JPH05116969A - Production of quartz glass - Google Patents

Production of quartz glass

Info

Publication number
JPH05116969A
JPH05116969A JP3279635A JP27963591A JPH05116969A JP H05116969 A JPH05116969 A JP H05116969A JP 3279635 A JP3279635 A JP 3279635A JP 27963591 A JP27963591 A JP 27963591A JP H05116969 A JPH05116969 A JP H05116969A
Authority
JP
Japan
Prior art keywords
quartz glass
sample
temperature
refractive index
optically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3279635A
Other languages
Japanese (ja)
Other versions
JP2814795B2 (en
Inventor
Jun Takano
潤 高野
Kazuhiro Nakagawa
和博 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17613731&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05116969(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP3279635A priority Critical patent/JP2814795B2/en
Publication of JPH05116969A publication Critical patent/JPH05116969A/en
Application granted granted Critical
Publication of JP2814795B2 publication Critical patent/JP2814795B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • C03B19/066Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction for the production of quartz or fused silica articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To obtain the quartz glass of a large mass which is used as, for example, an optical lens of a large aperture diameter, has about <=DELTAn=10<-6> and is optically homogeneous, as the homogeneity is improved over the wide range and the formation of a deteriorated property layer is suppressed in the quartz glass. CONSTITUTION:The optically heterogeneous quartz glass having about DELTAn=10<-5> fluctuation in refractive index is used as a sample 1. SiO2 powder which is a matrix 2 is placed on the front and rear surfaces and flanks thereof and is put into an outer mold 3. The powder is heated up under 0 to 10kg/cm<2> compression and is held for a while at a specified temp.; thereafter, the temp. is lowered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、紫外線リソグラフィー
等の装置に使われる光学素子(例えばレンズ)に有用な
石英ガラスの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing quartz glass useful as an optical element (eg lens) used in an apparatus such as ultraviolet lithography.

【0002】[0002]

【従来の技術】この種のガラスは、高度に均質な屈折率
分布を持つことが不可欠である。ガラスの屈折率分布が
均質にならない主な原因は、ガラスを合成する際に原料
粒子の不完全溶融によって生ずる粒状構造や、ガラスの
ゆらぎなどによって導入される脈理と呼ばれる成長縞等
を含むことにある。これらの因子は、屈折率のばらつき
(均質性)がΔn=10-4程度の目視で認められるほど
の不均質分布をもたらす。例えば、カメラ用のレンズに
使用されるガラスは、目視で不均質部分が認められない
程度に均質であればよい。そこで、Δn=10-4程度の
不均質分布を取り除くため、ガラスの軟化点が比較的低
い一般の光学用ガラス(例えばリン酸塩系ガラス)で
は、高温に再加熱して機械的に攪拌することにより均質
化を行っている。
2. Description of the Related Art It is essential that a glass of this kind has a highly uniform refractive index distribution. The main reason why the refractive index distribution of glass is not uniform is that it contains a granular structure caused by incomplete melting of raw material particles when synthesizing glass and growth streaks called striae introduced by fluctuations of glass. It is in. These factors result in a visually inhomogeneous distribution in which the dispersion (homogeneity) of the refractive index is approximately Δn = 10 −4 . For example, the glass used for a camera lens may be homogeneous to the extent that no inhomogeneity is visually observed. Therefore, in order to remove the inhomogeneous distribution of about Δn = 10 −4, general optical glass having a relatively low softening point (for example, phosphate glass) is reheated to a high temperature and mechanically stirred. By doing so, homogenization is performed.

【0003】ところが、石英ガラスでは、常圧で高温に
加熱すると粘度が機械的攪拌を行なうのに充分な程度に
低下するより前に昇華が著しくなるので、攪拌によって
均質化することは困難である。そこで、機械的攪拌のか
わりに高圧のアルゴンガス雰囲気中で熱処理を行なう均
質化方法が用いられている。例えば、2気圧以上の圧力
のアルゴンガス(Ar)雰囲気中で1800℃以上に加熱する
ことにより、脈理等の目視で認められる程度の屈折率の
不均質分布を取り除いている(特公平3-17775号参
照)。こうして均質化されたガラスの均質性は、Δn=
10-5程度である。
However, in quartz glass, when heated to normal temperature and high temperature, the sublimation becomes remarkable before the viscosity decreases to a degree sufficient for mechanical stirring, so that it is difficult to homogenize by stirring. . Therefore, a homogenization method is used in which heat treatment is performed in a high-pressure argon gas atmosphere instead of mechanical stirring. For example, by heating to 1800 ° C or higher in an argon gas (Ar) atmosphere having a pressure of 2 atm or more, the inhomogeneous distribution of the refractive index such as striae that is visually recognized is removed (Patent Publication 3- (See No. 17775). The homogeneity of the glass thus homogenized is Δn =
It is about 10 -5 .

【0004】ところで、近年の紫外線リソグラフィー装
置に使用される光学素子は、紫外域の高透過率性が求め
られるため、石英ガラスが使用される。
By the way, quartz glass is used for an optical element used in a recent ultraviolet lithography apparatus because a high transmittance in the ultraviolet region is required.

【0005】[0005]

【発明が解決しようとする課題】最近、この石英ガラス
に対して、屈折率のばらつきがΔn=10-6程度以下の
光学的に均質なものが求められている。そのため、熱処
理の条件(圧力、処理温度、降温時間等)を調整するこ
とにより、光学的に均質な石英ガラスを得ようとする試
みがなされている。
Recently, there has been a demand for this quartz glass to be optically uniform with a variation in the refractive index of about Δn = 10 −6 or less. Therefore, attempts have been made to obtain optically homogeneous quartz glass by adjusting the conditions of heat treatment (pressure, treatment temperature, cooling time, etc.).

【0006】例えば、大気圧下で1800℃〜2200℃に昇温
し熱処理を行なうと、試料(熱処理前の石英ガラス)中
央部の屈折率の不均一分布は少なくなる。しかしなが
ら、今度は試料の周辺部にΔn=10-4程度の変質層と
呼ばれる不均質な部分ができてしまう。この部分をレン
ズとして使用することはできなので、中央部のみを削り
取って用いているしかないが、これでは、下記のような
問題が生じる。 試料である石英ガラスは高価なものであり、その試料
のうち中央部のみレンズとして使用するのでは、最終製
品はさらに高価なものとなる。 近年の紫外線リソグラフィーでは、レンズの解像度を
高める必要があり、レンズを大口径化してNAを大きく
することが急務とされているが、中央部のみの均質化で
は、大口径のレンズを製造することができない。 変質層が、中央部の屈折率の分布にも悪影響を与える
恐れがある。
For example, when heat treatment is performed by raising the temperature to 1800 ° C. to 2200 ° C. under atmospheric pressure, the nonuniform distribution of the refractive index in the central portion of the sample (quartz glass before heat treatment) is reduced. However, this time, a heterogeneous portion called an altered layer of about Δn = 10 −4 is formed around the sample. Since this portion can be used as a lens, only the central portion is scraped and used, but this causes the following problems. Quartz glass, which is a sample, is expensive, and if only the central portion of the sample is used as a lens, the final product will be even more expensive. In recent years, in ultraviolet lithography, it is necessary to increase the resolution of the lens, and it is urgent to increase the lens diameter to increase the NA. However, in the case of homogenizing only the central portion, it is necessary to manufacture a large-diameter lens. I can't. The deteriorated layer may adversely affect the distribution of the refractive index in the central portion.

【0007】本発明の目的は、このような問題点を解決
することにあり、変質層のない、光学的に均質な(Δn
=10-6程度以下の)大きな塊の石英ガラスを製造する
ことにある。
An object of the present invention is to solve such a problem and to provide an optically homogeneous (Δn
= 10 −6 or less) to produce a large lump of quartz glass.

【0008】[0008]

【課題を解決するための手段】本発明者らは、この変質
層の原因を調べた。まず、熱処理の降温時の試料の温度
分布を調べところ、図1(a) のような温度分布をもつこ
とがわかった。図1において、試料内の線は等温線を示
す。熱処理後は、試料全体が均一に降温していくことが
望ましいが、降温速度が充分に遅い場合でも試料の外側
と内側で降温速度がちがうため、降温後に図1(a) のよ
うな温度分布ができ、それが屈折率の分布として現れ
る。特に、厚み方向(レンズとして用いるときの光軸方
向)からみたときの試料周辺部には等温線の本数は多く
なり、この部分に屈折率の値の大きな変質層が形成され
る。
The present inventors investigated the cause of this altered layer. First, when the temperature distribution of the sample when the temperature of the heat treatment was lowered was examined, it was found that it had a temperature distribution as shown in FIG. 1 (a). In FIG. 1, the line in the sample shows an isotherm. After the heat treatment, it is desirable that the temperature of the entire sample be lowered uniformly. However, even if the rate of temperature decrease is sufficiently slow, the temperature decrease rate is different between the outside and inside of the sample, so the temperature distribution as shown in Fig. 1 (a) after temperature decrease Is generated, which appears as a refractive index distribution. In particular, the number of isotherms increases in the peripheral portion of the sample when viewed from the thickness direction (optical axis direction when used as a lens), and an altered layer having a large refractive index value is formed in this portion.

【0009】さらに、試料内部からのガス放出、雰囲気
からのガス拡散、もしくは熱処理外型内に存在する不純
物の試料内への拡散によっても変質層が形成されること
がわかった。そこで、本発明者らは、熱処理をする際に
SiO2の粉末又は塊で作った母型の中に試料を置くことに
より、試料である石英ガラスの広い範囲で均質性の良化
が実現することを見いだした。さらに、このような母型
を用いれば、試料を外型および雰囲気と直接触れさせず
に熱処理をすることが可能であり、変質層の形成が抑え
られることを見いだし、本発明を成すに至った。
Further, it has been found that the altered layer is also formed by gas release from the inside of the sample, gas diffusion from the atmosphere, or diffusion of impurities present in the outer mold for heat treatment into the sample. Therefore, when the present inventors perform heat treatment,
It has been found that by placing the sample in a master mold made of SiO 2 powder or lumps, improvement of homogeneity is realized in a wide range of the quartz glass as the sample. Furthermore, by using such a master mold, it was possible to perform the heat treatment without directly contacting the sample with the outer mold and the atmosphere, and it was found that the formation of the altered layer was suppressed, and the present invention was accomplished. ..

【0010】従って、本発明は、第1に「屈折率のばら
つきΔn=10-5程度の光学的に不均質な石英ガラス」
を、SiO2の粉末又は塊で作った母型の中で0〜10kg/cm2
の加圧下で熱処理することを特徴とする「Δn=10-6
程度以下の光学的に均質な石英ガラス」の製造方法を提
供する(請求項1)。本発明は第2に、上記の製造方法
において、処理する温度は1800℃以上2200℃以下、雰囲
気はHe、N2、Ar、H2もしくはその混合ガスであることを
特徴とする「光学的に均質な石英ガラス」の製造方法を
提供する(請求項2)。
Therefore, the first aspect of the present invention is "optically inhomogeneous quartz glass having a refractive index variation Δn = 10 -5 ".
In a matrix made of SiO 2 powder or lumps, 0-10 kg / cm 2
"Δn = 10 -6 characterized by heat treatment under pressure
A method for producing "optically homogeneous quartz glass of a degree or less" is provided (Claim 1). A second aspect of the present invention is characterized in that in the above manufacturing method, the treatment temperature is 1800 ° C. or higher and 2200 ° C. or lower, and the atmosphere is He, N 2 , Ar, H 2 or a mixed gas thereof. A method for producing "homogeneous quartz glass" is provided (Claim 2).

【0011】[0011]

【作用】試料である石英ガラスと母型であるSiO2は、高
温で保持しているときには共に熔融状態にあり、これら
の物性は非常に近い。そこで、本発明において、試料と
母型の降温時の温度分布は図1(b) のようになっている
ものと推測される。つまり、変質層を形成すると思われ
る温度勾配の急な部分(等温線の多い部分)は母型のSi
O2の方にあり、試料の石英ガラスは中央部から周辺部の
広範囲にわたって均質化がなされるものと考えられる。
The quartz glass as the sample and the SiO 2 as the matrix are both in a molten state when kept at a high temperature, and their physical properties are very close to each other. Therefore, in the present invention, it is presumed that the temperature distributions of the sample and the mother mold during the temperature decrease are as shown in FIG. 1 (b). In other words, the part with a steep temperature gradient (the part with many isotherms) that seems to form an altered layer is the Si of the matrix.
It is closer to O 2 and the sample quartz glass is considered to be homogenized over a wide range from the central part to the peripheral part.

【0012】あるいは、母型には微小の気泡が無数混入
しているが、この気泡が断熱効果を持つことにより試料
内の温度の分布が緩和されるという推測もなされてい
る。いずれにしろ、本発明に従って熱処理を行なった後
は、試料のほぼ全体にわたって光学的に均質な石英ガラ
スが得られる。母型に用いるSiO2の形状は、たとえば、
ゾル−ゲル法により製造した合成石英粉、カレット(粉
砕したもの)、一旦熔融した塊、のいずれでもよい。な
お、一旦熔融したSiO2の塊であれば、母型の体積変化が
少ないので好ましい。
[0012] Alternatively, it is presumed that a large number of minute air bubbles are mixed in the matrix, but the temperature distribution in the sample is relaxed by the heat insulating effect of these air bubbles. In any case, after heat treatment according to the invention, an optically homogeneous quartz glass is obtained over almost the entire sample. The shape of SiO 2 used for the matrix is, for example,
It may be a synthetic quartz powder produced by the sol-gel method, cullet (crushed), or a once melted lump. It should be noted that a lump of SiO 2 once melted is preferable because the volume change of the matrix is small.

【0013】また、母型のSiO2にNa、Ca等の不純物が混
在していると、これが試料内に拡散し試料が汚染されて
しまうため、SiO2の純度は試料と同じかそれ以上である
ことが望ましい。処理条件としては、処理する温度(保
持温度)は軟化点以上であれば問題ないが、処理時間に
よる生産性を鑑みて軟化点より 150℃以上高い方が好ま
しい。絶対値でいうと、一般的には1800〜2200℃程度が
好ましい。保持時間、降温速度は試料の大きさにより異
なる。処理する雰囲気は、He、N2、Ar、H2などの不活性
ガスもしくはその混合ガスが好ましい。
Further, if impurities such as Na and Ca are mixed in the matrix SiO 2 and diffuse into the sample and contaminate the sample, the purity of SiO 2 is equal to or higher than that of the sample. Is desirable. There is no problem as the treatment condition as long as the treatment temperature (holding temperature) is equal to or higher than the softening point, but it is preferably 150 ° C. or more higher than the softening point in view of productivity depending on the treatment time. Generally speaking, an absolute value of about 1800 to 2200 ° C is preferable. The holding time and the cooling rate depend on the size of the sample. The atmosphere to be treated is preferably an inert gas such as He, N 2 , Ar, H 2 or a mixed gas thereof.

【0014】高温で保持するときに母型は熔融した状態
になるので、通常は試料と母型をカーボングラファイト
製の外型に入れる。また、熱処理後に外型と母型がはず
せなくなるのを防ぐために外型の内壁にカーボンファイ
バー製のフェルトを用いることもある。屈折率の不均一
分布の原因の一つである、降温時の試料内の温度分布
は、降温速度を遅くすることによってある程度小さく
(等温線の本数を少なくする)ことができる。しかし、
降温速度を遅くすることは、試料を高温で長時間保持す
ることにつながり、 ・試料が失透してしまう危険性がある。 ・工業的にみて、生産効率が低下する。 との理由から、例えば 5〜200 ℃/hour程度が好まし
い。
Since the matrix is in a molten state when it is held at a high temperature, the sample and the matrix are usually put in an outer mold made of carbon graphite. Further, a felt made of carbon fiber may be used on the inner wall of the outer die in order to prevent the outer die and the mother die from being separated after the heat treatment. The temperature distribution in the sample at the time of cooling, which is one of the causes of the non-uniform distribution of the refractive index, can be reduced to some extent (the number of isotherms is reduced) by slowing the cooling rate. But,
Reducing the temperature decrease rate leads to holding the sample at a high temperature for a long time, and there is a risk of devitrification of the sample. -In terms of industry, production efficiency decreases. For this reason, about 5 to 200 ° C./hour is preferable.

【0015】なお、本発明の石英ガラスの製造方法で
は、Δn=10-4程度である粒状構造や脈理を取り除く
ことはできない。従って、原料(試料)としてΔn=1
-5程度の石英ガラスを用いるのである。本発明の製造
方法によって得られた石英ガラスは、紫外線リソグラフ
ィー装置のレンズとして用いられるほか、カメラ用レン
ズ、プリズム等、あらゆる用途に有効である。
It should be noted that the quartz glass manufacturing method of the present invention cannot remove the granular structure and striae where Δn = about 10 −4 . Therefore, as a raw material (sample), Δn = 1
Quartz glass of about 0 -5 is used. The quartz glass obtained by the manufacturing method of the present invention is used as a lens for an ultraviolet lithography apparatus, and is also effective for various purposes such as a camera lens and a prism.

【0016】以下、実施例により詳しく説明するが、本
発明はこれらに限られるものではない。
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these.

【0017】[0017]

【実施例1】図2は、本実施例を実施するための製造装
置の概略断面図であり、4はヒーター、5は断熱材を設
けた加熱炉である。カーボングラファイト製の外型の内
壁はカーボンファイバーフェルト6で覆われている。試
料はφ200mm,t50mm の石英ガラスである。この試料の上
下面に20mm、側面に100mm のSiO2粉がくるように外型に
セットした。外型を加熱炉にセットし、N2雰囲気、5.0k
g/cm2 加圧下でヒーターにより昇温した。1900℃で2時
間保持し、その後50℃/hで降温していった。この試料
を、内部歪を取り除く目的でアニーリングした後、干渉
計で均質性を測定した。その結果、変質層の形成はほと
んど確認されず、試料のうちφ150 mmの部分のΔnは
2.6×10-5から 2.0×10-6になった。
[Embodiment 1] FIG. 2 is a schematic cross-sectional view of a manufacturing apparatus for carrying out this embodiment, and 4 is a heater and 5 is a heating furnace provided with a heat insulating material. The inner wall of the outer mold made of carbon graphite is covered with carbon fiber felt 6. The sample is quartz glass with a diameter of 200 mm and t50 mm. The sample was set in the outer mold so that 20 mm on the upper and lower surfaces and 100 mm on the side surfaces of the SiO 2 powder were present. Set the outer mold in the heating furnace, N 2 atmosphere, 5.0k
The temperature was raised by a heater under pressure of g / cm 2 . The temperature was maintained at 1900 ° C for 2 hours and then lowered at 50 ° C / h. This sample was annealed for the purpose of removing internal strain, and then homogeneity was measured by an interferometer. As a result, formation of an altered layer was hardly confirmed, and Δn of the φ150 mm portion of the sample was
It has changed from 2.6 × 10 -5 to 2.0 × 10 -6 .

【0018】[0018]

【実施例2】同じ初期状態の2つの試料(φ200mm,t150
mm)を、側面にSiO2粉がそれぞれ50mmと100mm になるよ
うに外型にセットし、N2雰囲気、5.0kg/cm2加圧下で昇
温した。1900℃で2時間保持した後、50℃/hで降温して
いった。この試料を、内部歪を取り除く目的でアニーリ
ングした後に干渉計で均質性を測定したところ、φ150
mmの部分の均質性Δnは 2.6×10-5からそれぞれ、 5.5
×10-6と 3.0×10-6になった。
[Example 2] Two samples in the same initial state (φ200 mm, t150
mm) was set in the outer mold so that the SiO 2 powder was 50 mm and 100 mm on the side surface, respectively, and the temperature was raised under N 2 atmosphere and 5.0 kg / cm 2 pressure. After holding at 1900 ° C for 2 hours, the temperature was lowered at 50 ° C / h. This sample was annealed for the purpose of removing internal strain and then measured for homogeneity with an interferometer.
The homogeneity Δn of the mm part is 2.6 × 10 -5 , 5.5
It became x 10 -6 and 3.0 x 10 -6 .

【0019】[0019]

【実施例3】図3は、試料の直径/高さを種々に変えて
従来の方法(図1(a) の方法)と、実施例の方法とを実
行した結果、得られた製造物のΔnを示すグラフであ
る。このグラフで横軸は直径と高さの比であり、縦軸は
均質性である。このグラフによれば、厚みのある試料で
もΔnが10-6程度以下と、光学的に均質な石英ガラス
が得られることがわかる。
Example 3 FIG. 3 shows the product obtained as a result of performing the conventional method (the method of FIG. 1 (a)) and the method of the example with various diameters / heights of the samples. It is a graph which shows (DELTA) n. In this graph, the horizontal axis is the ratio of diameter to height and the vertical axis is homogeneity. According to this graph, it can be seen that even if the sample is thick, Δn is about 10 −6 or less, and optically homogeneous quartz glass can be obtained.

【0020】[0020]

【発明の効果】以上のとおり、本発明によれば、母型の
形状を変化させることによって降温時の試料内の温度分
布を少なくすることが可能である。従って、試料の直径
/高さにかかわらず、試料全体に光学的に均質な石英ガ
ラスが得られる。例えば、径の大きな試料を用いても試
料周辺部に変質層が形成されることはなくΔn=10-6
程度以下の光学的に均質な石英ガラスが試料のほぼ全体
にわたって得られ、大口径のレンズを製造することが可
能である。
As described above, according to the present invention, it is possible to reduce the temperature distribution in the sample when the temperature is lowered by changing the shape of the matrix. Therefore, regardless of the diameter / height of the sample, quartz glass that is optically homogeneous throughout the sample is obtained. For example, even if a sample having a large diameter is used, an altered layer is not formed around the sample and Δn = 10 −6
Sub-substantially optically homogeneous quartz glass is obtained over almost the entire sample, making it possible to manufacture large diameter lenses.

【0021】また、変質層の部分はエキシマレーザーを
照射すると蛍光を発することがあったが、本発明の製造
方法によれば蛍光を発することのない石英ガラスが提供
される。
Further, although the altered layer portion sometimes emits fluorescence when irradiated with an excimer laser, the manufacturing method of the present invention provides quartz glass that does not emit fluorescence.

【図面の簡単な説明】[Brief description of drawings]

【図1】 石英ガラスの降温時の温度分布を示す図であ
る。
FIG. 1 is a diagram showing a temperature distribution when the temperature of quartz glass is lowered.

【図2】 本発明の一実施例を実施するための製造装置
の概略断面図である。
FIG. 2 is a schematic sectional view of a manufacturing apparatus for carrying out an embodiment of the present invention.

【図3】 均質性の測定結果を示すグラフである。FIG. 3 is a graph showing the measurement results of homogeneity.

【主要部分の符号の説明】[Explanation of symbols for main parts]

1 試料(熱処理前の石英ガラス) 2 母型(SiO2) 3 外型 4 ヒーター 5 加熱炉 6 フェルト1 sample (quartz glass before heat treatment) 2 mother die (SiO 2 ) 3 outer die 4 heater 5 heating furnace 6 felt

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 「屈折率のばらつきΔn=10-5程度の
光学的に不均質な石英ガラス」を、SiO2の粉末又は塊で
作った母型の中で0〜10kg/cm2の加圧下で熱処理するこ
とを特徴とする「Δn=10-6程度以下の光学的に均質
な石英ガラス」の製造方法。
1. A matrix made of SiO 2 powder or agglomerates of “optically inhomogeneous quartz glass with a refractive index variation Δn = 10 −5 ” applied at 0-10 kg / cm 2 . A method for producing "optically homogeneous quartz glass with Δn = about 10 -6 or less", characterized by performing heat treatment under pressure.
【請求項2】 特許請求の範囲第1項において、処理す
る温度は1800℃以上2200℃以下、雰囲気はHe、N2、Ar、
H2もしくはその混合ガスであることを特徴とする「均質
な石英ガラス」の製造方法。
2. In claim 1, the treatment temperature is 1800 ° C. or higher and 2200 ° C. or lower, and the atmosphere is He, N 2 , Ar,
A method for producing "homogeneous quartz glass", which is H 2 or a mixed gas thereof.
JP3279635A 1991-10-25 1991-10-25 Manufacturing method of quartz glass Expired - Lifetime JP2814795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3279635A JP2814795B2 (en) 1991-10-25 1991-10-25 Manufacturing method of quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3279635A JP2814795B2 (en) 1991-10-25 1991-10-25 Manufacturing method of quartz glass

Publications (2)

Publication Number Publication Date
JPH05116969A true JPH05116969A (en) 1993-05-14
JP2814795B2 JP2814795B2 (en) 1998-10-27

Family

ID=17613731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3279635A Expired - Lifetime JP2814795B2 (en) 1991-10-25 1991-10-25 Manufacturing method of quartz glass

Country Status (1)

Country Link
JP (1) JP2814795B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5696038A (en) * 1995-09-12 1997-12-09 Corning Incorporated Boule oscillation patterns in methods of producing fused silica glass
US5698484A (en) * 1995-09-12 1997-12-16 Corning Incorporated Method and containment vessel for producing fused silica glass and the fused silica blank produced
US5951730A (en) * 1995-09-12 1999-09-14 Corning Incorporated Furnace for producing fused silica glass
US6189339B1 (en) 1995-03-28 2001-02-20 Nikon Corporation Method for producing silica glass used for photolithography
JP2016204169A (en) * 2015-04-15 2016-12-08 信越石英株式会社 Production method of synthetic quartz glass
CN113387550A (en) * 2021-07-03 2021-09-14 四川神光石英科技有限公司 Method for improving uniformity of quartz glass

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6189339B1 (en) 1995-03-28 2001-02-20 Nikon Corporation Method for producing silica glass used for photolithography
US5696038A (en) * 1995-09-12 1997-12-09 Corning Incorporated Boule oscillation patterns in methods of producing fused silica glass
US5698484A (en) * 1995-09-12 1997-12-16 Corning Incorporated Method and containment vessel for producing fused silica glass and the fused silica blank produced
US5951730A (en) * 1995-09-12 1999-09-14 Corning Incorporated Furnace for producing fused silica glass
JP2016204169A (en) * 2015-04-15 2016-12-08 信越石英株式会社 Production method of synthetic quartz glass
CN113387550A (en) * 2021-07-03 2021-09-14 四川神光石英科技有限公司 Method for improving uniformity of quartz glass

Also Published As

Publication number Publication date
JP2814795B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
US5330941A (en) Quartz glass substrate for polysilicon thin film transistor liquid crystal display
EP1033350B1 (en) Synthetic quartz glass member for use in ArF excimer laser lithography
JP2006301595A (en) Manufacturing method of polarizing glass, and polarizing glass article
CN101426740A (en) Manufacture of large articles in synthetic vitreous silica
JP4341277B2 (en) Method of forming quartz glass
JP2006221166A (en) Polarizing glass and method for manufacturing polarizing glass
JP2814795B2 (en) Manufacturing method of quartz glass
JPH0524856A (en) Quartz glass for optical use and its production
JP2985540B2 (en) Manufacturing method of quartz glass
US6266978B1 (en) Method for producing synthetic quartz glass for use in ArF excimer laser lithography
US7111477B2 (en) Production method of optical synthetic quartz glass, optical synthetic quartz glass, and annealing furnace
JPH05301732A (en) Production of fluoride glass preform
JPH07247132A (en) Production of quartz glass
JPH05178632A (en) Optical quartz glass having high heat resistance and its production
JPH0952722A (en) Optical synthetic quartz glass preform, its production and synthetic quartz glass product using the same
JP5763612B2 (en) Rod lens manufacturing method and manufacturing apparatus
JP3163857B2 (en) Method for producing quartz glass and quartz glass member produced thereby
JP2019182691A (en) Quartz glass ingot and method for manufacturing quartz glass product
JPS6272537A (en) Production of high-purity quartz glass
JPH05170466A (en) Heat treatment for optical synthetic quartz glass formed body
JP2835543B2 (en) Heat treatment method for synthetic quartz glass molded article for optical
JPH06345442A (en) Production of highly homogeneous glass, apparatus therefor and product of highly homogeneous glass
JP4744046B2 (en) Method for producing synthetic quartz glass material
JP2824877B2 (en) Method for producing quartz glass compact for ultraviolet laser
JP2004123440A (en) Manufacturing processes for glass preform and optical glass

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070814

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 14