JPH0747273A - Catalyst for reforming hydrocarbon fuel and reforming device - Google Patents

Catalyst for reforming hydrocarbon fuel and reforming device

Info

Publication number
JPH0747273A
JPH0747273A JP5195934A JP19593493A JPH0747273A JP H0747273 A JPH0747273 A JP H0747273A JP 5195934 A JP5195934 A JP 5195934A JP 19593493 A JP19593493 A JP 19593493A JP H0747273 A JPH0747273 A JP H0747273A
Authority
JP
Japan
Prior art keywords
reforming
catalyst
supported
fuel
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5195934A
Other languages
Japanese (ja)
Inventor
Junji Hizuka
塚 淳 次 肥
Masayuki Hashimoto
元 昌 幸 橋
Akira Harada
田 亮 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5195934A priority Critical patent/JPH0747273A/en
Publication of JPH0747273A publication Critical patent/JPH0747273A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst used for reforming a fuel consisting mainly of aliphatic hydrocarbons into a fuel gas composed mainly of hydrogen, which is durable and manufactured at low cost, and to provide a reforming device which uses the reforming catalyst effectively. CONSTITUTION:This reforming catalyst is used for reforming a fuel consisting mainly of aliphatic hydrocarbons into a fuel gas composed mainly of hydrogen. Ru4 is mainly carried in catalytic particles 1, and Ni2 entirely covers each catalytic particle. In addition, the reforming device reforms the fuel consisting mainly of the aliphatic hydrocarbons into the fuel gas composed mainly of hydrogen. The reforming device is filled with the reforming catalyst from the inlet of a reforming pipe to a position where the internal temperature of the reforming pipe can somewhat hardly cause the poisoning of the catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐久性が改善された炭
化水素類の改質触媒、およびこの改質触媒を効果的に利
用した改質装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrocarbon reforming catalyst having improved durability, and a reformer effectively utilizing this reforming catalyst.

【0002】[0002]

【従来の技術】従来の炭化水素類の改質方法、特に水蒸
気改質法では、たとえばニッケルをアルミナ、マグネシ
ア等の耐火性担体に担持した触媒が用いられる。原料と
なる炭化水素の種類によってはカーボン析出が生じるの
で、これを防止するためには、ニッケルの他に微量成分
としてアルカリ金属類、たとえばK2 Oを添加した触媒
が使用されている。しかし、この触媒によっても、炭化
水素の種類あるいは操作条件に起因して、カーボン析出
等を防止できない場合があり、その際には、同様な耐火
性担体にルテニウムを担持した触媒が使用されている。
2. Description of the Related Art In the conventional method for reforming hydrocarbons, particularly steam reforming method, a catalyst in which nickel is supported on a refractory carrier such as alumina or magnesia is used. Carbon deposition occurs depending on the type of hydrocarbon used as a raw material, and therefore, in order to prevent this, a catalyst to which an alkali metal such as K2 O is added as a trace component in addition to nickel is used. However, even with this catalyst, there are cases where it is not possible to prevent carbon deposition or the like due to the type of hydrocarbon or operating conditions. In that case, a catalyst in which ruthenium is supported on a similar refractory carrier is used. .

【0003】一方、従来の炭化水素類の一般的な水蒸気
改質方法は、これらの触媒を改質管に充填し、水蒸気改
質反応が吸熱反応であるので改質管外側よりバーナー等
により熱を供給しながら、触媒充填層に炭化水素と水蒸
気を適当な割合で混合したガスを供給して改質を行うも
のである。大容量の改質の場合には、改質管を多管にし
て対応している。通常の改質反応条件は、大気圧〜30
気圧程度の圧力、3以上のスチーム/カーボン比、約3
50〜450゜C/約700〜850゜Cの入口/出口
温度である。なお、従来は、上記触媒のいずれか1種
を、改質管の入口から出口まで一様に充填していた。
On the other hand, in the conventional general steam reforming method for hydrocarbons, these catalysts are filled in the reforming pipe, and the steam reforming reaction is an endothermic reaction. While reforming the catalyst-filled bed by supplying a gas in which hydrocarbon and steam are mixed at an appropriate ratio. For large-capacity reforming, multiple reforming tubes are used. Normal reforming reaction conditions are atmospheric pressure to 30
Pressure of about atmospheric pressure, steam / carbon ratio of 3 or more, about 3
Inlet / outlet temperature of 50-450 ° C / about 700-850 ° C. Incidentally, conventionally, any one of the above catalysts is uniformly filled from the inlet to the outlet of the reforming tube.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
の触媒にはいくつかの問題点がある。まず、原料炭化水
素中に含まれる硫黄成分によって被毒しやすいことであ
る。これらの硫黄成分は、通常、水添脱硫方式によって
除去されている。たとえば、原料炭化水素が都市ガスの
場合、通常5ppm程度の硫黄分が着臭剤として添加さ
れている。水添脱硫方式により、0.05〜0.1pp
m程度まで脱硫されるが、それでも改質触媒は確実に被
毒する。特に、温度が低い入口部分の触媒は、被毒しや
すい。
However, these catalysts have some problems. First, it is easy to be poisoned by the sulfur component contained in the raw material hydrocarbon. These sulfur components are usually removed by a hydrodesulfurization method. For example, when the raw material hydrocarbon is city gas, a sulfur content of about 5 ppm is usually added as an odorant. Depending on the hydrodesulfurization method, 0.05-0.1pp
Although it is desulfurized to about m, the reforming catalyst is still poisoned. In particular, the catalyst at the inlet, which has a low temperature, is easily poisoned.

【0005】ここで、Ru触媒は、高価であることか
ら、Ni触媒が通常5〜30重量%と多量に担持される
のに対し、0.1〜2重量%程度と担持量が少なく、か
つ、触媒表面にRuが分散担持されるので、それだけ硫
黄被毒の影響を受けやすくなる。その結果、カーボン析
出が起こりやすくなる等、触媒の耐久性に大きな問題が
生じることになる。
Since the Ru catalyst is expensive, the Ni catalyst is usually supported in a large amount of 5 to 30% by weight, whereas the Ru catalyst is supported in a small amount of about 0.1 to 2% by weight, and Since Ru is dispersed and carried on the surface of the catalyst, it becomes more susceptible to sulfur poisoning. As a result, a large problem occurs in the durability of the catalyst, for example, carbon deposition is likely to occur.

【0006】一方、Ni触媒は、Ru触媒と比較して耐
硫黄被毒性は高いが、それでも徐々に被毒して活性が低
下する。その結果、Ni触媒は、本来、Ru触媒と比較
してカーボン析出しやすい触媒であるので、やはりカー
ボン析出等により触媒の耐久性に問題が生じる。
On the other hand, the Ni catalyst has a higher sulfur poisoning resistance than the Ru catalyst, but it is still poisoned and its activity decreases. As a result, since the Ni catalyst is originally a catalyst in which carbon is more easily deposited than the Ru catalyst, the durability of the catalyst also suffers from carbon deposition and the like.

【0007】さらに、K2 O等を添加したNi触媒も、
時間とともにK2 Oの効果が失われていくことが知られ
ており、それだけカーボンが析出しやすくなる。
Further, the Ni catalyst added with K2O, etc.
It is known that the effect of K2 O is lost over time, and carbon is more likely to precipitate.

【0008】[0008]

【課題を解決するための手段】本発明は、上記課題に鑑
みてなされたものであり、低価格で耐久性のある改質触
媒を得るため、脂肪族炭化水素を主成分とする燃料を水
素を主成分とする燃料ガスへ改質するために用いられる
改質触媒であって、Ruが主として触媒粒子内層部に担
持され、Niが触媒粒子全体に渡って担持されているこ
とを特徴とする、炭化水素系燃料の改質触媒を提供する
ものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and in order to obtain a reforming catalyst that is low in cost and durable, a fuel containing an aliphatic hydrocarbon as a main component is hydrogenated. A reforming catalyst used for reforming into a fuel gas containing as a main component, characterized in that Ru is mainly carried on the inner layer of the catalyst particles and Ni is carried on the entire catalyst particles. The present invention provides a reforming catalyst for hydrocarbon fuel.

【0009】本発明の改質触媒は、触媒粒子重量に対し
て、Niが5〜30重量%担持され、Ruが0.1〜2
重量%担持されている。すなわち、硫黄分により比較的
被毒されにくいNiが主として触媒粒子の外層部を構成
し、活性の高いRuは主として触媒粒子の内層部を構成
する。これにより、内層部のRuが被毒されにくい構造
となって活性低下を防止するため、低価格でありなが
ら、耐久性が向上した改質触媒を得ることができる。
In the reforming catalyst of the present invention, Ni is supported in an amount of 5 to 30% by weight, and Ru is in the range of 0.1 to 2 based on the weight of the catalyst particles.
Supported by weight%. That is, Ni, which is relatively unlikely to be poisoned by sulfur, mainly constitutes the outer layer portion of the catalyst particles, and Ru, which has high activity, mainly constitutes the inner layer portion of the catalyst particles. As a result, Ru in the inner layer portion is less likely to be poisoned to prevent the activity from lowering. Therefore, it is possible to obtain a reforming catalyst that has low cost and improved durability.

【0010】また、本発明は、かかる改質触媒を効果的
に利用するため、脂肪族炭化水素を主成分とする燃料を
水素を主成分とする燃料ガスへ改質する装置であって、
上記したような改質触媒が、改質管入口から、比較的触
媒が被毒されにくい改質管内温度となる位置まで充填さ
れていることを特徴とする、炭化水素系燃料の改質装置
を提供するものである。
In order to effectively utilize such a reforming catalyst, the present invention is an apparatus for reforming a fuel containing an aliphatic hydrocarbon as a main component into a fuel gas containing hydrogen as a main component,
A reforming device for a hydrocarbon-based fuel, characterized in that the reforming catalyst as described above is filled from the inlet of the reforming pipe to a position where the temperature in the reforming pipe is relatively low so that the catalyst is less likely to be poisoned. It is provided.

【0011】本発明に係る改質装置は、比較的低温にお
いても被毒されにくく活性を保つ本発明の上記改質触媒
の性質を効果的に利用し、かつ改質装置全体のコストを
抑えるため、比較的低温の所、すなわち改質管の入口付
近、には本発明の新規な改質触媒を充填し、比較的高温
の所、すなわち改質管の出口付近(被毒の影響が比較的
少ない)、では従来慣用されているNi触媒(コストが
低い)を充填している。なぜなら、比較的高温になれば
反応速度も大きくなり硫黄被毒の改質率への影響が小さ
くなるからである。本発明に係る改質触媒の充填量は、
改質操作温度・改質管の規模等によっても異なるが、改
質管入口から改質管全長(充填長)の約1/5〜1/2
の所までが適当である。この充填量の目安は、改質管温
度が比較的高温、すなわち約600゜C、であって硫黄
分による被毒が少なくなる所が基準となる。
The reforming apparatus according to the present invention effectively utilizes the properties of the above-mentioned reforming catalyst of the present invention which is not easily poisoned even at a relatively low temperature and retains its activity, and reduces the cost of the entire reforming apparatus. , A relatively low temperature place, that is, near the inlet of the reforming pipe, is filled with the novel reforming catalyst of the present invention, and a relatively high temperature place, that is, near the outlet of the reforming pipe (the effect of poisoning is relatively In the case of a small amount), a Ni catalyst (which has a low cost) conventionally used is filled. The reason for this is that if the temperature becomes relatively high, the reaction rate will increase and the effect of sulfur poisoning on the reforming rate will decrease. The filling amount of the reforming catalyst according to the present invention is
Approximately 1/5 to 1/2 of the total length (filling length) of the reforming pipe from the inlet of the reforming pipe, depending on the reforming operation temperature and the scale of the reforming pipe.
Up to is appropriate. The standard of the filling amount is that the temperature of the reforming tube is relatively high, that is, about 600 ° C., and the poisoning due to the sulfur content is small.

【0012】なお、本発明の改質触媒・改質装置は、水
蒸気改質法以外の改質法にも広く適用され得る。
The reforming catalyst / reforming device of the present invention can be widely applied to reforming methods other than the steam reforming method.

【0013】[0013]

【実施例】以下、本発明の改質触媒および改質装置の実
施例を、添付の図面を参照しつつ説明する。
Embodiments of the reforming catalyst and the reforming apparatus of the present invention will be described below with reference to the accompanying drawings.

【0014】図1は、本発明の改質触媒の構造を概念的
に示す断面図であり、図1(a)は、触媒粒子1の内部
のある部分3にRuを集中的に担持したものを示し、N
iは触媒粒子全体2に担持されている。したがって、部
分2には主としてNiが担持され、部分3には、主とし
てRu(実際にはRu+Niの状態)が担持されてい
る。
FIG. 1 is a sectional view conceptually showing the structure of the reforming catalyst of the present invention, and FIG. 1 (a) shows that Ru is concentratedly supported on a portion 3 inside the catalyst particle 1. , N
i is supported on the entire catalyst particles 2. Therefore, the portion 2 mainly carries Ni, and the portion 3 mainly carries Ru (in actuality, a state of Ru + Ni).

【0015】図1(b)は、中心部4にRuが担持さ
れ、触媒粒子全体2にNiが担持されたものを示す。こ
の場合、Niは、外層部分のみに担持してもよいが、担
持量が多くなると中心部分にも担持されていく(したが
って、中心部分はNi+Ruとなる)。
FIG. 1 (b) shows that the central portion 4 carries Ru and the entire catalyst particles 2 carry Ni. In this case, Ni may be supported only on the outer layer portion, but when the supported amount increases, Ni is also supported on the central portion (therefore, the central portion becomes Ni + Ru).

【0016】図2は、従来の改質触媒の構造を概念的に
示す断面図である。図2(a)は、Ni触媒を示し、図
2(b)は、Ru触媒を示す。これらの従来の改質触媒
は、外層からの硫黄分で被毒され活性が低下していく。
特に、Ru触媒の場合は、担持量が少ないので、その影
響は大きい。
FIG. 2 is a sectional view conceptually showing the structure of a conventional reforming catalyst. FIG. 2A shows a Ni catalyst, and FIG. 2B shows a Ru catalyst. These conventional reforming catalysts are poisoned by the sulfur content from the outer layer and their activities are reduced.
In particular, in the case of the Ru catalyst, the effect is large because the supported amount is small.

【0017】本発明の改質触媒の場合、外層部から徐々
に被毒するが、内部のRuは被毒されずに十分な活性を
保持しているので、活性の低下は見られない。これは、
バリヤーとしての拡散層が存在するので外層部の方が被
毒されやすいこと、硫黄分との親和性はRuよりNiの
方が大きいので、Niの方が選択的に被毒されることに
よるものと考えられる。これらの効果は、改質を受ける
炭化水素の種類によっても異なるが、構成する炭化水素
のカーボンの数が多いほど、大きい。たとえば、LNG
よりもLPGの方が、効果は大きい。LNGはCH4 を
主成分とするのに対し、LPGはC3 H8 、C4 H10を
主成分とするからである。
In the case of the reforming catalyst of the present invention, it is gradually poisoned from the outer layer portion, but since Ru in the inside retains sufficient activity without being poisoned, no decrease in activity is observed. this is,
Due to the existence of a diffusion layer as a barrier, the outer layer is more easily poisoned, and Ni has a greater affinity for sulfur than Ru, so Ni is selectively poisoned. it is conceivable that. These effects are different depending on the type of hydrocarbon to be reformed, but are larger as the number of carbons in the constituent hydrocarbons is larger. For example, LNG
LPG is more effective than LPG. This is because LNG has CH4 as a main component, while LPG has C3 H8 and C4 H10 as main components.

【0018】担持方法は、通常の含浸法でもよいが、内
層担持する場合には、クエン酸、シュウ酸等の有機酸に
よる方法が好ましい。担持量は、Ruの場合、約0.1
〜2重量%で十分な効果を発揮する。Niの場合、約5
〜30重量%の量で十分である。多くても分散度が悪く
なるので必ずしも効果的ではない。また、担体の表面積
によっても、担持量は制限されるが、通常の場合には、
15〜25重量%が好ましい。
The supporting method may be an ordinary impregnation method, but when supporting the inner layer, a method using an organic acid such as citric acid or oxalic acid is preferable. The supported amount of Ru is about 0.1.
Sufficient effect is exhibited at up to 2% by weight. About 5 for Ni
An amount of ~ 30% by weight is sufficient. Even if the amount is large, the degree of dispersion is deteriorated, so that it is not always effective. Further, the supported amount is also limited by the surface area of the carrier, but in the usual case,
15 to 25% by weight is preferable.

【0019】次に、本発明の改質触媒を用いる炭化水素
系燃料の改質装置を説明する。硫黄による被毒は、低温
ほど著しく、また、高温になれば反応速度も大きくなる
ので、硫黄被毒の改質率への影響は小さい。それ故、一
般的には、図3に示すように本発明の改質触媒8を改質
管6の入口7から改質管全体の約1/5〜1/2程度ま
で充填し、残りの部分には、市販の水蒸気改質用Ni触
媒9を充填して、改質を行うのが効果的である。しかし
ながら、この充填高さは、改質器の操作温度に依存す
る。通常の水蒸気改質反応では、約400゜Cの入口温
度、約800゜Cの出口温度で操作されているが、改質
管入口から、改質管温度が約600゜C程度に達する所
まで本発明に係る改質触媒を充填することが適当であ
る。すなわち、600゜C程度の温度になれば、硫黄被
毒の改質率への影響は少なくなるので、従来のNi触媒
を使用しても触媒活性の低下が進まない。したがって、
このように改質触媒を構成することによって、装置全体
のコストを低下させることができる。
Next, a hydrocarbon fuel reforming apparatus using the reforming catalyst of the present invention will be described. Poisoning by sulfur is more remarkable at lower temperatures, and the reaction rate becomes higher at higher temperatures, so the effect of sulfur poisoning on the reforming rate is small. Therefore, generally, as shown in FIG. 3, the reforming catalyst 8 of the present invention is charged from the inlet 7 of the reforming pipe 6 to about 1/5 to 1/2 of the entire reforming pipe, and the remaining It is effective to fill the portion with a commercially available Ni catalyst 9 for steam reforming and perform reforming. However, this fill height depends on the operating temperature of the reformer. In the normal steam reforming reaction, the operation is performed at an inlet temperature of about 400 ° C and an outlet temperature of about 800 ° C, but from the reforming pipe inlet to the place where the reforming pipe temperature reaches about 600 ° C. It is suitable to pack the reforming catalyst according to the invention. That is, at a temperature of about 600 ° C., the influence of sulfur poisoning on the reforming rate is small, and therefore the catalytic activity does not decrease even if the conventional Ni catalyst is used. Therefore,
By configuring the reforming catalyst in this way, the cost of the entire apparatus can be reduced.

【0020】以下、本発明による改質触媒の具体例を説
明する。例1 市販のγ−アルミナ担体粉末に含浸法でNiを約20重
量%担持させ、平均6mmφの粒子に造粒し、Ru塩の
シュウ酸溶液に含浸して、Ruを0.5重量%担持、熱
処理して触媒を調製した。図4に調製した触媒粒子断面
の線分析結果を示す。この結果、Niはほぼ一様に担持
されており、Ruは内層の一部に集中的に担持されてい
ることがわかった。
Specific examples of the reforming catalyst according to the present invention will be described below. Example 1 About 20% by weight of Ni was supported on a commercially available γ-alumina carrier powder by an impregnation method, particles having an average diameter of 6 mm were granulated, and impregnated with an oxalic acid solution of Ru salt to support 0.5% by weight of Ru. Then, heat treatment was performed to prepare a catalyst. FIG. 4 shows the line analysis result of the cross section of the prepared catalyst particles. As a result, it was found that Ni was almost uniformly supported and Ru was concentratedly supported on a part of the inner layer.

【0021】本触媒について0.01重量%硫黄被毒さ
せた後、CH4 を原料ガスとして、s/c=2.5で、
500、550、600゜Cの各温度で活性テストを行
った結果(メタン変換率)を表1に示す。比較するため
に、市販の水蒸気改質用Ni触媒(6mmφ)に同様に
硫黄被毒を行い、活性テストを行った(比較例)。表1 500゜C 550゜C 600゜C 硫黄被毒無し 23 % 42 % 53 % 改質触媒1 硫黄被毒有り 20 % 40 % 52 % 硫黄被毒無し 21 % 41 % 52 % 比較例2 硫黄被毒有り 8 % 12 % 26 % 例2 市販の粒状γ−アルミナ担体(平均3mmφ)に、Ru
塩のシュウ酸溶液を用いてRuを1重量%内部に担持し
た後、Ni塩溶液を含浸して、20重量%担持させた
後、熱処理することにより調製した触媒について、例1
と同様に処理し活性テストを行った。また、比較例につ
いても市販の水蒸気改質用Ni触媒(3mmφ)を用い
て同様に処理し活性テストを行った。この結果を表2に
示す。
After the catalyst was poisoned with 0.01% by weight of sulfur, CH4 was used as a source gas and s / c was 2.5.
Table 1 shows the results (methane conversion rate) of the activity test carried out at temperatures of 500, 550 and 600 ° C. For comparison, a commercially available Ni catalyst for steam reforming (6 mmφ) was similarly subjected to sulfur poisoning and an activity test was performed (Comparative Example). Table 1 500 ° C 550 ° C 600 ° C No sulfur poisoning 23% 42% 53% Reforming catalyst 1 Sulfur poisoning 20% 40% 52% Without sulfur poisoning 21% 41% 52% Comparative Example 2 With sulfur poisoning 8% 12% 26% Example 2 A commercially available granular γ-alumina carrier (average 3 mmφ) was added with Ru.
Example 1 of a catalyst prepared by loading Ru in an amount of 1% by weight with an oxalic acid solution of a salt, impregnating a solution of Ni in the amount of 20% by weight, and then performing heat treatment
Then, the same treatment as above was performed and an activity test was conducted. Further, in the comparative example, the same treatment was performed using a commercially available Ni catalyst for steam reforming (3 mmφ), and an activity test was conducted. The results are shown in Table 2.

【0022】表2 500゜C 550゜C 600゜C 硫黄被毒無し 39 % 57 % 65 % 改質触媒2 硫黄被毒有り 36 % 53 % 60 % 硫黄被毒無し 36 % 55 % 61 % 比較例2 硫黄被毒有り 12 % 19 % 33 % Table 2 500 ° C 550 ° C 600 ° C Without sulfur poisoning 39% 57% 65% Reforming catalyst 2 With sulfur poisoning 36% 53% 60% No sulfur poisoning 36% 55% 61% Comparative Example 2 With sulfur poisoning 12% 19% 33%

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による改質触媒の触媒活性金属の担持状
態を示す説明図である。
FIG. 1 is an explanatory view showing a supported state of a catalytically active metal of a reforming catalyst according to the present invention.

【図2】従来慣用されている改質触媒の触媒活性金属の
担持状態を示す説明図である。
FIG. 2 is an explanatory view showing a supported state of a catalytically active metal of a conventionally used reforming catalyst.

【図3】本発明による改質装置を示す説明図である。FIG. 3 is an explanatory view showing a reformer according to the present invention.

【図4】本発明による改質触媒粒子内の触媒金属元素分
布を示す説明図である。
FIG. 4 is an explanatory diagram showing the distribution of catalytic metal elements in the reforming catalyst particles according to the present invention.

【符号の説明】 1 触媒粒子 2 Ni担持部分 3 Ru+Ni担持部分 4 RuまたはRu+Ni担持部分 5 Ru担持部分 6 改質管 7 入口 8 本発明による改質触媒 9 従来のNi触媒[Description of Reference Signs] 1 catalyst particles 2 Ni-supported portion 3 Ru + Ni-supported portion 4 Ru or Ru + Ni-supported portion 5 Ru-supported portion 6 Reforming tube 7 Inlet 8 Reforming catalyst 9 according to the present invention 9 Conventional Ni catalyst

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】脂肪族炭化水素を主成分とする燃料を水素
を主成分とする燃料ガスへ改質するために用いられる改
質触媒であって、Ruが主として触媒粒子内部に担持さ
れ、Niが触媒粒子全体に渡って担持されていることを
特徴とする、炭化水素系燃料の改質触媒。
1. A reforming catalyst used for reforming a fuel containing an aliphatic hydrocarbon as a main component into a fuel gas containing hydrogen as a main component, wherein Ru is supported mainly inside the catalyst particles, and Ni is contained. A hydrocarbon-based fuel reforming catalyst, characterized in that is carried over the entire catalyst particles.
【請求項2】Ruの濃度分布のピークが、触媒粒子の中
心部に存在する、請求項1に記載の改質触媒。
2. The reforming catalyst according to claim 1, wherein the peak of the Ru concentration distribution is present in the central portion of the catalyst particles.
【請求項3】Ruの濃度分布のピークが、触媒粒子の表
層と中心との中間領域に存在する、請求項1に記載の改
質触媒。
3. The reforming catalyst according to claim 1, wherein the Ru concentration distribution peak is present in an intermediate region between the surface layer and the center of the catalyst particles.
【請求項4】触媒粒子重量に対して、Niが5〜30重
量%担持され、Ruが0.1〜2重量%担持されている
ことを特徴とする、請求項1に記載の改質触媒。
4. The reforming catalyst according to claim 1, wherein 5 to 30% by weight of Ni is supported and 0.1 to 2% by weight of Ru is supported with respect to the weight of the catalyst particles. .
【請求項5】脂肪族炭化水素を主成分とする燃料を水素
を主成分とする燃料ガスへ改質する装置であって、 請求項1、2、3または4の改質触媒が、改質管入口か
ら、比較的触媒が被毒されにくい改質管内温度となる位
置まで充填されていることを特徴とする、炭化水素系燃
料の改質装置。
5. An apparatus for reforming a fuel containing an aliphatic hydrocarbon as a main component into a fuel gas containing hydrogen as a main component, wherein the reforming catalyst according to claim 1, 2, 3 or 4. A hydrocarbon-based fuel reforming device, characterized in that the catalyst is filled from a pipe inlet to a position where the temperature of the reforming pipe is relatively low, where the catalyst is less likely to be poisoned.
【請求項6】従来慣用されているNi触媒が、改質管内
の残りの部分に充填されている、請求項5に記載の改質
装置。
6. The reforming apparatus according to claim 5, wherein a conventionally used Ni catalyst is filled in the remaining portion in the reforming tube.
【請求項7】改質触媒が、改質管内温度が約600゜C
となる位置まで充填されている、請求項5に記載の改質
装置。
7. The reforming catalyst has a reforming tube temperature of about 600 ° C.
The reforming apparatus according to claim 5, wherein the reformer is filled up to the position.
JP5195934A 1993-08-06 1993-08-06 Catalyst for reforming hydrocarbon fuel and reforming device Pending JPH0747273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5195934A JPH0747273A (en) 1993-08-06 1993-08-06 Catalyst for reforming hydrocarbon fuel and reforming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5195934A JPH0747273A (en) 1993-08-06 1993-08-06 Catalyst for reforming hydrocarbon fuel and reforming device

Publications (1)

Publication Number Publication Date
JPH0747273A true JPH0747273A (en) 1995-02-21

Family

ID=16349408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5195934A Pending JPH0747273A (en) 1993-08-06 1993-08-06 Catalyst for reforming hydrocarbon fuel and reforming device

Country Status (1)

Country Link
JP (1) JPH0747273A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098385A (en) * 2005-09-08 2007-04-19 Cosmo Oil Co Ltd Catalyst for producing hydrogen from hydrocarbon, production method for the catalyst and production method for hydrogen using the catalyst
WO2009054462A1 (en) * 2007-10-26 2009-04-30 Asahi Kasei Chemicals Corporation Composite particle-loaded article, method for producing the composite particle-loaded article, and method for producing compound using the composite particle-loaded article as chemical synthesis catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098385A (en) * 2005-09-08 2007-04-19 Cosmo Oil Co Ltd Catalyst for producing hydrogen from hydrocarbon, production method for the catalyst and production method for hydrogen using the catalyst
JP4647564B2 (en) * 2005-09-08 2011-03-09 コスモ石油株式会社 Catalyst for producing hydrogen from hydrocarbon, method for producing the catalyst, and method for producing hydrogen using the catalyst
WO2009054462A1 (en) * 2007-10-26 2009-04-30 Asahi Kasei Chemicals Corporation Composite particle-loaded article, method for producing the composite particle-loaded article, and method for producing compound using the composite particle-loaded article as chemical synthesis catalyst
US8450235B2 (en) 2007-10-26 2013-05-28 Asahi Kasei Chemicals Corporation Supported composite particle material, production process of same and process for producing compounds using supported composite particle material as catalyst for chemical synthesis

Similar Documents

Publication Publication Date Title
Takht Ravanchi et al. Acetylene selective hydrogenation: a technical review on catalytic aspects
Snytnikov et al. Selective oxidation of carbon monoxide in excess hydrogen over Pt-, Ru-and Pd-supported catalysts
JP2812486B2 (en) Hydrocarbon steam reforming method
US6573214B2 (en) Preferential oxidation catalyst
US7901565B2 (en) Reforming sulfur-containing hydrocarbons using a sulfur resistant catalyst
EP1862217B1 (en) Use of Catalyst containing nickel and copper for removing metal carbonyl.
CN101343565B (en) Hydrogenation purification method for siliceous distillate
EP2172267B1 (en) Catalyst for decomposing hydrocarbon
KR20070076439A (en) Porous carrier for steam-reforming catalysts, steam-reforming catalyst and process for producing reactive mixed gas
JP4161147B2 (en) Hydrogen production equipment
US7901566B2 (en) Reforming sulfur-containing hydrocarbons using a sulfur resistant catalyst
JP6607387B2 (en) Desulfurization method and desulfurizer
US20060213813A1 (en) Method and structure for desulfurizing gasoline or diesel fuel for use in a fuel cell power plant
US20040251170A1 (en) Method for desulfurization and reforming of hydrocarbon stock
JP2003022836A (en) Process for preparing low-sulfur reformate gas used in fuel cell system
US20040102315A1 (en) Reforming catalyst
JPH0747273A (en) Catalyst for reforming hydrocarbon fuel and reforming device
JP4490533B2 (en) Fuel oil for fuel cells
CN1890024A (en) Reforming catalyst
WO2004047985A1 (en) Reforming catalyst
KR102123871B1 (en) Systems and methods for steam reforming
JP2006167501A (en) Reforming catalyst, hydrogen generation apparatus, and fuel cell system
JP2004305869A (en) Adsorbent for removing sulfur compound, and method for producing hydrogen for fuel cell
JPH069657B2 (en) Hydrocarbon steam reforming catalyst
US7345007B2 (en) Catalyst for selective oxidation of carbon monoxide in reformed gas