JPH0747444A - Manufacture of casting mold for precise casting - Google Patents

Manufacture of casting mold for precise casting

Info

Publication number
JPH0747444A
JPH0747444A JP19483693A JP19483693A JPH0747444A JP H0747444 A JPH0747444 A JP H0747444A JP 19483693 A JP19483693 A JP 19483693A JP 19483693 A JP19483693 A JP 19483693A JP H0747444 A JPH0747444 A JP H0747444A
Authority
JP
Japan
Prior art keywords
parts
silica
alumina
mold
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19483693A
Other languages
Japanese (ja)
Inventor
Hirofumi Furukawa
洋文 古河
Kiyoshi Watanabe
潔 渡辺
Shigeaki Yamamuro
繁昭 山室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP19483693A priority Critical patent/JPH0747444A/en
Publication of JPH0747444A publication Critical patent/JPH0747444A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To scarcely generate deformation of a casting mold caused at a high temperature, and to attain both the improvement of dimension accuracy of a precise casting and the prevention of damage of the casting mold, etc. CONSTITUTION:At the time manufacturing a casting mold for precise cadting, the casting mold is manufactured by using slurry obtained by mixing 150 parts to 300 parts zircon powder or mullite powder whose particle diameter of <=44mum as filler, and ceramics obtained by zircon particles or mullite particles singly or combining them, as a stack material, with respect to 100 parts mixed binder of alumina sol and silica mixed within a range of 30 parts to 60 parts alumina in alumina sol, and 70 parts to 40 parts silica sol whose hydrogen ion cencentration index is <=7 as a stucco material. This casting mold is fired at >=1200 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、精密鋳造用鋳型の製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a precision casting mold.

【0002】[0002]

【従来の技術】精密鋳造用セラミック鋳型は、一般にワ
ックス模型をバインダとセラミック粉末(フィラ)とに
よりなるスラリ中へ浸漬して、スラリを付着させ(ディ
ッピング)、その後、セラミック粒子をこのフラリに付
着させ(サンデイィングあるいはスタッコイング)、以
上の工程を約7乃至10数回繰り返して、所定厚さのセ
ラミック層を形成する。その後、ワックスを溶出し、所
定温度(一般に1000℃前後)に加熱・焼成して、高
温状態の鋳型に溶鋼を注湯する。
2. Description of the Related Art In a precision casting ceramic mold, a wax model is generally immersed in a slurry made of a binder and a ceramic powder (filler) to adhere the slurry (dipping), and then the ceramic particles are adhered to the slurry. (Sanding or stuccoing), and the above steps are repeated about 7 to 10 times to form a ceramic layer having a predetermined thickness. Then, the wax is eluted, heated and fired at a predetermined temperature (generally around 1000 ° C.), and molten steel is poured into a high temperature mold.

【0003】またバインダには、シリカゾル(コロイダ
ルシリカあるいはエチルシリケート)、スラリ中のセラ
ミック(フィラ)には、ジルコン粉末、サンディング用
セラミックには、ジルコン粒子あるいはムライト粒子を
一般的に使用している。
Generally, silica sol (colloidal silica or ethyl silicate) is used as the binder, zircon powder is used as the ceramic (filler) in the slurry, and zircon particles or mullite particles are used as the sanding ceramic.

【0004】[0004]

【発明が解決しようとする課題】前記の方法により製造
される精密鋳造用セラミック鋳型の厚さは、約7乃至1
0数mmであり、しかも鋳込時の鋳型温度が1000℃
前後で、鋳込後には、鋳型がさらに加熱されて、鋳物と
の接触面近傍では、1400℃以上、鋳型の肉厚中心部
でも1200℃以上に加熱される。
The thickness of the ceramic mold for precision casting manufactured by the above method is about 7 to 1.
0 mm or more, and the mold temperature during casting is 1000 ° C
Before and after the casting, the mold is further heated, and is heated to 1400 ° C. or higher in the vicinity of the contact surface with the casting and 1200 ° C. or higher even in the center of the thickness of the mold.

【0005】シリカゾルをバインダとした鋳型では、バ
インダとしてのシリカが軟化変形し易いため、溶鋼の静
圧により鋳型が変形して、寸法精度上に問題が生じる。
特に大型の精密鋳造品になるほど、鋳型の変形量が大き
くなり、単に寸法精度の問題に止まらずに鋳型が破損す
る。本発明は前記の問題点に鑑み提案するものであり、
その目的とする処は、高温での鋳型の変形を小さくでき
て、精密鋳造品の寸法精度の向上及び鋳型の破損防止等
を併せ達成できる精密鋳造用鋳型の製造方法を提供しよ
うとする点にある。
In a mold using silica sol as a binder, since silica as a binder is easily softened and deformed, the mold is deformed by the static pressure of molten steel, which causes a problem in dimensional accuracy.
In particular, the larger the precision-cast product, the greater the amount of deformation of the mold, and the mold is damaged rather than merely due to the problem of dimensional accuracy. The present invention is proposed in view of the above problems,
The purpose is to reduce the deformation of the mold at high temperature, to improve the dimensional accuracy of precision castings and prevent damage to the mold, etc. is there.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の精密鋳造用鋳型の製造方法は、アルミナ
ゾル中のアルミナが30部から60部、水素イオン濃度
指数が7未満のシリカゾル中のシリカが70部から40
部の範囲で配合したアルミナゾルとシリカとの混合バイ
ンダ100部に対してフィラとして粒径が44μm以下
のジルコン粉末を150部から300部配合して得たス
ラリと、ジルコン粒子あるいはムライト粒子を単独乃至
組み合わせて得たセラミックをスタッコ材として鋳型を
製造し、この鋳型を1200℃以上で焼成したことを特
徴としている。
In order to achieve the above object, a method for producing a precision casting mold according to the present invention is a silica sol having 30 to 60 parts of alumina in an alumina sol and a hydrogen ion concentration index of less than 7. 70 to 40 parts of silica
To 100 parts of a mixed binder of alumina sol and silica blended in the range of 100 parts by weight, a slurry obtained by blending 150 parts to 300 parts of zircon powder having a particle size of 44 μm or less as a filler, and zircon particles or mullite particles alone or It is characterized in that a mold was produced by using the ceramics obtained by the combination as a stucco material, and the mold was fired at 1200 ° C. or higher.

【0007】また本発明の精密鋳造用鋳型の製造方法
は、アルミナゾル中のアルミナが30部から60部、水
素イオン濃度指数が7未満のシリカゾル中のシリカが7
0部から40部の範囲で配合したアルミナゾルとシリカ
との混合バインダ100部に対してフィラとして粒径が
44μm以下のムライト粉末を150部から300部配
合して得たスラリと、ジルコン粒子あるいはムライト粒
子を単独乃至組み合わせて得たセラミックをスタッコ材
として鋳型を製造し、この鋳型を1200℃以上で焼成
したことを特徴としている。
Further, according to the method for producing a precision casting mold of the present invention, 30 to 60 parts of alumina in the alumina sol and 7 parts of silica in the silica sol having a hydrogen ion concentration index of less than 7.
A slurry obtained by mixing 150 to 300 parts of mullite powder having a particle size of 44 μm or less as a filler with 100 parts of a mixed binder of alumina sol and silica mixed in the range of 0 to 40 parts, zircon particles or mullite. It is characterized in that a ceramic is obtained by using a ceramic obtained by combining particles alone or in combination as a stucco material, and the template is fired at 1200 ° C. or higher.

【0008】[0008]

【作用】本発明の精密鋳造用鋳型の製造方法は前記のよ
うに構成されており、精密鋳造用鋳型の製造時には、ア
ルミナゾル中のアルミナが30部から60部、水素イオ
ン濃度指数が7未満のシリカゾル中のシリカが70部か
ら40部の範囲で配合したアルミナゾルとシリカとの混
合バインダ100部に対してフィラとして粒径が44μ
m以下のジルコン粉末またはムライト粉末を150部か
ら300部配合して得たスラリと、ジルコン粒子あるい
はムライト粒子を単独乃至組み合わせて得たセラミック
をスタッコ材として鋳型を製造し、この鋳型を1200
℃以上で焼成する。
The method for producing a precision casting mold of the present invention is configured as described above. During the production of the precision casting mold, 30 to 60 parts of alumina in the alumina sol and a hydrogen ion concentration index of less than 7 are used. The particle size as a filler is 44μ with respect to 100 parts of a mixed binder of alumina sol and silica mixed with silica in the silica sol in the range of 70 to 40 parts.
A slurry obtained by blending 150 to 300 parts of zircon powder or mullite powder having a particle size of m or less and a ceramic obtained by combining zircon particles or mullite particles alone or in combination was used as a stucco material to manufacture a mold.
Bake above ℃.

【0009】[0009]

【実施例】【Example】

(第1実施例)次に本発明の精密鋳造用鋳型の製造方法
を第1実施例により説明する。アルミナを約10wt%
含有し、水素イオン濃度指数(PH)が3.5のアルミ
ナゾルとシリカとを約20wt%含有し、水素イオン濃
度指数が3のシリカゾルを、アルミナゾル中のアルミナ
とシリカゾル中のシリカが表1になるように混合したバ
インダ100部に対してフィラとして粒径が44μm以
下のジルコン(ZrO2 ・SiO2 )粉末を200部配
合したスラリに130×130×10mmのワックスを
浸漬する(ディッピング)。
(First Embodiment) Next, a method for manufacturing a precision casting mold of the present invention will be described with reference to a first embodiment. About 10 wt% alumina
Containing about 20 wt% of alumina sol and silica having a hydrogen ion concentration index (PH) of 3.5, and having a hydrogen ion concentration index of 3, silica sol having alumina ion in the alumina sol and silica in the silica sol is shown in Table 1. A wax of 130 × 130 × 10 mm is immersed (dipping) in a slurry in which 200 parts of zircon (ZrO 2 .SiO 2 ) powder having a particle size of 44 μm or less as a filler is mixed with 100 parts of the binder thus mixed.

【0010】次いで粒径150μm以下のジルコン粉末
を付着させ(スタッコイング)、乾燥後、再度ディッピ
ングとスタッコイングと乾燥とを実施し、次いでスタッ
コイング用セラミックとして粒径が1mm以下のムライ
ト粒子に変更して、ディッピングとスタッコイングとを
さらに8回実施する。次いで約170℃に加熱して、ワ
ックスを流出し、鋳型を大気雰囲気の電気炉中に120
0℃で1時間保持した後、冷却する。
Next, zircon powder having a particle size of 150 μm or less is adhered (stuccoing), dried, and then dipping, stuccoing and drying are performed again, and then mullite particles having a particle size of 1 mm or less are used as a ceramic for stuccoing. Then, dipping and stuccoing are performed eight more times. Then, the mixture is heated to about 170 ° C., the wax is flown out, and the mold is placed in an electric furnace in an atmospheric atmosphere for 120
Hold for 1 hour at 0 ° C., then cool.

【0011】この鋳型から幅20mm、長さ120mm
のたわみ量測定用試験片(厚さは約10mm)を作成
し、この試験片を大気雰囲気の電気炉中に図1に示すよ
うに支点間距離100mmに設置して、1500℃で1
時間保持した後、冷却して、図2に示す位置での変形量
(たわみ量)を測定した。各条件毎の試験片のたわみ量
を図3に示す。図1の1が鋳型のたわみ量測定用試験
片、2が鋳型の第1層構築面、3が鋳型の第10層構築
面、4がアルミナセラミック製支点、図2の5がたわみ
量測定位置である。
20 mm wide and 120 mm long from this mold
A test piece for measuring the amount of flexure (thickness is about 10 mm) was prepared, and this test piece was placed in an electric furnace in the air atmosphere at a fulcrum distance of 100 mm as shown in FIG.
After holding for a period of time, it was cooled and the deformation amount (deflection amount) at the position shown in FIG. 2 was measured. The amount of deflection of the test piece for each condition is shown in FIG. 1 in FIG. 1 is a test piece for measuring the amount of flexure of the mold, 2 is a surface for constructing the first layer of the mold, 3 is a surface for constructing the tenth layer of the mold, 4 is a fulcrum made of an alumina ceramic, and 5 in FIG. Is.

【0012】これにより、アルミナ量とシリカ量とがあ
る範囲のときにたわみ量が小さくなり、アルミナが多過
ぎても、あるいはシリカが多過ぎても、たわみ量が増大
する。即ち、アルミナが多いと、1200℃の焼成によ
りムライトとアクミナとが尊大するが、アルミナの焼結
温度が高いため、粒子間の結合力が小さくて、高温での
変形が大きくなる。またアルミナが多いと、スラリの粘
度が高くなり、フィラとして配合するジルコン粉末の量
が少なくなり、焼成後の鋳型の密度が小さくなることか
らも強度が小さくて、変形が大きくなる。
As a result, the amount of deflection becomes small when the amount of alumina and the amount of silica are within a certain range, and the amount of deflection increases even if there is too much alumina or too much silica. That is, when the amount of alumina is large, mullite and acmina are magnified by firing at 1200 ° C., but since the sintering temperature of alumina is high, the bonding force between particles is small and the deformation at high temperature becomes large. Further, when the amount of alumina is large, the viscosity of the slurry becomes high, the amount of zircon powder blended as a filler becomes small, and the density of the template after firing becomes small, so that the strength becomes small and the deformation becomes large.

【0013】一方、アルミナが少ないと、ムライト反応
後の過剰のシリカが多く存在することになって、シリカ
が高温で変形しやすいために変形が大きくなる。厳密な
意味での適正なアルミナゾルとシリカゾルとの配合割合
の決定は困難であるが、変形量の観点から本発明ではア
ルミナゾル中のアルミナが30部乃至60部、シリカゾ
ル中のシリカが70部乃至40部になるアルミナゾルと
シリカゾルとの混合割合が好ましい範囲になる。
On the other hand, when the amount of alumina is small, a large amount of excess silica is present after the mullite reaction, and the silica is likely to be deformed at high temperatures, resulting in large deformation. Although it is difficult to determine the proper mixing ratio of the alumina sol and the silica sol in a strict sense, from the viewpoint of the amount of deformation, 30 to 60 parts of alumina in the alumina sol and 70 to 40 parts of silica in the silica sol are used in the present invention. The mixing ratio of the alumina sol and the silica sol forming a part is in the preferable range.

【0014】またシリカゾルには、各種の水素イオン濃
度指数のものがあるが、使用したアルハナゾルの水素イ
オン濃度指数は、約3の酸性であり、これにアルカリ性
のシリカゾルを混合すると、急激にゾルがゲル化する。
従って本実施例では、水素イオン濃度指数が5の酸性の
シリカゾルを使用した。本実施例では、アルミナゾルと
シリカゾルとの混合バインダ100部に対してフィラと
してジルコン(ZrO2 ・SiO2 )粉末を200部配
合している。バインダ量に対するフィラの配合量は、ス
リラの粘性の点で重要であるが、バインダ100部に対
してジルコン粉末の配合量が150部以下あるいは30
0部以上では、スラリの粘度が小さくなり過ぎるか、あ
るいは粘度が大きくなり過ぎて、ディッピング及びスタ
ッコイングにより、うまく鋳型を構築できなくなり且つ
乾燥時に鋳型に割れが発生しやすくなる。このような観
点から、本発明では、フィラとしてのジルコンの配合量
は、バインダ100部に対して150部乃至300部の
範囲にしている。
There are various types of hydrogen ion concentration index in the silica sol, and the hydrogen ion concentration index of the used alhana sol is about 3 which is acidic. When this is mixed with an alkaline silica sol, the sol suddenly forms. Gel.
Therefore, in this example, an acidic silica sol having a hydrogen ion concentration index of 5 was used. In this embodiment, 200 parts of zircon (ZrO 2 .SiO 2 ) powder as a filler is mixed with 100 parts of a mixed binder of alumina sol and silica sol. The amount of filler mixed with the amount of binder is important in terms of the viscosity of the thriller, but the amount of zircon powder blended is not more than 150 parts or 30 parts with respect to 100 parts of binder.
If it is 0 parts or more, the viscosity of the slurry becomes too low or too high, and the dipping and stuccoing make it difficult to construct the mold well, and the mold tends to crack during drying. From such a viewpoint, in the present invention, the compounding amount of zircon as a filler is in the range of 150 to 300 parts with respect to 100 parts of the binder.

【0015】またアルミナとシリカとの反応によるムラ
イト(3Al2 3 ・2SiO2 )化率は、加熱温度と
その温度での保持時間とより決まる。アルミナゾル中の
アルミナの大きさは、数10乃至100μmであり、ま
たシリカゾル中のシリカの大きさも数10μmであるた
め、比較的低温且つ短時間でムライト化する。ムライト
化の開始温度は、170℃であり、1200℃で1時間
加熱(焼成)することにより、大半が反応して、ムライ
トに変化した。従って本発明での鋳型の焼成温度は、1
200℃以上であることが必要である。
The mullite (3Al 2 O 3 .2SiO 2 ) conversion rate due to the reaction between alumina and silica is determined by the heating temperature and the holding time at that temperature. Since the size of alumina in the alumina sol is several 10 to 100 μm and the size of silica in the silica sol is several 10 μm, mullite is formed at a relatively low temperature in a short time. The starting temperature of mullite formation was 170 ° C., and by heating (baking) at 1200 ° C. for 1 hour, most of them reacted and changed to mullite. Therefore, the firing temperature of the mold in the present invention is 1
It is necessary to be 200 ° C or higher.

【0016】[0016]

【表1】 (第2実施例)第1実施例と同様に、アルミナを約10
wt%含有し、水素イオン濃度指数が35のアルミナゾ
ルとシリカとを約20wt%含有し、水素イオン濃度指
数が3のシリカゾルを、アルミナゾル中のアルミナとシ
リカゾル中のシリカが表1に示す第1実施例の割合と全
く同様に混合したバインダ100部に対して粒径が44
μm以下のムライト(3Al2 3 ・2SiO2 )粉末
を200部配合したスラリに130×130×10mm
のワックスを浸漬する(ディッピング)。
[Table 1] (Second Embodiment) As in the first embodiment, about 10 alumina is added.
A first embodiment in which alumina sol having a hydrogen ion concentration index of 35 and silica having a hydrogen ion concentration index of 3 is contained in the alumina sol and silica in the alumina sol and silica in the silica sol are shown in Table 1. The particle size is 44 with respect to 100 parts of the binder mixed in exactly the same proportion as the example.
μm following mullite (3Al 2 O 3 · 2SiO 2 ) 130 × 130 × 10mm powder slurry was blended 200 parts of
Dip the wax in (dipping).

【0017】次いで粒径150μm以下のジルコン粉末
を付着させ(スタッコイング)、乾燥後、再度ディッピ
ングとスタッコイングと乾燥とを実施し、次いでスタッ
コイング用セラミックとして粒径が1mm以下のムライ
ト粒子に変更して、ディッピングとスタッコイングとを
さらに8回実施する。次いで第1実施例と同様に、約1
70℃に加熱して、ワックスを流出し、鋳型を大気雰囲
気の電気炉中に1200℃で1時間保持した後、冷却す
る。
Next, zircon powder having a particle size of 150 μm or less is adhered (stuccoing), dried, and then dipping, stuccoing and drying are performed again, and then mullite particles having a particle size of 1 mm or less are used as a ceramic for stuccoing. Then, dipping and stuccoing are performed eight more times. Then, as in the first embodiment, about 1
The wax is flown out by heating to 70 ° C., and the mold is kept at 1200 ° C. for 1 hour in an electric furnace in the air atmosphere, and then cooled.

【0018】以下、第1実施例と全く同様の試験片を作
成し、同一条件でたわみ試験を実施した。その結果を図
4に示す。スラリ中のフィラとしてジルコンを使用した
場合と同様に、アルミナ量とシリカ量とがある範囲のと
きにたわみ量が小さくなる領域が存在する。たわみ量の
絶対値は、ジルコンフィラの場合と多少異なるが、傾向
は殆ど同じである。
A test piece exactly the same as that of the first embodiment was prepared and a flexure test was conducted under the same conditions. The result is shown in FIG. Similar to the case where zircon is used as the filler in the slurry, there is a region where the amount of deflection becomes small when the amount of alumina and the amount of silica are within a certain range. The absolute value of the amount of deflection is slightly different from that of zircon filler, but the tendency is almost the same.

【0019】これにより、本発明では、フィラとしてム
ライトを使用した場合も、アルミナゾル中のアルミナが
30部乃至60部、シリカゾル中のシリカが70部乃至
40部となるアルハナゾルとシリカゾルとの混合割合が
好ましい範囲になる。バインダに対するムライトフィラ
の配合量も、ジルコンフィラの場合と同様に、アルミナ
ゾルとシリカゾルとの混合バインダ100部に対してジ
ルコン粉末量は、150部乃至300部の範囲がスラリ
の粘度の観点から適正である。
Accordingly, in the present invention, even when mullite is used as the filler, the mixing ratio of the alkanasol and the silica sol is 30 to 60 parts of alumina in the alumina sol and 70 to 40 parts of silica in the silica sol. It is in the preferred range. As with the zircon filler, the amount of mullite filler mixed with the binder is appropriate from the viewpoint of the viscosity of the slurry in the range of 150 parts to 300 parts per 100 parts of the mixed binder of alumina sol and silica sol. is there.

【0020】[0020]

【発明の効果】本発明の精密鋳造用鋳型の製造方法は前
記のように精密鋳造用鋳型の製造時には、アルミナゾル
中のアルミナが30部から60部、水素イオン濃度指数
が7未満のシリカゾル中のシリカが70部から40部の
範囲で配合したアルミナゾルとシリカとの混合バインダ
100部に対してフィラとして粒径が44μm以下のジ
ルコン粉末またはムライト粉末を150部から300部
配合して得たスラリと、ジルコン粒子あるいはムライト
粒子を単独乃至組み合わせて得たセラミックをスタッコ
材として鋳型を製造し、この鋳型を1200℃以上で焼
成するようにしており、高温での鋳型の変形を小さくで
きて、精密鋳造品の寸法精度の向上及び鋳型の破損防止
等を併せ達成できる。
As described above, according to the method for producing a precision casting mold of the present invention, when the precision casting mold is produced, 30 to 60 parts of alumina in the alumina sol and silica sol having a hydrogen ion concentration index of less than 7 are contained. A slurry obtained by mixing 150 to 300 parts of zircon powder or mullite powder having a particle diameter of 44 μm or less as a filler with respect to 100 parts of a mixed binder of alumina sol and silica mixed in the range of 70 to 40 parts with silica. , A ceramic obtained by using single or a combination of zircon particles or mullite particles as a stucco material is used to manufacture a mold, and this mold is fired at 1200 ° C. or higher. It is possible to improve the dimensional accuracy of the product and prevent damage to the mold.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる精密鋳造用鋳型の製造方法の第
1実施例により得られた鋳型のたわみ測定用試験片のた
わみ量試験要領を示す側面図である。
FIG. 1 is a side view showing a procedure for a deflection amount test of a test piece for measuring deflection of a mold obtained by a first embodiment of a method for manufacturing a precision casting mold according to the present invention.

【図2】上記試験片のたわみ量測定位置を示す側面図で
ある。
FIG. 2 is a side view showing a deflection amount measurement position of the test piece.

【図3】上記試験片の各条件毎のたわみ量試験結果を示
す説明図である。
FIG. 3 is an explanatory diagram showing a result of a deflection amount test for each condition of the test piece.

【図4】第2実施例により得られた鋳型の試験片の各条
件毎のたわみ量試験結果を示す説明図である。
FIG. 4 is an explanatory diagram showing a result of a flexure amount test for each condition of the test piece of the mold obtained in the second example.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルミナゾル中のアルミナが30部から
60部、水素イオン濃度指数が7未満のシリカゾル中の
シリカが70部から40部の範囲で配合したアルミナゾ
ルとシリカとの混合バインダ100部に対してフィラと
して粒径が44μm以下のジルコン粉末を150部から
300部配合して得たスラリと、ジルコン粒子あるいは
ムライト粒子を単独乃至組み合わせて得たセラミックを
スタッコ材として鋳型を製造し、この鋳型を1200℃
以上で焼成したことを特徴とする精密鋳造用鋳型の製造
方法。
1. A mixed binder of 100 parts by weight of alumina sol and silica compounded with 30 to 60 parts of alumina in the alumina sol and 70 to 40 parts of silica in the silica sol having a hydrogen ion concentration index of less than 7. As a filler, a slurry obtained by mixing 150 to 300 parts of zircon powder having a particle size of 44 μm or less, and a ceramic obtained by combining zircon particles or mullite particles alone or in combination are manufactured as a stucco material, and a mold is manufactured. 1200 ° C
A method for producing a precision casting mold, characterized by being fired as described above.
【請求項2】 アルミナゾル中のアルミナが30部から
60部、水素イオン濃度指数が7未満のシリカゾル中の
シリカが70部から40部の範囲で配合したアルミナゾ
ルとシリカとの混合バインダ100部に対してフィラと
して粒径が44μm以下のムライト粉末を150部から
300部配合して得たスラリと、ジルコン粒子あるいは
ムライト粒子を単独乃至組み合わせて得たセラミックを
スタッコ材として鋳型を製造し、この鋳型を1200℃
以上で焼成したことを特徴とする精密鋳造用鋳型の製造
方法。
2. A mixed binder of 100 parts of alumina sol and silica in which alumina in the alumina sol is 30 to 60 parts and silica in the silica sol having a hydrogen ion concentration index of less than 7 is mixed in the range of 70 to 40 parts. As a filler, a slurry obtained by mixing 150 to 300 parts of mullite powder having a particle size of 44 μm or less and a ceramic obtained by combining zircon particles or mullite particles alone or in combination is used as a stucco material to manufacture a mold, and this mold is used. 1200 ° C
A method for producing a precision casting mold, characterized by being fired as described above.
JP19483693A 1993-08-05 1993-08-05 Manufacture of casting mold for precise casting Withdrawn JPH0747444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19483693A JPH0747444A (en) 1993-08-05 1993-08-05 Manufacture of casting mold for precise casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19483693A JPH0747444A (en) 1993-08-05 1993-08-05 Manufacture of casting mold for precise casting

Publications (1)

Publication Number Publication Date
JPH0747444A true JPH0747444A (en) 1995-02-21

Family

ID=16331078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19483693A Withdrawn JPH0747444A (en) 1993-08-05 1993-08-05 Manufacture of casting mold for precise casting

Country Status (1)

Country Link
JP (1) JPH0747444A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010005698A (en) * 2008-06-24 2010-01-14 General Electric Co <Ge> Alloy casting having protective layer and method of making the same
JP2010017752A (en) * 2008-07-14 2010-01-28 Itochu Ceratech Corp Stucco material for producing mold for precision casting, and mold for precise casting using the same
WO2013047692A1 (en) * 2011-09-27 2013-04-04 株式会社神戸製鋼所 Mold designing method, and mold
WO2014192819A1 (en) * 2013-05-29 2014-12-04 三菱重工業株式会社 Core for precision casting, production method therefor, and mold for precision casting
WO2014192825A1 (en) * 2013-05-29 2014-12-04 三菱重工業株式会社 Core for precision casting, production method therefor, and mold for precision casting
JP2014231081A (en) * 2013-05-29 2014-12-11 三菱重工業株式会社 Core for precision casting, production method therefor, and mold for precision casting
JP2014231076A (en) * 2013-05-29 2014-12-11 三菱重工業株式会社 Core for precision casting, production method therefor, and mold for precision casting
JP2014231077A (en) * 2013-05-29 2014-12-11 三菱重工業株式会社 Core for precision casting, production method therefor, and mold for precision casting

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8906170B2 (en) 2008-06-24 2014-12-09 General Electric Company Alloy castings having protective layers and methods of making the same
JP2010005698A (en) * 2008-06-24 2010-01-14 General Electric Co <Ge> Alloy casting having protective layer and method of making the same
JP2010017752A (en) * 2008-07-14 2010-01-28 Itochu Ceratech Corp Stucco material for producing mold for precision casting, and mold for precise casting using the same
WO2013047692A1 (en) * 2011-09-27 2013-04-04 株式会社神戸製鋼所 Mold designing method, and mold
JP2013082003A (en) * 2011-09-27 2013-05-09 Kobe Steel Ltd Mold design method and mold
KR20140050745A (en) * 2011-09-27 2014-04-29 가부시키가이샤 고베 세이코쇼 Mold designing method, and mold
CN103826776A (en) * 2011-09-27 2014-05-28 株式会社神户制钢所 Mold designing method, and mold
WO2014192819A1 (en) * 2013-05-29 2014-12-04 三菱重工業株式会社 Core for precision casting, production method therefor, and mold for precision casting
WO2014192825A1 (en) * 2013-05-29 2014-12-04 三菱重工業株式会社 Core for precision casting, production method therefor, and mold for precision casting
JP2014231081A (en) * 2013-05-29 2014-12-11 三菱重工業株式会社 Core for precision casting, production method therefor, and mold for precision casting
JP2014231076A (en) * 2013-05-29 2014-12-11 三菱重工業株式会社 Core for precision casting, production method therefor, and mold for precision casting
JP2014231077A (en) * 2013-05-29 2014-12-11 三菱重工業株式会社 Core for precision casting, production method therefor, and mold for precision casting
CN105283258A (en) * 2013-05-29 2016-01-27 三菱重工业株式会社 Core for precision casting, production method therefor, and mold for precision casting
US10166598B2 (en) 2013-05-29 2019-01-01 Mitsubish Heavy Industries, Ltd. Precision-casting core, precision-casting core manufacturing method, and precision-casting mold

Similar Documents

Publication Publication Date Title
US5464797A (en) Yttria-zirconia slurries and mold facecoats for casting reactive metals
EP0204674B1 (en) Casting of reactive metals into ceramic molds
US5712435A (en) Ceramic cores for casting of reactive metals
US2829060A (en) Mould and method of making the same
US4664172A (en) Method for production of investment shell mold for grain-oriented casting of super alloy
CA2443716C (en) Method of forming investment casting shells
US3432312A (en) Refractory mold composition and method
CN107021771A (en) A kind of calcium oxide-based ceramic-mould manufacture method based on 3D printing technique
JPH0747444A (en) Manufacture of casting mold for precise casting
US3870529A (en) Method of producing casting moulds for precision casting
JPH07116773A (en) Production of casting mold for precision casting
JPH11156482A (en) Mold for precision casting
US3093494A (en) Preparation of molded articles
EP0093212B1 (en) Refractory material
JPH05169185A (en) Inorganic binder and molding material for active metal precision casting
US3309212A (en) Manufacture of ceramic shapes or bodies
US2949375A (en) Siliceous casting cores
JPH0663684A (en) Production of ceramic core for casting
JPS6012247A (en) Investment shell mold for unidirectional solidification casting of super alloy
JPH0663683A (en) Production of casting mold
JP2524678B2 (en) Fireproof molding
JP3123074B2 (en) Inorganic binder and mold material for active metal precision casting
JP3043812B2 (en) Binders for thermosetting molds and their uses
JP2772090B2 (en) Ceramic shell mold and core for reactive metal casting
JPH08267420A (en) Manufacture of ceramic molding

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031