JPH074722A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH074722A
JPH074722A JP5144617A JP14461793A JPH074722A JP H074722 A JPH074722 A JP H074722A JP 5144617 A JP5144617 A JP 5144617A JP 14461793 A JP14461793 A JP 14461793A JP H074722 A JPH074722 A JP H074722A
Authority
JP
Japan
Prior art keywords
air
room temperature
zone
pmv value
pmv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5144617A
Other languages
Japanese (ja)
Inventor
Yasuhiro Tsujii
康浩 辻井
Hideo Ogata
秀夫 小方
Yasutomo Onishi
康友 大西
Hideji Ogawara
秀治 小川原
Yoshitaka Kubota
吉孝 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP5144617A priority Critical patent/JPH074722A/en
Publication of JPH074722A publication Critical patent/JPH074722A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To control a PMV value to be neutral accurately in a residential area with an inexpensive constitution using a conventional detecting means even where there is a difference between a PMV value of a residential area and a detected PMV value due to the distribution of top and bottom temperatures of an air conditioned space. CONSTITUTION:An air conditioner is equipped with an indoor blower control means 27, air direction direction control means 26 which changes the direction of blown out air, room temperature fuzzy inference means 25 which fuzzy-infers the room temperature of a residential area by the direction of air, quantity of air and an operation mode, residential area PMV value calculating means 24 which calculates the PMV value of the residential area with the inferred room temperature as a parameter, and a PMV value cooling/heating control means 29 which controls a cooling/heating means 30 so that the PMV value for the residential area may become neutral. In this method, even when there are top and bottom temperature distributions in an air conditioned space, the PMV value of a residential area can be accurately controlled to be neutral by an inexpensive constitution by limited input conditions which can be detected by the air conditioner main body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、室内環境を居住者が快
適になるように自動的に制御する空気調和機に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner for automatically controlling an indoor environment so that a occupant can feel comfortable.

【0002】[0002]

【従来の技術】従来の冷暖房装置は、室温をある温度範
囲に保つよう制御されるが、本来はそこに居住する人間
の温冷感を快適に保つようになされるべきである。この
ような快適性を実現するためにPMVという快適指標が
提案され、この指標をもとに空気調和機を制御するもの
として、特開平2−178555号公報、特開平2−2
42037号公報等で示されたものがある。
2. Description of the Related Art A conventional air conditioner is controlled to keep a room temperature within a certain temperature range, but it should be designed so as to keep the sensation of warmth and coolness of a person living therein. In order to realize such comfort, a PMV comfort index has been proposed, and Japanese Patent Application Laid-Open No. 2-178555 and Japanese Patent Application Laid-Open No. 2-2 disclose control of an air conditioner based on this index.
There is one disclosed in Japanese Patent No. 42037.

【0003】PMVとは平均予想温冷感申告と訳され、
温熱環境の快適性を評価する一つの指標であり、デンマ
ーク工科大学のファンガー教授により提案され、198
4年にISO−7730として国際規格化されたもので
ある。このPMVは環境側要素である温度、湿度、輻射
温度そして気流速と、人体側要素である活動量と着衣量
の関数であり、これらの値から前記ISO−7730記
載の算式によって求めることができる。そして、このP
MV値0を中立として快適であるとし、3を暑い、2を
暖かい、1をやや暖かい、−3を寒い、−2を涼しい、
−1をやや涼しいと定義している。なお、この算式及び
演算方法についての説明は割愛する。
PMV is translated as an average expected thermal sensation report,
It is one index to evaluate the comfort of thermal environment and was proposed by Professor Whanger of the Technical University of Denmark, 198
It was internationally standardized as ISO-7730 in 4 years. This PMV is a function of temperature, humidity, radiant temperature and air velocity as environmental factors, and activity amount and clothing amount as human body factors, and can be obtained from these values by the formula described in ISO-7730. . And this P
MV value 0 is neutral and comfortable, 3 is hot, 2 is warm, 1 is slightly warm, -3 is cold, -2 is cool,
-1 is defined as a little cool. The description of the formula and the calculation method will be omitted.

【0004】特開平2−178555号公報に示された
ものはPMVの人体側要因である活動量と着衣量をファ
ジィ集合で表現して最適なPMV値を計算し、PMV値
が中立になるように温度や湿度を制御パラメータとして
空気調和機を制御するものである。また、特開平2−2
42037号公報に示されたものは温度、湿度及び輻射
温度を検知する検知手段を居住域に設置し、気流速、活
動量及び着衣量を設定する設定手段からPMV値を計算
し、PMV値が中立になるように温度を制御パラメータ
として各種空気調和機器を連携制御するものである。
The one disclosed in Japanese Patent Laid-Open No. 2-178555 discloses that the activity amount and the clothing amount, which are factors of the human body side of PMV, are expressed by a fuzzy set to calculate an optimum PMV value so that the PMV value becomes neutral. The air conditioner is controlled by using temperature and humidity as control parameters. In addition, Japanese Patent Laid-Open No. 2-2
In the one disclosed in Japanese Patent No. 42037, a detection means for detecting temperature, humidity and radiation temperature is installed in a living area, and a PMV value is calculated from a setting means for setting an air flow velocity, an amount of activity and an amount of clothes, and the PMV value is Various air conditioners are cooperatively controlled using the temperature as a control parameter so as to be neutral.

【0005】[0005]

【発明が解決しようとする課題】しかしながら従来の方
法では、空調空間内で空調により空調空間上下に温度が
分布し、結果としてPMV値が空調空間上下で分布して
いる場合でも、1箇所の検知場所を中心にPMV値を快
適領域にすることしかできず、全居住域でPMV値を中
立にすることができず、必要以上に空調するという欠点
を有していた。
However, in the conventional method, even if the temperature is distributed above and below the air-conditioned space due to air conditioning in the air-conditioned space, and as a result, the PMV values are distributed above and below the air-conditioned space, detection of one location is performed. The PMV value can only be set to a comfortable area centering on the place, and the PMV value cannot be set to be neutral in the entire living area, and there is a drawback that air conditioning is performed more than necessary.

【0006】また、居住域の環境要素を直接検知してい
るために検知手段の設置場所が制約されたり、構成が高
価になる。
Further, since the environmental elements in the living area are directly detected, the installation place of the detecting means is restricted and the structure becomes expensive.

【0007】本発明は上記従来の課題を解決するもの
で、室内のPMV値が快適領域になるように制御し、従
来の検知手段を用いることで安価な構成で上下温度分布
による居住域PMV値と検知PMV値の違いがあっても
居住域で速やかかつ正確に居住域でのPMV値を快適領
域に制御する空気調和機を提供することを目的とする。
The present invention solves the above-mentioned conventional problems. The PMV value in the room is controlled so as to be in the comfortable area, and the conventional detection means is used to provide an inexpensive PMV value in the living area due to the vertical temperature distribution. It is an object of the present invention to provide an air conditioner that quickly and accurately controls the PMV value in the living area to a comfortable area even if there is a difference in the detected PMV value.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に本発明の空気調和機は、室内を冷房または暖房する冷
暖房手段と、室内空気を循環させる室内送風機と、吹き
出し空気の風向を変更する風向変更手段と、風向と風量
と運転モードから居住域の室温をファジィ推論するファ
ジィ室温推論手段と推論された室温をパラメータに居住
域のPMV値を計算する居住域PMV値計算手段と居住
域PMV値が中立になるように前記冷暖房手段を制御す
るPMV値冷暖房制御手段を備えている。
In order to achieve this object, the air conditioner of the present invention changes the air-conditioning means for cooling or heating the inside of the room, the indoor blower for circulating the indoor air, and the wind direction of the blown-out air. A wind direction changing means, a fuzzy room temperature inference means for fuzzy inferring the room temperature in the living area from the wind direction, the air volume, and the operation mode, and a living area PMV value calculating means and a living area PMV for calculating the PMV value in the living area using the inferred room temperature as a parameter. A PMV value cooling / heating control means for controlling the cooling / heating means so that the value becomes neutral is provided.

【0009】また、居住域を複数のゾーンに分割し各々
ゾーンに対応する複数のゾーン毎風向変更手段と、風量
と運転モードとゾーン毎平均風向から、空調空間上下の
室温分布をファジィ推論するゾーンファジィ室温推論手
段PMV値計算手段と、推論された室温をパラメータに
居住域のPMV値を算出するゾーンPMV値計算手段を
備えている。
Further, the living area is divided into a plurality of zones, and a zone for fuzzy inference of the room temperature distribution above and below the air-conditioned space is obtained from a plurality of zone-based wind direction changing means corresponding to each zone, the air volume, the operation mode and the average wind direction for each zone. The fuzzy room temperature inference means PMV value calculation means and the zone PMV value calculation means for calculating the PMV value of the living area using the inferred room temperature as a parameter.

【0010】[0010]

【作用】本発明は上記した構成によって、空調空間の上
下の温度分布がある場合においても空気調和機本体で検
知できる限られた入力条件、すなわち風向と風量と運転
モードからファジィ室温推論手段により居住域の室温を
ファジィ推論し、推論された室温をパラメータに居住域
のPMV値を計算し、居住域PMV値が中立になるよう
に冷暖房手段を制御するものであるから、上下の室温分
布がある場合でも居住域のPMV値を中立に制御するこ
とができる。
With the above-described structure, the present invention uses the fuzzy room temperature inference means based on the limited input conditions that can be detected by the air conditioner body even when there is a temperature distribution above and below the air-conditioned space, that is, from the wind direction, air volume, and operation mode. The room temperature of the living area is fuzzy inferred, the PMV value of the living area is calculated using the inferred room temperature as a parameter, and the cooling / heating means is controlled so that the PMV value of the living area becomes neutral. Even in this case, the PMV value in the living area can be controlled to be neutral.

【0011】また、居住域を複数のゾーンに分割し各ゾ
ーンごとに吹き出し風向が変わり、空調空間の上下温度
分布が生じ、その結果空調空間でPMV値の分布が生じ
ても、運転モードと風量とゾーン毎平均風向により居住
域の室温をファジィ推論し、推論された室温をパラメー
タに居住域PMV値を計算し、居住域PMV値が中立に
なるように冷暖房手段を制御するものであるから、ゾー
ンごとに吹き出し風向が変わりPMV値が分布していて
も全居住域でPMV値を中立にするための最適な運転が
可能になり、全居住域で有効にPMV値を中立にするこ
とができる。
Further, even if the living area is divided into a plurality of zones, the blowing air direction changes for each zone, and the vertical temperature distribution of the air-conditioned space occurs, resulting in the distribution of PMV values in the air-conditioned space, the operating mode and the air volume. And fuzzy inference of the room temperature of the living area by the average wind direction for each zone, the PMV value of the living area is calculated using the inferred room temperature as a parameter, and the cooling / heating means is controlled so that the PMV value of the living area becomes neutral. Even if the blowing wind direction changes for each zone and the PMV values are distributed, the optimum operation for neutralizing the PMV values in all the residential areas becomes possible, and the PMV values can be effectively neutralized in the entire residential areas. .

【0012】[0012]

【実施例】【Example】

(実施例1)以下本発明の第1の実施例について図面を
参照しながら説明する。
(Embodiment 1) Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.

【0013】図1は空気調和機の概略構成図である。図
1において、1は圧縮機、2は四方弁、3は室内の吸い
込み空気を加熱または冷却する熱交換手段である室内熱
交換器、4は減圧器、5は室外熱交換器であり、これら
を環状に連接して冷凍サイクルを構成している。6は室
内空気を吸い込み、室内熱交換器3により加熱または冷
却された空気を吹き出す室内送風機である。7は室外送
風機である。8は室内に設置される室内機、9は室外に
設置される室外機である。冷房運転と暖房運転の切り替
えは四方弁2を切り替えて冷凍サイクル中の冷媒の流れ
を切り替えることにより行われる。
FIG. 1 is a schematic configuration diagram of an air conditioner. In FIG. 1, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger that is a heat exchange means for heating or cooling the intake air in the room, 4 is a pressure reducer, and 5 is an outdoor heat exchanger. To form a refrigeration cycle. An indoor blower 6 sucks indoor air and blows air heated or cooled by the indoor heat exchanger 3. 7 is an outdoor blower. Reference numeral 8 is an indoor unit installed indoors, and 9 is an outdoor unit installed outdoors. Switching between the cooling operation and the heating operation is performed by switching the four-way valve 2 to switch the flow of the refrigerant in the refrigeration cycle.

【0014】図2は室内機8の一つで、天井に埋め込む
カセット形の概略図である。10a,10b,10c,
10dは4方向に設けられた空気の吹き出し口で、それ
ぞれに、風向変更手段として風向を上下に変更する電動
ルーバー11a,11b,11c,11dが設けられて
いる。電動ルーバー11a,11b,11c,11dは
ステッピングモーター等で駆動され、ルーバーの角度θ
を15度から75度まで無段階に変えることができる。
FIG. 2 is a schematic view of one of the indoor units 8, which is a cassette type embedded in the ceiling. 10a, 10b, 10c,
Reference numeral 10d designates air outlets provided in four directions, each of which is provided with electric louvers 11a, 11b, 11c, 11d for changing the wind direction up and down as wind direction changing means. The electric louvers 11a, 11b, 11c, 11d are driven by a stepping motor or the like, and the louver angle θ
Can be changed steplessly from 15 degrees to 75 degrees.

【0015】尚、本実施例ではステッピングモーター及
び伝達機構の説明は割愛する。12は室内空気の吸い込
み口、13は空気中のごみや粉塵を除去するフィルター
である。室内熱交換器3は4方向で熱交換できるように
略円筒形状をしており、室内送風機6はターボファン1
4とインダクションモータ15より構成されている。1
6は吸い込み空気と吹き出し空気を分離する断熱壁であ
る。
In the present embodiment, the explanation of the stepping motor and the transmission mechanism will be omitted. Reference numeral 12 is a suction port for indoor air, and 13 is a filter for removing dust and particles in the air. The indoor heat exchanger 3 has a substantially cylindrical shape so that heat can be exchanged in four directions, and the indoor blower 6 is a turbo fan 1.
4 and an induction motor 15. 1
Reference numeral 6 is a heat insulating wall that separates intake air and blown air.

【0016】図3は一つの吹き出し口10a近傍の空気
の流れ図である。図に示すように吹き出し方向はルーバ
ーの水平方向となす角度θにより決まる。
FIG. 3 is a flow chart of air in the vicinity of one outlet 10a. As shown in the figure, the blowing direction is determined by the angle θ with the horizontal direction of the louver.

【0017】図4は、本実施例の機能ブロック図であ
る。17は室内機8の吸い込み口12に設置された状態
検知手段で、吸い込み温度検知手段18、輻射温度検知
手段19、湿度検知手段20よりなる。21は気流速検
知手段で、室内送風機6を制御する室内送風機制御手段
27より検知される。22は居住域に設置された活動量
設定手段、23は同じく居住域に設置された着衣量設定
手段であり居住者自らが設定をする。24は居住域PM
V値計算手段である。
FIG. 4 is a functional block diagram of this embodiment. Reference numeral 17 is a state detecting means installed in the suction port 12 of the indoor unit 8 and comprises a suction temperature detecting means 18, a radiation temperature detecting means 19 and a humidity detecting means 20. Reference numeral 21 denotes an air flow velocity detecting means, which is detected by the indoor blower control means 27 which controls the indoor blower 6. 22 is an activity amount setting means installed in the living area, and 23 is a clothing amount setting means also installed in the living area, which is set by the resident himself. 24 is a residential area PM
It is a V value calculation means.

【0018】25はファジィ居住域室温推論手段で、電
動ルーバー11a,11b,11c,11dの制御量を
決定する電動ルーバー制御手段(風向変更制御手段)2
6で決められた吹き出し風向と、室内送風機制御手段2
7により決定された吹き出し風量と運転モード検知手段
28により決定された運転モードを入力としファジィ推
論により居住域の室温が推論される。29はPMV値冷
暖房制御手段であり、居住域PMV値計算手段24より
算出された居住域PMV値により、冷暖房手段30を制
御しPMV値が中立になるように制御する。
Reference numeral 25 is a fuzzy living area room temperature inference means, which is an electric louver control means (wind direction change control means) 2 for determining the control amount of the electric louvers 11a, 11b, 11c, 11d.
Indoor blower control means 2 and the blowing direction determined by 6
The room temperature of the living area is inferred by fuzzy inference using the blowing air volume determined by 7 and the operation mode determined by the operation mode detection means 28 as input. Reference numeral 29 is a PMV value cooling / heating control means, which controls the cooling / heating means 30 according to the living area PMV value calculated by the living area PMV value calculating means 24 so that the PMV value becomes neutral.

【0019】冷房運転時と暖房運転時のPMV値による
各制御対象の制御例を(表1)、(表2)に示す。
Tables 1 and 2 show examples of control of each controlled object based on PMV values during cooling operation and heating operation.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】ファジィ上下室温分布推論手段25に組み
込まれた冷房運転時の推論ルールは次のようなルールで
ある。
The inference rules during the cooling operation incorporated in the fuzzy upper and lower room temperature distribution inference means 25 are as follows.

【0023】ルール1:もし吹き出し風量が大きく
(B)、吹き出し角度が大きいならば(B)、室温を吸
い込み温度とあまり変えるな(Z0)。
Rule 1: If the amount of blown air is large (B) and the blowing angle is large (B), do not change the room temperature much from the suction temperature (Z0).

【0024】ルール2:もし吹き出し風量が大きく
(B)、吹き出し角度が中くらいならば(M)、室温を
吸い込み温度とあまり変えるな(Z0)。
Rule 2: If the amount of blown air is large (B) and the blowing angle is medium (M), do not change the room temperature much from the suction temperature (Z0).

【0025】ルール3:もし吹き出し風量が大きく
(B)、吹き出し角度が小さいならば(S)、室温を吸
い込み温度とあまり変えるな(Z0)。
Rule 3: If the amount of blown air is large (B) and the blowing angle is small (S), do not change the room temperature much from the suction temperature (Z0).

【0026】ルール4:もし吹き出し風量が中くらいで
(M)、吹き出し角度が大きいならば(B)、室温を吸
い込み温度より少しだけ小さくせよ(LS)。
Rule 4: If the amount of blown air is medium (M) and the blowing angle is large (B), reduce the room temperature to slightly lower than the suction temperature (LS).

【0027】ルール5:もし吹き出し風量が中くらいで
(M)、吹き出し角度が中くらいならば(M)、室温を
吸い込み温度とあまり変えるな(Z0)。
Rule 5: If the blown air volume is medium (M) and the blown angle is medium (M), do not change the room temperature much from the suction temperature (Z0).

【0028】ルール6:もし吹き出し風量が中くらいで
(M)、吹き出し角度が小さいならば(S)、室温を吸
い込み温度とあまり変えるな(Z0)。
Rule 6: If the amount of blown air is medium (M) and the blowing angle is small (S), do not change the room temperature much from the suction temperature (Z0).

【0029】ルール7:もし吹き出し風量が小さく
(S)、吹き出し角度が大きいならば(B)、室温を吸
い込み温度より小さくせよ(S)。
Rule 7: If the amount of blown air is small (S) and the blowing angle is large (B), lower the room temperature below the suction temperature (S).

【0030】ルール8:もし吹き出し風量が小さく
(S)、吹き出し角度が中くらいならば(M)、室温を
吸い込み温度より少しだけ小さくせよ(LS)。
Rule 8: If the amount of blown air is small (S) and the blowing angle is medium (M), reduce the room temperature to slightly lower than the suction temperature (LS).

【0031】ルール9:もし吹き出し風量が小さく
(S)、吹き出し角度が小さいならば(S)、室温を吸
い込み温度とあまり変えるな(Z0)。
Rule 9: If the blown air volume is small (S) and the blown angle is small (S), do not change the room temperature much from the suction temperature (Z0).

【0032】ただし、吹き出し風量は10m3/min
から20m3/minまで無段階に変えることができ
る。
However, the blowing air volume is 10 m 3 / min
To 20 m 3 / min can be steplessly changed.

【0033】同じく暖房運転時の推論ルールは次のよう
なルールである。 ルール1:もし吹き出し風量が大きく(B)、吹き出し
角度が大きいならば(B)、室温を吸い込み温度とあま
り変えるな(Z0)。
Similarly, the inference rule during the heating operation is as follows. Rule 1: If the amount of blown air is large (B) and the blowing angle is large (B), do not change the room temperature much from the suction temperature (Z0).

【0034】ルール2:もし吹き出し風量が大きく
(B)、吹き出し角度が中くらいならば(M)、室温を
吸い込み温度とあまり変えるな(Z0)。
Rule 2: If the blowing air volume is large (B) and the blowing angle is medium (M), do not change the room temperature much from the suction temperature (Z0).

【0035】ルール3:もし吹き出し風量が大きく
(B)、吹き出し角度が小さいならば(S)、室温を吸
い込み温度より少しだけ小さくせよ(LS)。
Rule 3: If the amount of blown air is large (B) and the blowing angle is small (S), reduce the room temperature to slightly lower than the suction temperature (LS).

【0036】ルール4:もし吹き出し風量が中くらいで
(M)、吹き出し角度が大きいならば(B)、室温を吸
い込み温度とあまり変えるな(Z0)。
Rule 4: If the blowing air volume is medium (M) and the blowing angle is large (B), do not change the room temperature much from the suction temperature (Z0).

【0037】ルール5:もし吹き出し風量が中くらいで
(M)、吹き出し角度が中くらいならば(M)、室温を
吸い込み温度より少しだけ小さくせよ(LS)。
Rule 5: If the amount of blown air is medium (M) and the angle of blown air is medium (M), reduce the room temperature to slightly lower than the suction temperature (LS).

【0038】ルール6:もし吹き出し風量が中くらいで
(M)、吹き出し角度が小さいならば(S)、室温を吸
い込み温度より小さくせよ(S)。
Rule 6: If the amount of blown air is medium (M) and the blowing angle is small (S), lower the room temperature below the suction temperature (S).

【0039】ルール7:もし吹き出し風量が小さく
(S)、吹き出し角度が大きいならば(B)、室温を吸
い込み温度より少しだけ小さくせよ(LS)。
Rule 7: If the amount of blown air is small (S) and the blowing angle is large (B), reduce the room temperature to slightly lower than the suction temperature (LS).

【0040】ルール8:もし吹き出し風量が小さく
(S)、吹き出し角度が中くらいならば(M)、室温を
吸い込み温度より小さくせよ(S)。
Rule 8: If the amount of blown air is small (S) and the blowing angle is medium (M), lower the room temperature below the suction temperature (S).

【0041】ルール9:もし吹き出し風量が小さく
(S)、吹き出し角度が小さいならば(S)、室温を吸
い込み温度よりかなり小さくせよ(BS)。
Rule 9: If the blown air volume is small (S) and the blown angle is small (S), make the room temperature much lower than the suction temperature (BS).

【0042】ただし暖房時も冷房時と同じく、吹き出し
風量は10m3/minから20m3/minまで無段階
に変えることができる。
[0042] However, during the heating as well as with the cooling, the balloon air volume can be infinitely varied from 10m 3 / min up to 20m 3 / min.

【0043】上記言語データは、発明者が数多くの実験
データと経験則から求めた、居住域の温度を吸い込み温
度から推論するための推論ルールであり、これを冷房運
転、暖房運転別に吹き出し風量と吹き出し角度の関係で
表すと(表3)、(表4)のようになる。
The linguistic data is an inference rule for inferring the temperature of the living area from the intake temperature, which is obtained by the inventor from a large number of experimental data and empirical rules. The relations of the blowing angles are as shown in (Table 3) and (Table 4).

【0044】[0044]

【表3】 [Table 3]

【0045】[0045]

【表4】 [Table 4]

【0046】(表3)は冷房運転時の居住域温度の推論
値、(表4)は暖房運転時の居住域室温の推論値のルー
ルである。(表3)(表4)は横方向に吹き出し風量を
3段階に分け、縦方向に吹き出し角度を3段階に分けて
配置している。
Table 3 shows the inferred value of the living area temperature during the cooling operation, and (Table 4) shows the rule of the inferred value of the living area room temperature during the heating operation. In (Table 3) and (Table 4), the blowing air amount is divided into three stages in the horizontal direction and the blowing angle is divided into three stages in the vertical direction.

【0047】図5は冷房運転におけるファジィ変数、す
なわち(a)吹き出し風量のメンバシップ関数、(b)
吹き出し角度のメンバシップ関数、(c)室温の推論値
のメンバシップ関数であり、図6は暖房運転におけるフ
ァジィ変数のメンバシップ関数であり、同じく(a)吹
き出し風量のメンバシップ関数、(b)吹き出し角度の
メンバシップ関数、(c)室温の推論値のメンバシップ
関数である。これらのメンバシップ関数に基づく室温推
論値の決定は、ファジィ制御の一手法であるMAX−M
IN合成法を用いる。尚、MAX−MIN合成法につい
ての説明は割愛する。
FIG. 5 is a fuzzy variable in cooling operation, that is, (a) membership function of blown air volume, (b).
The membership function of the blowing angle, (c) the membership function of the inferred value of the room temperature, and FIG. 6 is the membership function of the fuzzy variable in the heating operation, similarly (a) the membership function of the blowing air volume, (b). The membership function of the blowing angle, and (c) the membership function of the inferred value of room temperature. The determination of the room temperature inference value based on these membership functions is a fuzzy control method, MAX-M.
The IN synthesis method is used. The description of the MAX-MIN synthesis method will be omitted.

【0048】以上のように本実施例によれば、運転モー
ドと、吹き出し風量と、吹き出し角度を入力条件とし、
数多くの実験データや発明者の経験則に基づいて、居住
域の室温をファジィ推論するものであるから、空調空間
で上下の室温分布がある場合、検知手段の設置場所が限
られていても、居住域の正しいPMV値を算出すること
ができ、居住域のPMV値を中立に制御することができ
る。
As described above, according to this embodiment, the operation mode, the blowing air volume, and the blowing angle are used as input conditions,
Since it fuzzy infers the room temperature in the living area based on a large number of experimental data and the rule of thumb of the inventor, if there are upper and lower room temperature distributions in the air-conditioned space, even if the location of the detection means is limited, The correct PMV value of the living area can be calculated, and the PMV value of the living area can be controlled to be neutral.

【0049】以上のように本実施例によれば、圧縮機1
と、四方弁2と、室内の吸い込み空気を加熱または冷却
する熱交換手段である室内熱交換器3と、減圧器4と、
室外熱交換器5とを環状に連接して構成された冷凍サイ
クルと、室内空気を吸い込み室内熱交換器3により加熱
または冷却された空気を吹き出す室内送風機6と、室外
送風機7と、天井に埋め込むカセット型室内機8の4方
向に設けられ加熱または冷却された空気を吹き出す吹き
出し口10a,10b,10c,10dと、それぞれ吹
き出し口に設けられ吹き出し空気の風向を上下に変更す
る電動ルーバー11a,11b,11c,11dと、電
動ルーバー11a,11b,11c,11dを制御する
風向変更制御手段26と、風向変更制御手段26で決め
られた吹き出し風向と、室内送風機制御手段27により
決定された吹き出し風量と運転モード検知手段28によ
り決定された運転モードを入力とし居住域の室温をファ
ジィ推論するファジィ居住域室温推論手段25を備え、
推論された室温をパラメータに居住域のPMV値を計算
する居住域PMV値計算手段24と、居住域PMV値が
中立になるように冷暖房手段30を制御するPMV値冷
暖房制御手段29を備えたものであるから、空調空間で
上下の室温分布がある場合、検知手段の設置場所が限ら
れていても、居住域の正しいPMV値を算出することが
でき、居住域のPMV値を中立に制御することができ
る。
As described above, according to this embodiment, the compressor 1
A four-way valve 2, an indoor heat exchanger 3 which is a heat exchange means for heating or cooling the intake air in the room, a decompressor 4,
A refrigeration cycle configured by annularly connecting the outdoor heat exchanger 5, an indoor blower 6 that sucks indoor air and blows out air heated or cooled by the indoor heat exchanger 3, an outdoor blower 7, and embedded in the ceiling. Blow-out ports 10a, 10b, 10c, 10d provided in four directions of the cassette type indoor unit 8 to blow out heated or cooled air, and electric louvers 11a, 11b provided in the blow-out ports and changing the wind direction of the blown air up and down respectively. , 11c, 11d, and the wind direction change control means 26 for controlling the electric louvers 11a, 11b, 11c, 11d, the blowing air direction decided by the wind direction change control means 26, and the blowing air quantity decided by the indoor blower control means 27. A fuzzy inference for the room temperature of the living area with the driving mode determined by the driving mode detecting means 28 as an input. Comprising a I occupied zone room temperature inference means 25,
A residential area PMV value calculating means 24 for calculating the PMV value of the residential area using the inferred room temperature as a parameter, and a PMV value cooling / heating control means 29 for controlling the cooling / heating means 30 so that the residential area PMV value becomes neutral. Therefore, when there is an upper and lower room temperature distribution in the air-conditioned space, the correct PMV value of the living area can be calculated and the PMV value of the living area is controlled to be neutral even if the installation location of the detecting means is limited. be able to.

【0050】(実施例2)以下本発明の第2の実施例に
ついて図面を参照しながら説明する。
(Second Embodiment) A second embodiment of the present invention will be described below with reference to the drawings.

【0051】図7は本実施例のゾーン分割の概略図であ
る。31は空調する部屋であり、ゾーンは、室内機8の
4方向の吹き出し口10a,10b,10c,10dの
うち、吹き出し口10a,10bを第1ペア、吹き出し
口10c,10dを第2ペアとしてそれぞれ第1ゾーン
と第2ゾーンを形成する。
FIG. 7 is a schematic diagram of zone division according to this embodiment. Reference numeral 31 denotes a room to be air-conditioned, and the zone is defined by the outlets 10a, 10b, 10c, 10d of the indoor unit 8 in four directions, with the outlets 10a, 10b as the first pair and the outlets 10c, 10d as the second pair. A first zone and a second zone are formed, respectively.

【0052】図8は本実施例の機能ブロック図である。
32,33はそれぞれ第1ゾーン、第2ゾーンの吹き出
し風向を変更する第1ゾーン風向変更制御手段、第2ゾ
ーン風向変更制御手段であり、各々のゾーンに対応した
第1ペアの電動ルーバー11a,11b、第2ペアの電
動ルーバー11c,11dのルーバー角度θを15度か
ら75度まで無段階に変えることができる。34はゾー
ン毎平均風向計算手段であり、第1ゾーン風向変更制御
手段32と第2ゾーン風向変更制御手段33によって決
められた風向の平均値を算出する。35は運転モード検
知手段28により決定された運転モードと室内送風機制
御手段27より決定された吹き出し風量と、ゾーン毎平
均風向計算手段34により決定されたゾーン毎平均風向
により、居住域室温をファジィ推論するゾーンファジィ
室温推論手段である。第1ゾーン側状態検知手段36、
第2ゾーン側状態検知手段37は図4での構成と同じで
あるので説明を割愛する。38はファジィ室温推論手段
35より推論された室温をパラメータに居住域のPMV
値を計算するゾーンファジィPMV値計算手段である。
FIG. 8 is a functional block diagram of this embodiment.
Reference numerals 32 and 33 denote a first zone wind direction change control means and a second zone wind direction change control means for changing the blown wind directions of the first zone and the second zone, respectively, and a first pair of electric louvers 11a corresponding to each zone. 11b, the louver angle θ of the second pair of electric louvers 11c and 11d can be continuously changed from 15 degrees to 75 degrees. Reference numeral 34 denotes an average wind direction calculation means for each zone, which calculates an average value of the wind directions determined by the first zone wind direction change control means 32 and the second zone wind direction change control means 33. Reference numeral 35 is a fuzzy inference of the room temperature in the living area based on the operation mode determined by the operation mode detection means 28, the blown air volume determined by the indoor blower control means 27, and the average wind direction for each zone determined by the average wind direction for each zone calculation means 34. Zone fuzzy room temperature inference means. First zone side state detection means 36,
The second zone side state detecting means 37 has the same configuration as that shown in FIG. 38 is the PMV of the living area with the room temperature inferred by the fuzzy room temperature inference means 35 as a parameter
It is a zone fuzzy PMV value calculation means for calculating a value.

【0053】居住域は、ゾーンファジィPMV値計算手
段38により算出されたPMV値に基づいて、PMV値
冷暖房制御手段29により冷暖房手段30を用いて、居
住域のPMV値が中立になるよう制御される。尚本実施
例では、室内送風機制御手段27により冷房、暖房時と
も吹き出し風量は10m3/minから20m3/min
まで無段階に変えることができる。
Based on the PMV value calculated by the zone fuzzy PMV value calculation means 38, the residential area is controlled by the PMV value cooling / heating control means 29 using the cooling / heating means 30 so that the PMV value of the residential area becomes neutral. It In this embodiment Incidentally, the cooling by the indoor fan control means 27, air volume balloon also the heating is 10 m 3 / min from 20 m 3 / min
Can be changed steplessly.

【0054】ゾーンファジィ室温推論手段34に組み込
まれた冷房運転時の制御ルールは次のようなルールであ
る。
The control rules for the cooling operation incorporated in the zone fuzzy room temperature inference means 34 are as follows.

【0055】ルール1:もし吹き出し風量が大きく
(B)、ゾーン毎平均吹き出し角度が大きいならば
(B)、室温を吸い込み温度とあまり変えるな(Z
0)。
Rule 1: If the amount of blown air is large (B) and the average blowing angle for each zone is large (B), the room temperature is not changed so much as the suction temperature (Z
0).

【0056】ルール2:もし吹き出し風量が大きく
(B)、ゾーン毎平均吹き出し角度が中くらいならば
(M)、室温を吸い込み温度とあまり変えるな(Z
0)。
Rule 2: If the amount of blown air is large (B) and the average blowing angle for each zone is medium (M), the room temperature is not changed so much as the suction temperature (Z
0).

【0057】ルール3:もし吹き出し風量が大きく
(B)、ゾーン毎平均吹き出し角度が小さいならば
(S)、室温を吸い込み温度とあまり変えるな(Z
0)。
Rule 3: If the amount of blown air is large (B) and the average blowing angle for each zone is small (S), the room temperature is not changed so much as the suction temperature (Z
0).

【0058】ルール4:もし吹き出し風量が中くらいで
(M)、ゾーン毎平均吹き出し角度が大きいならば
(B)、室温を吸い込み温度より少しだけ小さくせよ
(LS)。
Rule 4: If the amount of blown air is medium (M) and the average blown angle for each zone is large (B), reduce the room temperature to a little lower than the suction temperature (LS).

【0059】ルール5:もし吹き出し風量が中くらいで
(M)、ゾーン毎平均吹き出し角度が中くらいならば
(M)、室温を吸い込み温度とあまり変えるな(Z
0)。
Rule 5: If the amount of blown air is medium (M) and the average blowing angle for each zone is medium (M), the room temperature is not changed much from the suction temperature (Z
0).

【0060】ルール6:もし吹き出し風量が中くらいで
(M)、ゾーン毎平均吹き出し角度が小さいならば
(S)、室温を吸い込み温度とあまり変えるな(Z
0)。
Rule 6: If the amount of blown air is medium (M) and the average blowing angle for each zone is small (S), the room temperature is not changed so much as the suction temperature (Z
0).

【0061】ルール7:もし吹き出し風量が小さく
(S)、ゾーン毎平均吹き出し角度が大きいならば
(B)、室温を吸い込み温度より小さくせよ(S)。
Rule 7: If the amount of blown air is small (S) and the average blowing angle for each zone is large (B), lower the room temperature below the suction temperature (S).

【0062】ルール8:もし吹き出し風量が小さく
(S)、ゾーン毎平均吹き出し角度が中くらいならば
(M)、室温を吸い込み温度より少しだけ小さくせよ
(LS)。
Rule 8: If the amount of blown air is small (S) and the average blowing angle for each zone is medium (M), reduce the room temperature to a little lower than the suction temperature (LS).

【0063】ルール9:もし吹き出し風量が小さく
(S)、ゾーン毎平均吹き出し角度が小さいならば
(S)、室温を吸い込み温度とあまり変えるな(Z
0)。
Rule 9: If the amount of blown air is small (S) and the average blowing angle for each zone is small (S), the room temperature is not changed much from the suction temperature (Z
0).

【0064】同じく暖房運転時の推論ルールは次のよう
なルールである。 ルール1:もし吹き出し風量が大きく(B)、ゾーン毎
平均吹き出し角度が大きいならば(B)、室温を吸い込
み温度とあまり変えるな(Z0)。
Similarly, the inference rule during heating operation is as follows. Rule 1: If the amount of blown air is large (B) and the average blowing angle for each zone is large (B), do not change the room temperature much from the suction temperature (Z0).

【0065】ルール2:もし吹き出し風量が大きく
(B)、ゾーン毎平均吹き出し角度が中くらいならば
(M)、室温を吸い込み温度とあまり変えるな(Z
0)。
Rule 2: If the amount of blown air is large (B) and the average blowing angle for each zone is medium (M), the room temperature is not changed so much as the suction temperature (Z
0).

【0066】ルール3:もし吹き出し風量が大きく
(B)、ゾーン毎平均吹き出し角度が小さいならば
(S)、室温を吸い込み温度より少しだけ小さくせよ
(LS)。
Rule 3: If the amount of blown air is large (B) and the average blowing angle for each zone is small (S), reduce the room temperature to a little lower than the suction temperature (LS).

【0067】ルール4:もし吹き出し風量が中くらいで
(M)、ゾーン毎平均吹き出し角度が大きいならば
(B)、室温を吸い込み温度とあまり変えるな(Z
0)。
Rule 4: If the blown air volume is medium (M) and the average blown angle for each zone is large (B), the room temperature is not changed so much as the suction temperature (Z
0).

【0068】ルール5:もし吹き出し風量が中くらいで
(M)、ゾーン毎平均吹き出し角度が中くらいならば
(M)、室温を吸い込み温度より少しだけ小さくせよ
(LS)。
Rule 5: If the amount of blown air is medium (M) and the average blowing angle for each zone is medium (M), reduce the room temperature to a little lower than the suction temperature (LS).

【0069】ルール6:もし吹き出し風量が中くらいで
(M)、ゾーン毎平均吹き出し角度が小さいならば
(S)、室温を吸い込み温度より小さくせよ(S)。
Rule 6: If the amount of blown air is medium (M) and the average blowing angle for each zone is small (S), lower the room temperature below the suction temperature (S).

【0070】ルール7:もし吹き出し風量が小さく
(S)、ゾーン毎平均吹き出し角度が大きいならば
(B)、室温を吸い込み温度より少しだけ小さくせよ
(LS)。
Rule 7: If the amount of blown air is small (S) and the average blowing angle for each zone is large (B), reduce the room temperature to a little lower than the suction temperature (LS).

【0071】ルール8:もし吹き出し風量が小さく
(S)、ゾーン毎平均吹き出し角度が中くらいならば
(M)、室温を吸い込み温度より小さくせよ(S)。
Rule 8: If the amount of blown air is small (S) and the average blowing angle for each zone is medium (M), lower the room temperature below the suction temperature (S).

【0072】ルール9:もし吹き出し風量が小さく
(S)、ゾーン毎平均吹き出し角度が小さいならば
(S)、室温を吸い込み温度よりかなり小さくせよ(P
S)。
Rule 9: If the amount of blown air is small (S) and the average blowing angle for each zone is small (S), make room temperature much lower than the suction temperature (P
S).

【0073】上記言語データは、発明者が数多くの実験
データと経験則から求めた、全居住域の温度を吸い込み
温度から推論するための推論ルールであり、これを冷房
運転、暖房運転別に吹き出し風量とゾーン毎平均吹き出
し角度の関係で表すと(表5)、(表6)のようにな
る。
The language data is an inference rule for inferring the temperature of the whole living area from the intake temperature, which is obtained by the inventor from a large number of experimental data and empirical rules. And (Table 5) and (Table 6) when expressed by the relationship between the average blowing angles for each zone.

【0074】[0074]

【表5】 [Table 5]

【0075】[0075]

【表6】 [Table 6]

【0076】(表5)は冷房運転時の居住域温度の推論
値、(表6)は暖房運転時の居住域室温の推論値のルー
ルである。(表5)(表6)は横方向に吹き出し風量を
3段階に分け、縦方向にゾーン毎平均吹き出し角度を3
段階に分けて配置している。
(Table 5) is the inferred value of the living area temperature during the cooling operation, and (Table 6) is the rule of the inferred value of the living area room temperature during the heating operation. In (Table 5) and (Table 6), the blowing air volume is divided into three levels in the horizontal direction, and the average blowing angle for each zone is 3 in the vertical direction.
It is arranged in stages.

【0077】図9は冷房運転におけるファジィ変数、す
なわち(a)吹き出し風量のメンバシップ関数、(b)
ゾーン毎平均吹き出し角度のメンバシップ関数、(c)
室温の推論値のメンバシップ関数であり、図10は暖房
運転におけるファジィ変数のメンバシップ関数であり、
同じく(a)吹き出し風量のメンバシップ関数、(b)
ゾーン毎平均吹き出し角度のメンバシップ関数、(c)
室温の推論値のメンバシップ関数である。これらのメン
バシップ関数に基づく室温推論値の決定は、ファジィ制
御の一手法であるMAX−MIN合成法を用いる。尚、
MAX−MIN合成法についての説明は割愛する。
FIG. 9 is a fuzzy variable in cooling operation, that is, (a) membership function of blown air volume, (b).
Membership function of average blowing angle for each zone, (c)
FIG. 10 is a membership function of inferred values of room temperature, and FIG. 10 is a membership function of fuzzy variables in heating operation.
Similarly, (a) membership function of blow-off air volume, (b)
Membership function of average blowing angle for each zone, (c)
It is a membership function of the inferred value at room temperature. The MAX-MIN combination method, which is one of the fuzzy control methods, is used to determine the room temperature inferred value based on these membership functions. still,
A description of the MAX-MIN synthesis method is omitted.

【0078】以上のように本実施例によれば、運転モー
ドと、吹き出し風量と、ゾーン毎平均吹き出し角度を入
力条件とし、数多くの実験データや発明者の経験則に基
づいて、居住域の室温をファジィ推論するものであるか
ら、ゾーンごとに吹き出し風向が変わりPMV値が分布
していても全居住域でPMV値を中立にするための最適
な運転が可能になり、全居住域で有効にPMV値を中立
にすることができる。
As described above, according to the present embodiment, the operating mode, the blowing air volume, and the average blowing angle for each zone are used as input conditions, and the room temperature in the living area is set based on a large number of experimental data and the empirical rule of the inventor. Since fuzzy inference is performed, even if the blowing wind direction changes for each zone and PMV values are distributed, optimal driving for neutralizing PMV values in all living areas becomes possible, and effective in all living areas. The PMV value can be made neutral.

【0079】[0079]

【発明の効果】以上のように本発明の空気調和機は、室
内を冷房または暖房する冷暖房手段と、室内空気を循環
させる室内送風機と、吹き出し空気の風向を変更する風
向変更手段と、風向と風量と運転モードから居住域の室
温をファジィ推論するファジィ室温推論手段と推論され
た室温をパラメータに居住域のPMV値を計算する居住
域PMV値計算手段と居住域PMV値が中立になるよう
に前記冷暖房手段を制御するPMV値冷暖房制御手段を
備えたものであるから、空調空間の上下の温度分布があ
る場合においても空気調和機本体で検知できる限られた
入力条件、すなわち風向と風量と運転モードからファジ
ィ室温推論手段により居住域の室温をファジィ推論し、
推論された室温をパラメータに居住域のPMV値を計算
し、居住域PMV値が中立になるように冷暖房手段を制
御するため上下の室温分布がある場合でも居住域のPM
V値を中立に制御することができる。
As described above, the air conditioner of the present invention has an air conditioner for cooling or heating the room, an indoor blower for circulating the indoor air, a wind direction changing unit for changing the wind direction of the blown air, and a wind direction. Fuzzy room temperature inference means for fuzzy inferring the room temperature in the living area from the air volume and the operation mode, and the PMV value in the living area for calculating the PMV value in the living area using the inferred room temperature as a parameter and the PMV value in the living area are neutral. Since the PMV value cooling / heating control means for controlling the cooling / heating means is provided, limited input conditions that can be detected by the air conditioner main body even when there is a temperature distribution above and below the air-conditioned space, that is, wind direction, air volume, and operation. Fuzzy inference of the room temperature of the living area from the mode by fuzzy room temperature inference means,
The PMV value in the living area is calculated using the inferred room temperature as a parameter, and the cooling / heating means is controlled so that the PMV value in the living area becomes neutral.
The V value can be controlled to be neutral.

【0080】また、居住域を複数のゾーンに分割し各々
ゾーンに対応する複数のゾーン毎風向変更手段と、風量
と運転モードとゾーン毎平均風向から、空調空間上下の
室温分布をファジィ推論するゾーンファジィ室温推論手
段PMV値計算手段と、推論された室温をパラメータに
居住域のPMV値を算出するゾーンPMV値計算手段を
備えたものであるから、各ゾーンごとに吹き出し風向が
変わり、空調空間の上下温度分布が生じ、その結果空調
空間でPMV値の分布が生じても、運転モードと風量と
ゾーン毎平均風向により居住域の室温をファジィ推論
し、推論された室温をパラメータに居住域PMV値を計
算し、居住域PMV値が中立になるように冷暖房手段を
制御するものであるから、ゾーンごとに吹き出し風向が
変わりPMV値が分布していても全居住域でPMV値を
中立にするための最適な運転が可能になり、全居住域で
有効にPMV値を中立にすることができる。
Further, the living area is divided into a plurality of zones, and a zone for fuzzy inference of the room temperature distribution above and below the air-conditioned space from a plurality of zone-by-zone wind direction changing means corresponding to each zone, the air volume, the operation mode and the average wind direction by zone. Since the fuzzy room temperature reasoning means PMV value calculating means and the zone PMV value calculating means for calculating the PMV value of the living area by using the inferred room temperature as a parameter are provided, the blowing wind direction changes for each zone, and Even if the vertical temperature distribution occurs, and as a result, the distribution of PMV values occurs in the air-conditioned space, the room temperature of the living area is fuzzy inferred from the operating mode, air volume, and average wind direction for each zone, and the PMV value of the residential area is set using the inferred room temperature as a parameter Is calculated and the cooling / heating means is controlled so that the residential PMV value becomes neutral, the blowing air direction changes for each zone and the PMV value is divided. A PMV value in all the occupied zone even though allows optimal operation for the neutral, can be effectively neutral the PMV value in all the occupied zone.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における空気調和機の概
略構成図
FIG. 1 is a schematic configuration diagram of an air conditioner according to a first embodiment of the present invention.

【図2】(a)同実施例のカセット形室内機の概略図の
上断面図 (b)同実施例のカセット形室内機の概略図の横断面図
FIG. 2 (a) is an upper sectional view of a schematic view of the cassette type indoor unit of the embodiment. (B) is a lateral sectional view of a schematic view of the cassette type indoor unit of the embodiment.

【図3】同実施例の吹き出し口近傍の空気の流れを示す
要部概略断面図
FIG. 3 is a schematic sectional view of an essential part showing the flow of air in the vicinity of the outlet of the embodiment.

【図4】同実施例における空気調和機の機能ブロック図FIG. 4 is a functional block diagram of the air conditioner in the embodiment.

【図5】(a)同実施例における冷房運転時の吹き出し
風量のメンバシップ値を示す特性図 (b)同実施例における冷房運転時の吹き出し角度のメ
ンバシップ値を示す特性図 (c)同実施例における冷房運転時の室温の推論値のメ
ンバシップ値を示す特性図
FIG. 5 (a) is a characteristic diagram showing a membership value of a blowing air amount during a cooling operation in the same embodiment. FIG. 5 (b) is a characteristic diagram showing a membership value of a blowing angle during a cooling operation in the same embodiment. A characteristic diagram showing membership values of inferred values of room temperature during cooling operation in an example

【図6】(a)同実施例における暖房運転時の吹き出し
風量のメンバシップ値を示す特性図 (b)同実施例における暖房運転時の吹き出し角度のメ
ンバシップ値を示す特性図 (c)同実施例における暖房運転時の室温の推論値のメ
ンバシップ値を示す特性図
6A is a characteristic diagram showing a membership value of a blowing air amount during heating operation in the same embodiment. FIG. 6B is a characteristic diagram showing a membership value of a blowing angle during heating operation in the embodiment. Characteristic diagram showing membership values of inferred values of room temperature during heating operation in an example

【図7】同実施例におけるゾーン分割図FIG. 7 is a zone division diagram in the same embodiment.

【図8】同実施例における空気調和機の機能ブロック図FIG. 8 is a functional block diagram of the air conditioner in the embodiment.

【図9】(a)同実施例における冷房運転時の吹き出し
風量のメンバシップ値を示す特性図 (b)同実施例における冷房運転時のゾーン毎平均吹き
出し角度のメンバシップ値を示す特性図 (c)同実施例における冷房運転時の室温の推論値のメ
ンバシップ値を示す特性図
FIG. 9A is a characteristic diagram showing a membership value of a blowing air amount during cooling operation in the same embodiment. FIG. 9B is a characteristic diagram showing a membership value of an average blowing angle per zone during cooling operation in the embodiment. c) Characteristic diagram showing membership values of inferred values of room temperature during cooling operation in the example.

【図10】(a)同実施例における暖房運転時の吹き出
し風量のメンバシップ値を示す特性図 (b)同実施例における暖房運転時のゾーン毎平均吹き
出し角度のメンバシップ値を示す特性図 (c)同実施例における暖房運転時の室温の推論値のメ
ンバシップ値を示す特性図
FIG. 10A is a characteristic diagram showing a membership value of a blowing air amount during heating operation in the same embodiment. FIG. 10B is a characteristic diagram showing a membership value of an average blowout angle for each zone during heating operation in the embodiment. c) Characteristic diagram showing membership values of inferred values of room temperature during heating operation in the example.

【符号の説明】[Explanation of symbols]

3 熱交換手段 6 室内送風機 11a,11b,11c,11d 風向変更手段(電動
ルーバー) 24 居住域PMV値計算手段 25 ファジィ室温推論手段 35 ゾーンファジィ室温推論手段 38 ゾーンPMV値計算手段
3 heat exchange means 6 indoor blower 11a, 11b, 11c, 11d wind direction changing means (electric louver) 24 residential area PMV value calculation means 25 fuzzy room temperature inference means 35 zone fuzzy room temperature inference means 38 zone PMV value calculation means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小川原 秀治 大阪府東大阪市高井田本通3丁目22番地 松下冷機株式会社内 (72)発明者 窪田 吉孝 大阪府東大阪市高井田本通3丁目22番地 松下冷機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shuji Ogawara 3-22 Takaidahondori, Higashi-Osaka City, Osaka Prefecture Matsushita Refrigerator Co., Ltd. (72) Inventor Yoshitaka Kubota 3-22 Takaidahondori, East Osaka Within Matsushita Cold Machinery Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 室内を冷房または暖房する冷暖房手段
と、室内空気を循環させる室内送風機と、吹き出し空気
の風向を変更する風向変更手段と、風向と風量と運転モ
ードから居住域の室温をファジィ推論するファジィ室温
推論手段と推論された室温をパラメータに居住域のPM
V値を計算する居住域PMV値計算手段と居住域PMV
値が中立になるように前記冷暖房手段を制御するPMV
値冷暖房制御手段を備えた空気調和機。
1. A cooling / heating means for cooling or heating the room, an indoor blower for circulating the indoor air, a wind direction changing means for changing the wind direction of blown air, and a fuzzy inference for the room temperature in the living area from the wind direction, the air volume, and the operation mode. Fuzzy room temperature reasoning means
Residence area PMV value calculating means for calculating V value and residence area PMV
PMV for controlling the cooling and heating means so that the value becomes neutral
An air conditioner equipped with price cooling and heating control means.
【請求項2】 居住域を複数のゾーンに分割し各々ゾー
ンに対応する複数のゾーン毎風向変更手段と、風量と運
転モードとゾーン毎平均風向から、空調空間上下の室温
分布をファジィ推論するゾーンファジィ室温推論手段と
推論された室温をパラメータに居住域のPMV値を計算
するゾーンPMV値計算手段を備えた請求項1記載の空
気調和機。
2. A zone for fuzzy inference of a room temperature distribution above and below an air-conditioned space based on a plurality of zone wind direction changing means corresponding to each zone and the air volume, operation mode and average wind direction for each zone. The air conditioner according to claim 1, further comprising zone PMV value calculating means for calculating a PMV value of a living area using the fuzzy room temperature inferring means and the inferred room temperature as a parameter.
JP5144617A 1993-06-16 1993-06-16 Air conditioner Pending JPH074722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5144617A JPH074722A (en) 1993-06-16 1993-06-16 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5144617A JPH074722A (en) 1993-06-16 1993-06-16 Air conditioner

Publications (1)

Publication Number Publication Date
JPH074722A true JPH074722A (en) 1995-01-10

Family

ID=15366204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5144617A Pending JPH074722A (en) 1993-06-16 1993-06-16 Air conditioner

Country Status (1)

Country Link
JP (1) JPH074722A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100732466B1 (en) * 2006-09-28 2007-06-27 재단법인 포항산업과학연구원 Roadside safety barrier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100732466B1 (en) * 2006-09-28 2007-06-27 재단법인 포항산업과학연구원 Roadside safety barrier

Similar Documents

Publication Publication Date Title
KR20040102566A (en) air-conditioner system with ventilation
JP2018059675A (en) Air conditioner
JPH0650595A (en) Air conditioner
CN111623413B (en) Air conditioner
JPH1183112A (en) Air conditioner
JPH1151445A (en) Radiant air conditioning system
JPH07145982A (en) Air-conditioner
JPH0566043A (en) Air direction control device of air conditioner
JP2762425B2 (en) Air conditioner
JP2912754B2 (en) Air conditioner
JP3369331B2 (en) Air conditioner
JP2013134006A (en) Air conditioner
JPH074722A (en) Air conditioner
JPH11132490A (en) Air conditioner and air conditioning method for of room
JPH05203244A (en) Air conditioner
JPH05306829A (en) Air conditioner
JPH05164394A (en) Underfloor air-conditioning system
JPH04356628A (en) Air conditioner
JPH05248696A (en) Air conditioner
JPH0719562A (en) Air conditioner
JPH05280787A (en) Air conditioner
JPH06147606A (en) Air conditioner
JPH0444984Y2 (en)
JP4169861B2 (en) Operation control device for ceiling cassette type air conditioner
JPH07301447A (en) Air-conditioner