JPH0747473A - Carbonic acid gas pulse arc welding method - Google Patents

Carbonic acid gas pulse arc welding method

Info

Publication number
JPH0747473A
JPH0747473A JP19753693A JP19753693A JPH0747473A JP H0747473 A JPH0747473 A JP H0747473A JP 19753693 A JP19753693 A JP 19753693A JP 19753693 A JP19753693 A JP 19753693A JP H0747473 A JPH0747473 A JP H0747473A
Authority
JP
Japan
Prior art keywords
current
welding
wire
pulse
spatter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19753693A
Other languages
Japanese (ja)
Inventor
Masao Ushio
誠夫 牛尾
Yutaka Nishikawa
裕 西川
Tetsuo Suga
哲男 菅
Masaharu Sato
正晴 佐藤
Fusaki Koshiishi
房樹 輿石
Takaaki Ito
崇明 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP19753693A priority Critical patent/JPH0747473A/en
Publication of JPH0747473A publication Critical patent/JPH0747473A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To remarkably lower spattering in carbonic acid gas pulse arc welding by a middle current or a large current by contriving an optimal combination of a welding current parameter and a chemical component of a wire, based on a pulse condition that one pulse becomes one droplet. CONSTITUTION:Welding is executed by using a welding solid wire whose chemical components consists of 0.01-0.05% C : 0.5-3% (Si+Mn) : 0.05-0.4% (Ti+Al), Fe of the remaining part and inevitable impurities, and also, using a square wave pulse for satisfying welding current parameters of (a) 400-550A peak current Ip : (b) 5-15ms peak current period : (c) 30-100A base current IB : (d) 5-35ms base current period TB : and (e) 200-350A average current Iav.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶接ワイヤの化学成分
とパルス条件の最適な組合せを図ることによって、スパ
ッタ発生量の低減を図ることのできる炭酸ガスパルスア
ーク溶接方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon dioxide gas pulse arc welding method capable of reducing the amount of spatter generated by optimally combining the chemical composition of a welding wire and the pulse conditions.

【0002】[0002]

【従来の技術】シールドガスとして炭酸ガスを用いる炭
酸ガスアーク溶接法は、ArやHe等の不活性ガスを主
体とした混合ガスを用いる溶接法に比べ、安価に実施で
き且つ耐欠陥性の点でも優れていることから、軟鋼を始
めとして低合金鋼等の溶接において広く適用されてい
る。しかしながらサイリスタ電源を用いた炭酸ガスアー
ク溶接法では、他のシールドガスを用いた場合に比べ、
アークが不安定となって主として短絡移行に伴うスパッ
タ発生が不規則に起こり、スパッタ発生量が多くなると
いう欠点を有している。
2. Description of the Related Art Carbon dioxide arc welding, which uses carbon dioxide as a shielding gas, can be carried out at a lower cost and is more resistant to defects than welding using a mixed gas mainly containing an inert gas such as Ar or He. Since it is excellent, it is widely applied in the welding of low alloy steels including mild steel. However, in the carbon dioxide arc welding method using a thyristor power source, compared to the case of using other shield gas,
This has a drawback that the arc becomes unstable and spatters are irregularly generated mainly due to short-circuit transfer, resulting in a large amount of spatters.

【0003】上記の様な欠点を解消するという観点か
ら、パルス電源を用いて溶滴を同期的に移行させること
(1パルス1溶滴)が行なわれているが、下記の様な問
題があった。即ち、炭酸ガスパルスアーク溶接を実施す
るに当たり、低電流乃至中電流域のベース電流期間での
溶滴移行の場合には、短絡移行形態を伴なうので、スパ
ッタ発生量は増える傾向にあり、更に大電流域での適用
は難しくなる。一方、ピーク電流期間中の溶滴離脱によ
る移行形態の場合には、中電流乃至大電流域での適用が
可能であり短絡移行はほとんどなくなるが、パルス電流
を制御しただけでは十分とは言えず、他の要因によるス
パッタ発生が依然として発生する。スパッタ発生を招く
他の要因としては、ワイヤ組成等が考えられるが、これ
までワイヤ組成をも考慮したスパッタ低減に関する技術
は提案されていない。
From the viewpoint of eliminating the above drawbacks, droplets are synchronously transferred using a pulse power source (1 pulse 1 droplet), but there are the following problems. It was That is, in carrying out the carbon dioxide pulse arc welding, in the case of droplet transfer in the base current period of the low current to medium current region, since the short-circuit transfer form is accompanied, the amount of spatter tends to increase, Further, it becomes difficult to apply it in a large current region. On the other hand, in the case of the transfer form due to droplet detachment during the peak current period, it can be applied in the medium current to large current region and almost no short circuit transfer occurs, but it cannot be said that controlling the pulse current is sufficient. However, spattering still occurs due to other factors. Other factors that may cause the generation of spatter include the wire composition and the like, but hitherto no technique has been proposed for reducing spatter in consideration of the wire composition.

【0004】[0004]

【発明が解決しようとする課題】本発明はこうした状況
の下になされたものであって、その目的は、1パルス1
溶滴となるパルス条件を踏まえ、溶接電流パラメータと
ワイヤの化学成分の最適な組合せを図ることによって、
中電流乃至大電流での炭酸ガスパルスアーク溶接におけ
る大幅な低スパッタ化を達成することにある。
SUMMARY OF THE INVENTION The present invention has been made under these circumstances, and its purpose is to provide 1 pulse 1 pulse.
Based on the pulse conditions that form droplets, by optimizing the combination of welding current parameters and wire chemical components,
It is to achieve a large reduction in spatter in carbon dioxide pulse arc welding at medium to large currents.

【0005】[0005]

【課題を解決するための手段】上記目的を達成し得た本
発明とは、化学成分が、C:0.01〜0.05%,
(Si+Mn):1.5〜3%,(Ti+Al):0.
05〜0.4%、残部Feおよび不可避不純物からなる
溶接用ソリッドワイヤを用いると共に、下記(a)〜
(e)の溶接電流パラメータを満足する矩形波パルスを
用いて溶接を行なう点に要旨を有する炭酸ガスパルスア
ーク溶接方法である。
Means for Solving the Problems According to the present invention capable of achieving the above object, the chemical component is C: 0.01 to 0.05%,
(Si + Mn): 1.5 to 3%, (Ti + Al): 0.
A solid wire for welding consisting of 05 to 0.4% and the balance Fe and unavoidable impurities is used, and the following (a) to
The carbon dioxide gas pulse arc welding method is characterized in that the welding is performed using a rectangular wave pulse satisfying the welding current parameter (e).

【0006】 (a)ピーク電流IP :400〜550A (b)ピーク電流期間TP :5〜15ms (c)ベース電流IB :30〜100A (d)ベース電流期間TB :5〜35ms (e)平均電流Iav:200〜350A(A) Peak current I P : 400 to 550 A (b) Peak current period T P : 5 to 15 ms (c) Base current I B : 30 to 100 A (d) Base current period T B : 5 to 35 ms ( e) Average current I av : 200 to 350 A

【0007】[0007]

【作用】本発明は上述の如く構成されるが、要するに溶
接用ソリッドワイヤの化学成分と、パルス条件(即ち溶
接電流パラメータ)の最適な組合せによって、スパッタ
発生量を著しく低減できることを見出し、本発明を完成
した。まず本発明で用いる溶接用ソリッドワイヤの化学
成分限定理由は、下記の通りである。
The present invention is constructed as described above, but it has been found that the amount of spatter generation can be remarkably reduced by the optimum combination of the chemical composition of the solid wire for welding and the pulse condition (ie, welding current parameter). Was completed. First, the reasons for limiting the chemical composition of the solid wire for welding used in the present invention are as follows.

【0008】C:0.01〜0.05% 図1は、ワイヤ全体のC量とスパッタ発生頻度の関係を
示すグラフであり、図1におけるスパッタとは、溶融池
から発生するスパッタの意味である。図1から明らかな
様に、C量が0.05%を超えると、溶融池から発生す
るスパッタが多くなる。一方C量が0.01%未満にな
ると、溶着金属の強度低下を招くので適さない。尚C量
の好ましい範囲は、0.02〜0.05%程度である。
C: 0.01-0.05% FIG. 1 is a graph showing the relationship between the amount of C in the entire wire and the frequency of spatter generation. Spatter in FIG. 1 means the spatter generated from the molten pool. is there. As is clear from FIG. 1, when the amount of C exceeds 0.05%, the amount of spatter generated from the molten pool increases. On the other hand, if the amount of C is less than 0.01%, the strength of the deposited metal decreases, which is not suitable. The preferable range of the amount of C is about 0.02 to 0.05%.

【0009】(Si+Mn):1.5〜3% 図2は、ワイヤ全体の(Si+Mn)量とスパッタ発生
頻度の関係を示すグラフであり、図2におけるスパッタ
とは、粘性の低下によって溶滴離脱時に発生するスパッ
タの意味である。図2から明らかな様に、(Si+M
n)量が1.5%未満になると、溶滴離脱時のスパッタ
が増加する。一方3%を超えると、溶着金属の靭性が低
下し、ワイヤが硬質になって線引性等に影響を及ぼす。
尚Si,Mnの好ましい範囲は、夫々Si:0.65〜
0.9%、Mn:1.4〜1.6%であり、上記合計量
の範囲内でSi,Mnの夫々の量を調整すれば、スパッ
タの制御に更に効果的である。
(Si + Mn): 1.5 to 3% FIG. 2 is a graph showing the relationship between the (Si + Mn) amount of the entire wire and the frequency of spatter generation. Spatter in FIG. It means the spatter that sometimes occurs. As is clear from FIG. 2, (Si + M
If the amount n) is less than 1.5%, spattering when the droplets are released increases. On the other hand, if it exceeds 3%, the toughness of the deposited metal is lowered, the wire becomes hard, and the wire drawability and the like are affected.
The preferable ranges of Si and Mn are Si: 0.65 to 0.65, respectively.
It is 0.9% and Mn: 1.4 to 1.6%, and it is more effective for the control of sputtering if the respective amounts of Si and Mn are adjusted within the above total amount range.

【0010】(Ti+Al):0.05〜0.4% 図3は、ワイヤ全体の(Ti+Al)量とスパッタ発生
頻度の関係を示すグラフであり、図3におけるスパッタ
とは、粘性の低下によって溶滴離脱時に発生するスパッ
タの意味である。図3から明らかな様に、(Ti+A
l)量が0.05%未満になると、溶滴離脱時のスパッ
タが増加する。一方0.4%を超えると、溶着金属の靭
性が低下し、ワイヤが硬質になって線引性等に悪影響を
及ぼす。尚Ti、Alの好ましい範囲は、夫々Ti:
0.14〜0.2%,Al:0.02〜0.1%であ
り、上記合計量の範囲内で、Ti,Alの夫々の量を調
整すれば、スパッタの抑制に更に効果的である。
(Ti + Al): 0.05-0.4% FIG. 3 is a graph showing the relationship between the (Ti + Al) amount of the entire wire and the frequency of spatter generation. Spatter in FIG. This is the meaning of spatter that occurs when droplets separate. As is clear from FIG. 3, (Ti + A
If the amount of l) is less than 0.05%, the amount of spatter at the time of droplet separation increases. On the other hand, if it exceeds 0.4%, the toughness of the deposited metal decreases, the wire becomes hard, and the wire drawability is adversely affected. The preferred ranges of Ti and Al are Ti:
0.14 to 0.2%, Al: 0.02 to 0.1%. If the amounts of Ti and Al are adjusted within the above total amount range, it is more effective in suppressing spatter. is there.

【0011】本発明で用いる溶接用ソリッドワイヤの化
学成分組成は上記の通りであり、残部Feおよび不可避
不純物からなるものであるが、本発明の目的を達成する
には、上述した様に溶接電流パラメータを満足する矩形
波パルスを用いて溶接を行なう必要がある。次に、これ
らのパラメータの設定理由について説明する。尚矩形波
パルスの各パラメータの位置は、図4に示す通りであ
る。
The chemical composition of the solid wire for welding used in the present invention is as described above, and the balance is Fe and inevitable impurities. To achieve the object of the present invention, the welding current is set as described above. Welding must be performed using square wave pulses that satisfy the parameters. Next, the reason for setting these parameters will be described. The position of each parameter of the rectangular wave pulse is as shown in FIG.

【0012】ピーク電流IP :400〜550A ピーク電流が400A未満であると、電磁ピンチ力が弱
く溶滴の離脱が促進されないので、1パルス1溶滴移行
となりにくいためにスパッタが発生する。また、ピーク
電流が550Aを超えると、本来溶滴を離脱させるため
のピンチ力が、溶滴を押し上げる方向にはたらき、同様
に安定しない。
Peak current I P : 400 to 550 A If the peak current is less than 400 A, the electromagnetic pinch force is weak and the detachment of droplets is not promoted, so that droplets are less likely to be transferred per pulse and spatter occurs. Further, when the peak current exceeds 550 A, the pinch force for originally releasing the droplet acts in the direction of pushing up the droplet and is similarly unstable.

【0013】ピーク電流期間TP :5〜15ms ピーク電流期間TP が5ms未満であると、期間が短い
ために充分な溶融が行なわれずに、nパルス1溶滴移行
となる。逆に、15msを超えると、1パルスn溶滴移
行となり、このときも溶滴は安定しない。
Peak current period T P : 5 to 15 ms If the peak current period T P is less than 5 ms, the period is short and sufficient melting is not performed, resulting in n pulse 1 droplet transfer. On the contrary, if it exceeds 15 ms, one pulse n droplet transfer occurs, and the droplet is not stable at this time as well.

【0014】ベース電流IB :30〜100A ベース電流IB が30A未満であると、ベース期間中に
溶滴と溶融池の間で短絡が生じやすくなり、多量のスパ
ッタ発生の原因となる。ベース期間中は溶滴を安定させ
る役割があるが、ベース電流IB が100Aを超える
と、常に強いアークの影響を受けることになり、安定し
た溶滴移行となりにくい。
Base current I B : 30 to 100 A When the base current I B is less than 30 A, a short circuit easily occurs between the droplet and the molten pool during the base period, which causes a large amount of spatter. Although it has a role of stabilizing the droplet during the base period, when the base current I B exceeds 100 A, it is always affected by a strong arc, and stable droplet transfer is unlikely to occur.

【0015】ベース電流期間TB :5〜35ms ベース電流期間TB が5ms未満であると、期間が短い
ために溶滴は安定しにくい。また、ベース電流期間TB
が35msを超えると、ベース期間があまりに長くなる
ため、期間中に溶滴と溶融池の間で短絡が生じやすくな
る。
Base current period T B : 5 to 35 ms If the base current period T B is less than 5 ms, the droplet is difficult to stabilize because the period is short. Also, the base current period T B
Is more than 35 ms, the base period becomes too long, so that a short circuit easily occurs between the droplet and the molten pool during the period.

【0016】平均電流Iav:200〜350A 平均電流Iavが200A未満であると、アーク長が一般
より長めの状態でしか安定せず、アーク切れが起こりや
すい。また350Aを超えると、アークのピンチ力によ
る上向きの溶滴を押し上げる力が強まり、溶滴あるいは
その一部がそのままスパッタとして飛散する現象が生じ
る。よって平均電流は、200〜350Aの範囲とする
必要がある。尚ここで平均電流とは、上記IP,TP,IB,
B によって下記(2)式で規定される値である。
Average current I av : 200 to 350 A When the average current I av is less than 200 A, the arc length is stable only when it is longer than usual, and arc breakage easily occurs. If it exceeds 350 A, the force of pushing up the upward droplet due to the pinch force of the arc is increased, and the phenomenon that the droplet or a part thereof is directly scattered as spatter occurs. Therefore, the average current needs to be in the range of 200 to 350A. Here, the average current means the above I P , T P , I B ,
It is a value defined by the following equation (2) according to T B.

【0017】 Iav=(IP ×TP +IB ×TB )/(TP +TB ) ・・・(2)I av = (I P × T P + I B × T B ) / (T P + T B ) ... (2)

【0018】本発明の目的は、上述の如く、溶接用ソリ
ッドワイヤの化学成分組成と、溶接電流パラメータの最
適な組合せによって達成されるが、前記(1)式で規定
される比表面積を0.01以下とすることは、スパッタ
低減に更に有効である。即ち比表面積の値が0.01を
超えるとワイヤの通電性が低下し、アークの発生を妨げ
る効果となりスパッタが増大するので、0.01以下に
する必要がある。さらにスパッタ低減を考慮する場合に
は、0.001以下が望ましい。
The object of the present invention is achieved by the optimum combination of the chemical composition of the solid wire for welding and the welding current parameter as described above, and the specific surface area defined by the above formula (1) is set to 0. A value of 01 or less is more effective for reducing spatter. That is, if the value of the specific surface area exceeds 0.01, the electrical conductivity of the wire is lowered, and the effect of hindering the generation of arc is increased, and the spatter is increased. Further, when considering reduction of spatter, 0.001 or less is desirable.

【0019】ここで、ワイヤ比表面積とは、ワイヤ表面
の実表面積を測定した測定部分の見かけ上の面積をSm
(mm2)、測定部分のワイヤ表面の実表面積をSa(m
2)とした場合、下式で定義される(図5参照)。
Here, the specific surface area of the wire is the apparent area of the measurement portion where the actual surface area of the wire surface is measured, Sm.
(Mm 2 ), the actual surface area of the wire surface of the measurement part is Sa (m
m 2 ) is defined by the following formula (see FIG. 5).

【0020】ワイヤ比表面積=(Sa/Sm)−1Wire specific surface area = (Sa / Sm) -1

【0021】また測定部分の見かけ上の面積Smとは、
測定部分を平面に展開したときの(縦×横)で表される
面積である。尚本発明では、測定部分を平面に展開した
後500μm×600μm(300000μm2 )の部
分の実表面積を測定した。またワイヤ比表面積の測定は
以下の条件の方法によって測定されるものである。
The apparent area Sm of the measuring portion is
It is the area represented by (length x width) when the measurement portion is developed on a plane. In the present invention, the actual surface area of a portion of 500 μm × 600 μm (300000 μm 2 ) was measured after the measurement portion was developed on a plane. The specific surface area of the wire is measured by the method under the following conditions.

【0022】サンプリング方法:スプールに巻かれた製
品ワイヤからできるだけ疵を付けないように約20mm
を任意の3ケ所から採取し、金属表面を腐食させない石
油エーテル、アセトン、四塩化炭素、フロン等の有機溶
媒中で、或は加工工程中で使用する潤滑剤の種類によっ
てはそれを除くために最も適当と思われる液(湯やその
他の脱脂液)で超音波洗浄することによりワイヤ表面に
付着している汚れや油脂分等の不純物を取り除く。超音
波洗浄はワイヤが互いに擦れあって疵を付けないように
1本づつ行なう。
Sampling method: Approximately 20 mm so as not to scratch the product wire wound on the spool as much as possible
To remove it from any three locations, in an organic solvent that does not corrode the metal surface, such as petroleum ether, acetone, carbon tetrachloride, CFCs, or depending on the type of lubricant used in the processing process. Ultrasonic cleaning with the most suitable liquid (hot water or other degreasing liquid) removes impurities such as stains and oils adhering to the wire surface. Ultrasonic cleaning is performed one by one so that the wires do not rub against each other and scratch.

【0023】尚ワイヤの製造に当たっては、伸線によっ
てダイスから受ける疵、設備各所や線同士の接触で生じ
るうち、疵や擦り疵等は可能な限り発生させないように
留意されているものであり、その意味では、比表面積値
は疵のない部分を選んで測定する。
In the production of wire, it is noted that among the flaws received from the die by wire drawing, the various parts of the equipment and the contact between wires, it is noted that flaws, abrasion marks, etc. are not generated as much as possible. In that sense, the specific surface area value is measured by selecting a portion having no flaw.

【0024】測定位置:1サンプルの任意の1断面を1
20度ずらした3ケ所で測定し、3サンプルの合計9ケ
所の測定値の単純平均とする。 測定倍率:150倍(ワイヤ径によらず一定)。測定装
置としては、例えば、エリオニクス社製ERA−800
0が挙げられる。
Measurement position: One arbitrary cross section of one sample
The measurement is performed at three points shifted by 20 degrees, and the simple average of the measured values of nine points in total of three samples is used. Measurement magnification: 150 times (constant regardless of wire diameter). As the measuring device, for example, ERA-800 manufactured by Elionix Co., Ltd.
0 is mentioned.

【0025】尚本発明で用いる溶接用ソリッドワイヤ
は、その表面にCuめっきが施されることがあり、この
Cuめっき量は、ワイヤ全重量に対して通常0.15〜
0.3%程度であるが、本発明の溶接用ソリッドワイヤ
では、通電量を考慮して0.25〜0.3%程度とする
のが望ましい。
The solid wire for welding used in the present invention may be Cu-plated on its surface, and the Cu plating amount is usually 0.15 to the total weight of the wire.
Although it is about 0.3%, in the welding solid wire of the present invention, it is desirable to set it to about 0.25 to 0.3% in consideration of the energization amount.

【0026】以下本発明を実施例によって更に詳細に説
明するが、下記実施例は本発明を限定する性質のもので
はなく、前・後記の趣旨に徴して設計変更することはい
ずれも本発明の技術的範囲に含まれるものである。
The present invention will be described in more detail with reference to the following examples, but the following examples are not intended to limit the present invention, and any modification of the design of the present invention can be made without departing from the spirit of the preceding and the following. It is included in the technical scope.

【0027】[0027]

【実施例】表1および表2に示す溶接電流のパルス条件
とワイヤ組成の組合せを種々変えた条件で溶接を行なっ
た際の、スパッタ発生状況を調査した。その結果を表1
および表2に併記する。尚スパッタ発生状況の評価基準
は下記の通りである。また比表面積は、No.1〜36
のものは0.001、No.37のものは0.009、
No.38のものは0.012であった。表1および表
2から明らかな様に、本発明で規定する要件を満足する
実施例のものは、安定した1パルス1溶滴移行が得ら
れ、スパッタ発生量の低減が可能であることがわかる。
[Examples] The state of spatter generation was investigated when welding was carried out under conditions in which various combinations of welding current pulse conditions and wire compositions shown in Tables 1 and 2 were changed. The results are shown in Table 1.
And also shown in Table 2. The evaluation criteria for the spatter generation status are as follows. The specific surface area is 1-36
No. 0.001, No. 37 is 0.009,
No. The value of 38 was 0.012. As is clear from Tables 1 and 2, it is understood that the ones satisfying the requirements specified in the present invention can achieve stable 1 pulse / 1 droplet transfer and can reduce the spatter generation amount. .

【0028】(スパッタ発生状況の評価基準) ◎ : 非常に良好 ○ : 良好 ◇ : ほぼ良好 △ : 小粒のスパッタ付着 × : 大粒のスパッタ付着 (−): アーク切れ発生(Evaluation criteria for spatter generation status) ◎: Very good ○: Good ◇: Almost good △: Small particle spatter adhered ×: Large particle spatter adhered (-): Arc breakage occurred

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【発明の効果】本発明は以上の様に構成されており、パ
ルス条件と溶接用ワイヤの最適な組合せによって、パル
ス電流適用時でも発生形態としては残っていた溶融池か
らのスパッタおよび溶滴離脱後の再アーク時のスパッタ
がいずれも制御できた。またスパッタが減少することに
よって、実際の溶接ラインにおけるスパッタ除去時間の
短縮によるトータルコストダウンや能率性の向上等の効
果も得られる。
The present invention is constituted as described above, and by the optimum combination of the pulse conditions and the welding wire, the spatter and the droplet detachment from the molten pool, which remained as the generation mode even when the pulse current is applied. The spatter during the subsequent re-arc could be controlled. Further, since the spatter is reduced, the total cost can be reduced and the efficiency can be improved by reducing the spatter removal time in the actual welding line.

【図面の簡単な説明】[Brief description of drawings]

【図1】ワイヤ全体のC量とスパッタ発生頻度の関係を
示すグラフである。
FIG. 1 is a graph showing the relationship between the amount of C in the entire wire and the frequency of spatter generation.

【図2】ワイヤ全体の(Si+Mn)量とスパッタ発生
頻度の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the (Si + Mn) amount of the entire wire and the frequency of spatter generation.

【図3】ワイヤ全体の(Ti+Al)量とスパッタ発生
頻度の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the (Ti + Al) amount of the entire wire and the frequency of spatter generation.

【図4】本発明で規定する溶接電流パラメータを説明す
るための波形図である。
FIG. 4 is a waveform diagram for explaining a welding current parameter defined in the present invention.

【図5】本発明で規定する比表面積を説明するための図
である。
FIG. 5 is a diagram for explaining a specific surface area defined by the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 正晴 神奈川県藤沢市宮前字裏河内100番1 株 式会社神戸製鋼所藤沢事業所内 (72)発明者 輿石 房樹 神奈川県藤沢市宮前字裏河内100番1 株 式会社神戸製鋼所藤沢事業所内 (72)発明者 伊藤 崇明 神奈川県藤沢市宮前字裏河内100番1 株 式会社神戸製鋼所藤沢事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masaharu Sato, Inoue Miyazaki, Fujisawa-shi, Kanagawa 100-1 Urakawachi, Ltd. Kobe Steel, Fujisawa Plant (72) Inventor Fuseki Koshiishi Miyazawa, Kawasaki, Kanagawa Prefecture 100-1 share company inside the Kobe Steel Fujisawa Plant (72) Inventor Takaaki Ito Urakawachi, Miyamae, Fujisawa City, Kanagawa Prefecture 100-1 share inside the Kobe Steel Fujisawa Plant

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 化学成分が、C:0.01〜0.05%
(重量%の意味、以下同じ),(Si+Mn):1.5
〜3%,(Ti+Al):0.05〜0.4%、残部F
eおよび不可避不純物からなる溶接用ソリッドワイヤを
用いると共に、下記(a)〜(e)の溶接電流パラメー
タを満足する矩形波パルスを用いて溶接を行なうことを
特徴とする炭酸ガスパルスアーク溶接方法。 (a)ピーク電流IP :400〜550A (b)ピーク電流期間TP :5〜15ms (c)ベース電流IB :30〜100A (d)ベース電流期間TB :5〜35ms (e)平均電流Iav:200〜350A
1. The chemical component is C: 0.01 to 0.05%.
(Mean of weight%, same below), (Si + Mn): 1.5
~ 3%, (Ti + Al): 0.05-0.4%, balance F
A carbon dioxide pulse arc welding method characterized by using a solid wire for welding comprising e and unavoidable impurities and performing welding using a rectangular wave pulse satisfying the following welding current parameters (a) to (e). (A) the peak current I P: 400~550A (b) the peak current duration T P: 5~15ms (c) the base current I B: 30~100A (d) the base current period T B: 5~35ms (e) Mean Current I av : 200-350A
【請求項2】 下記(1)式で規定されるワイヤ表面の
比表面積が0.01以下である溶接用ソリッドワイヤを
用いる請求項1に記載の炭酸ガスパルスアーク溶接方
法。 比表面積=[(Sa/Sm)−1] ・・・(1) Sm:ワイヤ表面の実表面積を測定した測定部分の見か
け上の面積(mm2 ) Sa:測定部分のワイヤ表面の実表面積(mm2
2. The carbon dioxide pulse arc welding method according to claim 1, wherein a welding solid wire having a specific surface area of the wire surface of 0.01 or less defined by the following formula (1) is used. Specific surface area = [(Sa / Sm) −1] (1) Sm: apparent area of the measurement part where the actual surface area of the wire surface is measured (mm 2 ) Sa: actual surface area of the wire surface of the measurement part ( mm 2 )
JP19753693A 1993-08-09 1993-08-09 Carbonic acid gas pulse arc welding method Withdrawn JPH0747473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19753693A JPH0747473A (en) 1993-08-09 1993-08-09 Carbonic acid gas pulse arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19753693A JPH0747473A (en) 1993-08-09 1993-08-09 Carbonic acid gas pulse arc welding method

Publications (1)

Publication Number Publication Date
JPH0747473A true JPH0747473A (en) 1995-02-21

Family

ID=16376107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19753693A Withdrawn JPH0747473A (en) 1993-08-09 1993-08-09 Carbonic acid gas pulse arc welding method

Country Status (1)

Country Link
JP (1) JPH0747473A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147982A (en) * 1997-07-28 1999-02-23 Matsushita Electric Ind Co Ltd Solid wire for welding
US8153933B2 (en) 2008-03-28 2012-04-10 Kobe Steel, Ltd. Welding control apparatus and method
US8816250B2 (en) 2006-03-10 2014-08-26 Kobe Steel, Ltd. Pulsed arc welding method
US9296057B2 (en) 2011-02-07 2016-03-29 Daihen Corporation Welding device and carbon dioxide gas shielded arc welding method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147982A (en) * 1997-07-28 1999-02-23 Matsushita Electric Ind Co Ltd Solid wire for welding
US8816250B2 (en) 2006-03-10 2014-08-26 Kobe Steel, Ltd. Pulsed arc welding method
US8153933B2 (en) 2008-03-28 2012-04-10 Kobe Steel, Ltd. Welding control apparatus and method
US9296057B2 (en) 2011-02-07 2016-03-29 Daihen Corporation Welding device and carbon dioxide gas shielded arc welding method

Similar Documents

Publication Publication Date Title
US20030178401A1 (en) Weld wire with enhanced slag removal
JPS6356037B2 (en)
KR20030093330A (en) Steel wire for carbon dioxide shielded arc welding and welding process using the same
EP2610361B1 (en) Flux-cored welding wire for carbon steel and process for arc welding
JP3404264B2 (en) Solid wire for MAG welding
EP3444063A2 (en) Electrodes for forming austenitic and duplex steel weld metal
JPH0747473A (en) Carbonic acid gas pulse arc welding method
JP2000141080A (en) Solid wire for gas shielded arc welding
JP3400716B2 (en) Solid wire for gas shielded arc welding
JPH0663789A (en) Ni or ni alloy welding wire for gas shielded arc welding
JP4754096B2 (en) Solid wire for pulse MAG welding
JP2001129684A (en) Steel wire for pulsed co2 welding
JP2001129683A (en) Steel wire for co2 shielded pulsed arc welding
JPH09239583A (en) Steel wire for pulse arc welding having excellent continuous weldability
JPH09206984A (en) Gas shield arc welding for thin sheet
JP2007118069A (en) Gas-shielded arc welding method
JPS62296993A (en) Steel wire for mag pulse high speed welding
JP2021115596A (en) Flux cored wire for welding galvanized steel sheet
JP3404260B2 (en) Solid wire for high current carbon dioxide arc welding
JP3513382B2 (en) Arc welding method for galvanized steel sheet
JP4529482B2 (en) Fillet welding method
JPS62248597A (en) Flux cored wire for gas shielded arc welding
JP3546738B2 (en) Steel wire for gas shielded arc welding and method for producing the same
JPH0952193A (en) Steel wire for gas shield arc welding
JP2603352B2 (en) Welding wire with excellent weld slag peelability

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031