス種類にもよるが、圧力処理中に結晶分析が起き、
透明性が落ちる。
Further, in order to obtain a processed glass which is less aging and has good transparency, it is desirable that the processing temperature (Tp) is about 0.7 ≦ Tp / Tg ≦ 1.3 (temperature is K) with respect to the glass transition point (Tg). When Tp / Tg is less than 0.7, the temperature range that can be used stably becomes narrow, and when it is more than 1.3, crystal analysis occurs during pressure treatment, depending on the glass type.
Transparency drops.

まず本第1の発明においては、均一組成のガラス試料を
高圧装置により加圧し、その後ガラス転移点よりも低い
温度に加熱する。あるいは、逆にガラス転移点よりも低
い温度に加熱したガラス試料を加圧しても良い。試料の
粘性はガラス転移点よりも低い温度域では高いので、試
料に加わる圧力は均一でなく、表層部から中心部に向か
うほど緩和されて小さくなる。しかし、ある程度の粘性
があるので、表層部と中心部の圧力の差は時間を経ると
ともに小さくなる。ガラスの種類、大きさ、Tp/Tg、目
的とする屈折率勾配にもよるが、1cm3程度の石英ガラス
ではTp/Tg=0.9の温度で、5分程度の保持時間でほぼ均
一になる。従って、5分以下の保持時間で圧力差が飽和
するまでに室温に冷却すると、表層部ほど密度の大き
な、つまり表層部ほど屈折率の大きなガラスを得ること
ができる。また、処理圧力を変えることにより、一定処
理時間において、高圧ほど屈折率勾配の大きいガラスが
得られ、また処理時間が長くなるほど、屈折率勾配の小
さいガラスが得られる。
First, in the first aspect of the present invention, a glass sample having a uniform composition is pressed by a high-pressure device and then heated to a temperature lower than the glass transition point. Alternatively, conversely, a glass sample heated to a temperature lower than the glass transition point may be pressed. Since the viscosity of the sample is high in the temperature range lower than the glass transition point, the pressure applied to the sample is not uniform, and the pressure decreases as it goes from the surface layer portion to the central portion. However, since there is a certain degree of viscosity, the difference in pressure between the surface layer portion and the central portion becomes smaller with time. Although it depends on the type and size of glass, Tp / Tg, and the desired refractive index gradient, a silica glass of about 1 cm 3 becomes almost uniform at a temperature of Tp / Tg = 0.9 at a holding time of about 5 minutes. Therefore, if the temperature is cooled to room temperature until the pressure difference becomes saturated in a holding time of 5 minutes or less, a glass having a higher density in the surface layer portion, that is, a larger refractive index in the surface layer portion can be obtained. Further, by changing the processing pressure, a glass having a larger refractive index gradient can be obtained as the pressure becomes higher and a glass having a smaller refractive index gradient can be obtained as the processing time becomes longer at a constant processing time.

次に本第2の発明においては、高圧装置により加圧され
た均一組成のガラス試料をガラス転移点以上の所定の温
度範囲に加熱するか、あるいはガラス転移点近傍の温度
に加熱しながら、圧力処理の時間を十分に長くしてガラ
ス試料に加わる圧力の不均一さを緩和する。すると、ガ
ラス試料の表層部と中心部で圧力差のない、密度が均一
に高められた、すなわち処理前よりも屈折率の大きな均
質な処理ガラスが得られる。処理圧力を変えると屈折率
も変わり、高圧ほど高屈折率のガラスが得られるで、処
理前の屈折率以上で、任意の屈折率を持つ均質な処理ガ
ラスを得ることができる。
Next, in the second aspect of the present invention, a glass sample having a uniform composition, which is pressurized by a high-pressure device, is heated to a predetermined temperature range above the glass transition point, or while being heated to a temperature near the glass transition point, The treatment time is sufficiently long to alleviate the non-uniformity of pressure applied to the glass sample. Then, there is no pressure difference between the surface layer portion and the central portion of the glass sample, and the density is increased uniformly, that is, a homogeneous treated glass having a larger refractive index than that before the treatment is obtained. When the treatment pressure is changed, the refractive index also changes, and the higher the pressure, the higher the refractive index of the glass is obtained. Therefore, it is possible to obtain a homogeneous treated glass having an arbitrary refractive index higher than that before the treatment.

次いで得られた処理ガラスに処理圧力より低い圧力下
で、ガラス転移点より低い温度で再度熱処理を施すと、
処理ガラスの密度は表層部から緩和して小さくなる。こ
のとき処理ガラスの中心部ほど熱処理による密度の緩和
がおそく、大きい密度のままで残る。そこでこの状態の
まま冷却すると、中心部ほど密度の大きい、つまり中心
部ほど大きい屈折率分布を持った処理体が得られる。
Then, the obtained treated glass is subjected to a heat treatment again at a temperature lower than the glass transition point under a pressure lower than the treatment pressure,
The density of the treated glass relaxes from the surface layer and becomes smaller. At this time, the central portion of the treated glass is less relaxed in the density due to the heat treatment and remains at a higher density. Therefore, when cooling is performed in this state, a processed body having a higher density in the central portion, that is, a refractive index distribution larger in the central portion is obtained.

上記本第1の発明および第2の発明によって得られたガ
ラスは、いずれも組成的には均一であり、圧力による屈
折率分布はあっても、透過特性の差は生じない。すなわ
ち、従来の分布屈折率ガラスでは場所により透過率が異
なるのに対して、本発明では透過率が均一なことが特長
である。
The glasses obtained by the first invention and the second invention are both compositionally uniform and have no difference in transmission characteristics even if there is a refractive index distribution due to pressure. That is, while the conventional distributed index glass has a different transmittance depending on the location, the present invention is characterized in that the transmittance is uniform.

以下、本発明の実施例を述べる。Examples of the present invention will be described below.

〔実施例〕〔Example〕

実施例1 4cm角の石英ガラスに150MPa、1000℃で30分の熱間等方
加圧(HIP)処理を施した。得られた石英ガラスのブロ
ックを切断して屈折率分布を測定した。測定結果を屈折
率nとブロック中心からの距離Lとの関係で第1図に示
す。屈折率は、表層部(1.4632)から内部(1.4626)に
向い小さくなっており、その屈折率変化は0.04%であ
る。
Example 1 4 cm square quartz glass was subjected to hot isostatic pressing (HIP) treatment at 150 MPa and 1000 ° C. for 30 minutes. The obtained quartz glass block was cut to measure the refractive index distribution. The measurement results are shown in FIG. 1 in relation to the refractive index n and the distance L from the center of the block. The refractive index decreases from the surface layer (1.4632) toward the inside (1.4626), and the change in the refractive index is 0.04%.

実施例2 4cm角の石英ガラスに150MPa、1200℃で2時間の熱間等
方加圧(HIP)処理を施し均質な被処理ガラスを得、こ
の後、大気中900℃で30分間保持した。得られた石英ガ
ラスの屈折率分布を第1図と同様に第2図に示す。屈折
率は、表層部(1.4613)から内部(1.4634)に向い大き
くなり、その屈折率変化として0.14%が得られた。
Example 2 A 4 cm square quartz glass was subjected to a hot isostatic pressing (HIP) treatment at 150 MPa and 1200 ° C. for 2 hours to obtain a homogeneous glass to be treated, which was then held in the atmosphere at 900 ° C. for 30 minutes. The refractive index distribution of the obtained quartz glass is shown in FIG. 2 as in FIG. The refractive index increased from the surface layer (1.4613) toward the inside (1.4634), and the change in refractive index was 0.14%.

〔発明の効果〕〔The invention's effect〕

以上述べたように本発明によれば、屈折率分布を持つガ
ラスを短時間で得ることができる。すなわち、1)均一
組成のガラスをガラス転移点より低い温度で加熱しなが
ら高圧装置により加圧した場合、表層部ほど屈折率が高
い処理体が得られる。たとえば、円柱状のガラスからは
凹レンズと同じ働きをするロッドレンズが得られる。
As described above, according to the present invention, glass having a refractive index distribution can be obtained in a short time. That is, 1) When a glass having a uniform composition is heated at a temperature lower than the glass transition point and pressurized by a high pressure device, a treated product having a higher refractive index in the surface layer portion is obtained. For example, rod-shaped lenses having the same function as concave lenses can be obtained from cylindrical glass.

2)ガラス転移点近傍、または以上の温度で密度が均一
になるまで加圧処理をし、その後冷却した場合、処理条
件を変えることにより処理前よりも高い任意の屈折率を
もつ均質な処理ガラスを得ることができる。
2) Homogeneous treated glass having an arbitrary refractive index higher than that before the treatment by changing the treatment conditions when pressure treatment is performed near the glass transition point or until the density becomes uniform at the above temperature and then cooled. Can be obtained.

3)2)により得られた処理ガラスを再び熱処理し、そ
の後冷却した場合、表面が熱緩和して中心部の屈折率が
高い処理体が得られる。たとえば、円柱状のガラスから
は凸レンズと同じ働きをするロッドレンズが得られる。
3) When the treated glass obtained in 2) is heat-treated again and then cooled, the surface is thermally relaxed to obtain a treated body having a high refractive index in the central portion. For example, a rod lens having the same function as a convex lens can be obtained from cylindrical glass.

したがって、いずれの場合も任意の屈折率分布を持った
ガラスの作成が可能となる。特に、密度変化だけで屈折
率を変化させるため、他の光学特性にはほとんど変化は
なく、従来のCVD法やイオン交換を用いた方法では不可
能であった場所による透過特性の差を解消することがで
きる。
Therefore, in any case, glass having an arbitrary refractive index distribution can be produced. In particular, since the refractive index is changed only by changing the density, other optical characteristics are hardly changed, and the difference in transmission characteristics due to the location, which was impossible with the conventional CVD method or the method using ion exchange, is eliminated. be able to.

【図面の簡単な説明】[Brief description of drawings]

第1図と第2図は、それぞれ本第1および第2の発明に
よって得られた石英ガラスの屈折率分布を示すグラフで
ある。
FIG. 1 and FIG. 2 are graphs showing the refractive index distribution of the silica glass obtained by the first and second inventions, respectively.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小瀬 三郎 大阪府池田市五月丘3丁目4―8 (72)発明者 山下 博志 兵庫県川西市笹部字土井の内18―8 (72)発明者 木下 実 大阪府池田市緑丘1丁目2―17―106 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Saburo Kose 3-4-8 Satsukioka, Ikeda-shi, Osaka (72) Inventor Hiroshi Yamashita 18-8 Doiuchi, Sasabe, Kawanishi-shi, Hyogo (72) Inventor Kinoshita Actually, Ikeda City, Osaka Prefecture Midorigaoka 1-chome 2-17-106

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ガラス転移点よりも低い温度でガラスを加
圧処理して、該ガラスの表層部ほど密度の大きなガラス
を形成せしめることを特徴とする屈折率分布を有するガ
ラスの製造方法。
1. A method for producing a glass having a refractive index distribution, which comprises subjecting a glass to a pressure treatment at a temperature lower than a glass transition point to form a glass having a higher density in a surface layer portion of the glass.
【請求項2】ガラス転移点近傍もしくはそれ以上の温度
でガラスを加圧処理して密度を均質に高め、この処理ガ
ラスをガラス転移点より低い温度で熱処理して、中心部
ほど密度の大きなガラスを形成せしめることを特徴とす
る屈折率分布を有するガラスの製造方法。
2. A glass which is treated at a temperature near or above the glass transition point to increase its density homogeneously, and the treated glass is heat-treated at a temperature lower than the glass transition point so that the central portion has a higher density. A method for producing glass having a refractive index distribution, characterized in that:
JP2274223A 1990-10-11 1990-10-11 Method for producing glass having refractive index distribution Expired - Lifetime JPH0747496B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2274223A JPH0747496B2 (en) 1990-10-11 1990-10-11 Method for producing glass having refractive index distribution
US08/013,554 US5261938A (en) 1990-10-11 1992-12-16 Process for producing rod glass having refractive index distribution
US08/103,130 US5392375A (en) 1990-10-11 1993-08-09 Glass having refractive index distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2274223A JPH0747496B2 (en) 1990-10-11 1990-10-11 Method for producing glass having refractive index distribution

Publications (2)

Publication Number Publication Date
JPH04149033A JPH04149033A (en) 1992-05-22
JPH0747496B2 true JPH0747496B2 (en) 1995-05-24

Family

ID=17538741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2274223A Expired - Lifetime JPH0747496B2 (en) 1990-10-11 1990-10-11 Method for producing glass having refractive index distribution

Country Status (1)

Country Link
JP (1) JPH0747496B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105473518B (en) 2013-08-15 2019-11-05 Agc株式会社 The heat treatment method of low scattering quartz glass and quartz glass

Also Published As

Publication number Publication date
JPH04149033A (en) 1992-05-22

Similar Documents

Publication Publication Date Title
EP0719741B1 (en) Process for the production of polarizing glass
CA2005644A1 (en) Method for making infrared polarizing glasses
US20040055335A1 (en) Method for the preparation of plate glass having low residual stress
US4339256A (en) Method of making polarized ophthalmic glass
US5261938A (en) Process for producing rod glass having refractive index distribution
JPH0747496B2 (en) Method for producing glass having refractive index distribution
EP0057952A1 (en) Method for the precision moulding of glass articles, method of manufacturing a mould, and mould for the precision moulding of glass articles
US4563205A (en) Process for the production of slab-shaped lens having gradient of refractive index in thickness direction only
US4925472A (en) Method of reducing optical-fiber attenuation
US5160358A (en) Process for producing silica glass plate having controlled refractive index distribution
US4536203A (en) Pressurized heat treatment of glass-ceramic to control thermal expansion
JP2008239441A (en) Method for manufacturing glass optical element and glass optical element
EP0302043A2 (en) Process of tapering waveguides
JPH1025127A (en) Production of optical fiber
Hench et al. Gel-silica optics: Theory and application: Code: F5
US4851024A (en) Process for producing optical glass
JPH05116969A (en) Production of quartz glass
US3508895A (en) Thermochemical method of strengthening glass
TW546263B (en) Treatment of vitreous material
US3846100A (en) Method of making an index gradient light-conducting glass structure
Kishi et al. Surface viscous flattening kinetics of soda-lime silicate glass by sinusoidal profile decay method
Fomenko et al. Mechanical properties of C60 single crystals
EP0931029A1 (en) Method of making a polarizing glass
Sandwick et al. Production of high homogeneous fluorophosphate laser glass
JP2007176764A (en) Method for manufacturing glass optical element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term