JPH0747078Y2 - Vacuum insulation container made of synthetic resin - Google Patents

Vacuum insulation container made of synthetic resin

Info

Publication number
JPH0747078Y2
JPH0747078Y2 JP8787091U JP8787091U JPH0747078Y2 JP H0747078 Y2 JPH0747078 Y2 JP H0747078Y2 JP 8787091 U JP8787091 U JP 8787091U JP 8787091 U JP8787091 U JP 8787091U JP H0747078 Y2 JPH0747078 Y2 JP H0747078Y2
Authority
JP
Japan
Prior art keywords
container
synthetic resin
vacuum
heat insulating
outer container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8787091U
Other languages
Japanese (ja)
Other versions
JPH067633U (en
Inventor
雅司 山田
泰彦 小宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP8787091U priority Critical patent/JPH0747078Y2/en
Publication of JPH067633U publication Critical patent/JPH067633U/en
Application granted granted Critical
Publication of JPH0747078Y2 publication Critical patent/JPH0747078Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermally Insulated Containers For Foods (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】本考案は、魔法瓶や保温弁当等と
して使用される真空断熱容器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum heat insulation container used as a thermos bottle, a heat insulation lunch box, or the like.

【0002】[0002]

【従来の技術】従来、魔法瓶や保温弁当箱等としてガラ
ス製あるいはステンレス製を用いた金属製の真空断熱容
器が使用されている。
2. Description of the Related Art Conventionally, a vacuum metal heat insulating container made of glass or stainless steel has been used as a thermos bottle, a heat retention lunch box or the like.

【0003】これらのガラス製あるいは金属製の真空断
熱容器は、外容器、内容器およびその間の空間部からな
り、その空間部を真空排気して真空断熱層としたもので
あって、断熱性に優れ、かつ長時間にわたって高真空の
状態を保持することができるが製造上、形状やデザイン
に制約がある上に、製品が重いために携帯に不便であっ
た。
These glass or metal vacuum heat insulating containers consist of an outer container, an inner container and a space between them, and the space is evacuated to form a vacuum heat insulating layer. It is excellent and can maintain a high vacuum state for a long time, but it is inconvenient to carry because the shape and design are restricted in manufacturing and the product is heavy.

【0004】そこでガラスや金属にかわって、成形が容
易でかつ軽量である合成樹脂を用いた真空断熱容器が提
案されている。これはガラス製あるいは金属製のものと
同様の構造であり、その製造においては内外容器の間の
真空断熱層に面する表面にガスバリア性を高め、さらに
真空保持することを目的にしたメッキ層を形成する方法
がとられている。このメッキ層は化学メッキと金属メッ
キの組み合わせにより形成されているので、輻射による
熱損失の減少効果もある。そして、接合部も金属化する
ために接合には低融点ハンダを使用している。以上のよ
うに、真空断熱層に面する内外容器の表面と接合部とを
金属化することにより、真空断熱層の真空度の劣化を防
止し、真空断熱容器としての性能を長時間維持できるよ
うにしている。
Therefore, a vacuum heat insulating container using a synthetic resin, which is easy to mold and lightweight, has been proposed instead of glass or metal. This has a structure similar to that of glass or metal, and in its manufacture, a plating layer for the purpose of maintaining a vacuum by increasing the gas barrier property on the surface facing the vacuum heat insulating layer between the inner and outer containers. The method of forming is taken. Since this plating layer is formed by a combination of chemical plating and metal plating, it also has the effect of reducing heat loss due to radiation. A low melting point solder is used for joining in order to metallize the joining portion. As described above, by metallizing the surface of the inner and outer containers facing the vacuum heat insulating layer and the joint, deterioration of the vacuum degree of the vacuum heat insulating layer can be prevented, and the performance as the vacuum heat insulating container can be maintained for a long time. I have to.

【0005】しかしながら、合成樹脂を用いた内外容器
は射出成形によって形成されることが多く、その場合、
このような射出成形では合成樹脂を流し込みむためのゲ
ート部が生じてしまう。そして、このゲート部にはどう
しても小さな突起が生じ、ゲート部の位置によってはそ
の突起に残留歪みを残し、ゲート部およびこれを取り囲
む部分のゲート周辺部において、ヒートサイクルなどに
よるメッキ層の剥離、膨れ等が生じ、メッキ密着性の低
下や無メッキ部等のメッキ欠陥が生じることが判明し、
これが原因で真空断熱容器のガスバリア性が保持できな
くなるという不都合があった。このため射出成形のゲー
ト部は、通常、容器のガスバリア性に対して不都合にな
らない位置にとらなければならず、製品の自由な形状、
デザインに制限を与えてしまう。また、ゲート部を必要
としない成形法、例えば真空成形法なども考えられる
が、量産性や寸法精度が悪く、射出成形よりも形状、デ
ザインの制限は大きくなる。
However, the inner and outer containers made of synthetic resin are often formed by injection molding. In that case,
In such injection molding, a gate portion for pouring the synthetic resin is generated. Then, a small protrusion is inevitably generated on this gate portion, and residual strain is left on the protrusion depending on the position of the gate portion, and the plating layer is peeled off or swollen due to heat cycle or the like in the gate portion and the peripheral portion of the gate surrounding the gate portion. Etc., it was found that the adhesion of plating was reduced and plating defects such as non-plated parts occurred.
Due to this, there is an inconvenience that the gas barrier property of the vacuum heat insulating container cannot be maintained. For this reason, the gate part of injection molding usually has to be placed at a position where it does not become inconvenient for the gas barrier property of the container, and the free shape of the product,
It limits the design. A molding method that does not require a gate portion, such as a vacuum molding method, is also conceivable, but mass productivity and dimensional accuracy are poor, and the shape and design are more restricted than those of injection molding.

【0006】[0006]

【考案が解決しようとする課題】よって、本考案におけ
る課題は、合成樹脂の射出成形でのゲート部の表面にお
いて、メッキ密着性の低下や無メッキ部等のメッキ欠陥
が生じることがなく、製品の形状やデザインの自由度が
高い合成樹脂製真空断熱容器を提供することにある。
SUMMARY OF THE INVENTION Therefore, the problem to be solved by the present invention is to prevent deterioration of plating adhesion and plating defects such as non-plated portions on the surface of the gate portion in the injection molding of synthetic resin. It is to provide a synthetic resin vacuum heat insulation container having a high degree of freedom in shape and design.

【0007】[0007]

【課題を解決するための手段】かかる課題は、合成樹脂
製真空断熱容器において、合成樹脂製の外容器または内
容器のゲート部の表面をメッキ層の上からハンダにて被
覆したことで解決したものである。
This problem has been solved by coating the surface of the gate portion of the outer or inner container made of synthetic resin with a solder from above the plating layer in the vacuum insulating container made of synthetic resin. It is a thing.

【0008】[0008]

【作用】本考案の合成樹脂製真空断熱容器は、合成樹脂
製の外容器または内容器のゲート部の表面をメッキ層の
上からハンダを用いて被覆して、ゲート部の表面を完全
に金属で覆っているので、ゲート部においてメッキ密着
性の低下や無メッキ部等のメッキ欠陥が生じることがな
く、完全なガスバリア性を有し、長時間真空状態を維持
することが可能である。従って射出成形の際に生じるゲ
ート部およびこれを取り囲む部分のゲート周囲部は、断
熱容器の真空維持性能上何等問題がなくなる。
The vacuum insulation container made of synthetic resin of the present invention is such that the surface of the gate portion of the outer container or the inner container made of synthetic resin is covered with solder from above the plating layer, and the surface of the gate portion is completely made of metal. Since it is covered with, the adhesion of plating is not deteriorated at the gate portion and plating defects such as non-plated portion do not occur, and it has a perfect gas barrier property and can maintain a vacuum state for a long time. Therefore, there is no problem in the vacuum maintaining performance of the heat insulating container in the gate portion generated during the injection molding and the gate peripheral portion of the portion surrounding the gate portion.

【0009】[0009]

【実施例】以下本考案を図1〜図4に基づいて説明す
る。図1は本考案の実施例を示した縦断面図であり、図
2は図1の外容器拡大縦断面図、図3は内容器の縦断面
図、図4は外容器の縦断面図を示したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to FIGS. 1 is a vertical sectional view showing an embodiment of the present invention, FIG. 2 is an enlarged vertical sectional view of an outer container of FIG. 1, FIG. 3 is a vertical sectional view of an inner container, and FIG. 4 is a vertical sectional view of an outer container. It is shown.

【0010】図1中符号1は、内容器であり、符号2は
外容器である。この内容器1と外容器2とは、それぞれ
の口部1A、2Aで接合一体化され空間部3を隔てて二
重壁構造の容器となっている。
In FIG. 1, reference numeral 1 is an inner container, and reference numeral 2 is an outer container. The inner container 1 and the outer container 2 are joined and integrated at their mouths 1A and 2A, respectively, to form a double-walled container with a space 3 therebetween.

【0011】内容器1はメッキグレードABS樹脂から
射出成形された縦方向の断面形状がU字状のものであ
り、口部1Aの外側には、環状に張り出す鍔部1Bが形
成されている。この内容器1の空間3に面する壁面の底
部中央には、この内容器1を射出成形する際に合成樹脂
を流し込むために生じたゲート部4がある。このゲート
部4が生じる位置は必ずしも内容器1の空間3に面する
壁面の底部中央とは限らず、内容器1を射出成形する際
の射出成形機のノズルの位置によって異なる。
The inner container 1 is injection-molded from a plating grade ABS resin and has a U-shaped cross-section in the vertical direction, and a collar portion 1B projecting annularly is formed outside the mouth portion 1A. . At the center of the bottom of the wall surface facing the space 3 of the inner container 1, there is a gate portion 4 which is formed by pouring a synthetic resin when the inner container 1 is injection-molded. The position where the gate portion 4 is generated is not necessarily the center of the bottom of the wall surface facing the space 3 of the inner container 1, but differs depending on the position of the nozzle of the injection molding machine when the inner container 1 is injection molded.

【0012】内外容器1の外容器2との接合面1C上
と、空間部3に面する内容器1の壁面上とには、化学メ
ッキ層5が0.8〜1.0μm程度の厚さで形成され、
これを導体として、さらにこの上面に電気メッキされる
光沢電気銅メッキ層6が10〜20μmの範囲内の厚さ
で形成されている。内容器1のゲート部4およびこれを
取り囲む部分のゲート部周囲の表面は、光沢電気銅メッ
キ層6の上から低融点ハンダ7によって完全に被覆され
ている。
The chemical plating layer 5 has a thickness of about 0.8 to 1.0 μm on the joint surface 1C of the inner and outer container 1 with the outer container 2 and on the wall surface of the inner container 1 facing the space 3. Formed by
Using this as a conductor, a bright electrolytic copper plating layer 6 to be electroplated is further formed on the upper surface with a thickness within the range of 10 to 20 μm. The surface around the gate portion 4 of the inner container 1 and the portion surrounding the gate portion 4 is completely covered with a low melting point solder 7 on the bright electrolytic copper plating layer 6.

【0013】外容器2は、内容器1と同様にメッキグレ
ードABS樹脂で射出成形されており、口部2Aの外側
には環状に張り出す鍔部2Bが形成され、底部には排気
用開口部8が形成されている。この外容器2の外側底部
の封止面2Dには、この外容器2を射出成形する際生じ
たゲート部9、9’がある。このゲート部9、9’が生
じる位置は必ずしも外容器2の外側底部の封止面2Dと
は限らず、外容器2を射出成形する際の射出成形機のノ
ズルの位置によって異なる。
Like the inner container 1, the outer container 2 is injection-molded with a plating grade ABS resin, has a collar 2B protruding annularly on the outside of the mouth 2A, and an exhaust opening at the bottom. 8 is formed. The sealing surface 2D at the outer bottom of the outer container 2 has gate portions 9 and 9'generated when the outer container 2 is injection-molded. The position where the gate portions 9 and 9'are generated is not necessarily the sealing surface 2D of the outer bottom portion of the outer container 2, but differs depending on the position of the nozzle of the injection molding machine when the outer container 2 is injection molded.

【0014】外容器2の内容器1との接合面2C上と、
空間部3に面する外容器2の壁面上と、封止面2D上と
には、化学メッキ層5が0.8〜1.0μm程度の厚さ
で形成され、これを導体として、さらにこの上面に電気
メッキされる光沢電気銅メッキ層6が10〜20μmの
範囲内の厚さで形成されており、この積層状態は図2に
示されている。
On the joint surface 2C of the outer container 2 with the inner container 1,
A chemical plating layer 5 having a thickness of about 0.8 to 1.0 μm is formed on the wall surface of the outer container 2 facing the space 3 and on the sealing surface 2D, and this is used as a conductor. A bright electroplated copper layer 6 to be electroplated on the upper surface is formed with a thickness within the range of 10 to 20 μm, and this laminated state is shown in FIG.

【0015】外容器2のゲート部9、9’およびこれら
を取り囲む部分のゲート部周囲の表面には光沢電気銅メ
ッキ層6の上から低融点ハンダ10によって完全に被覆
されるとともに、この低融点ハンダ10によって排気用
開口部8を封止する封止板11と封止面2Dとが接合さ
れている。封止板11は金属封止板または内外容器1、
2と同様のメッキを施した合成樹脂製封止板からなる。
内容器1の接合面1Cと外容器2の接合面2Cとは低融
点ハンダ12によって接合されている。
The gate portions 9 and 9'of the outer container 2 and the surface around the gate portions surrounding them are completely covered with a low melting point solder 10 from above the bright electrolytic copper plating layer 6 and the low melting point. The sealing plate 11 that seals the exhaust opening 8 and the sealing surface 2D are joined by the solder 10. The sealing plate 11 is a metal sealing plate or the inner and outer containers 1,
It is made of a synthetic resin sealing plate which is plated in the same manner as 2.
The joint surface 1C of the inner container 1 and the joint surface 2C of the outer container 2 are joined by a low melting point solder 12.

【0016】つぎに、上記実施例の合成樹脂製真空断熱
容器の製造方法について説明する。まず、メッキグレー
ド合成樹脂により鍔部1Bを有する内容器1と、鍔部2
Bおよび排気用開口部8を有する外容器2をそれぞれ射
出成形法によって製造する。この例の場合、内容器1の
合成樹脂を流し込むためのゲート部4は底部外側中央
に、外容器2のゲート部9、9’は封止面2Dに生じる
ようになっている。ついで、内外容器1の外容器2との
接合面1C上と、空間部3に面する内容器1の壁面上と
に、化学メッキ層5を形成し、さらにこの上面に光沢電
気銅メッキ層6を形成する。
Next, a method for manufacturing the synthetic resin vacuum heat insulating container of the above embodiment will be described. First, an inner container 1 having a collar portion 1B made of a plating grade synthetic resin, and a collar portion 2
The outer container 2 having B and the exhaust opening 8 is manufactured by the injection molding method. In the case of this example, the gate portion 4 for pouring the synthetic resin of the inner container 1 is formed at the center of the bottom outer side, and the gate portions 9 and 9 ′ of the outer container 2 are formed on the sealing surface 2D. Then, a chemical plating layer 5 is formed on the joint surface 1C of the inner and outer containers 1 with the outer container 2 and on the wall surface of the inner container 1 facing the space 3, and a bright electrolytic copper plating layer 6 is formed on the upper surface of the chemical plating layer 5. To form.

【0017】そして、ゲート部4およびこれを取り囲む
部分からなるゲート部周囲を光沢電気銅メッキ層6の上
から低融点ハンダ7によって完全に被覆する。ついで、
外容器2の内容器1との接合面2C上と、空間部3に面
する外容器2の壁面上と、封止面2D上とに、化学メッ
キ層5を形成し、さらにこの上面に光沢電気銅メッキ層
6を形成する。
Then, the periphery of the gate portion 4 and the portion surrounding the gate portion 4 is completely covered with the low melting point solder 7 on the bright electrolytic copper plating layer 6. Then,
A chemical plating layer 5 is formed on the joint surface 2C of the outer container 2 with the inner container 1, on the wall surface of the outer container 2 facing the space 3, and on the sealing surface 2D, and the upper surface is glossy. The electrolytic copper plating layer 6 is formed.

【0018】この後、内容器1の接合面1Cと外容器2
の接合面2Cとを低融点ハンダ12で接合一体化して二
重構造の本体を形成する。そして、上記外容器2の底部
の排気用開口部8の外方に封止板11を保持せしめ、上
記空間部3の真空排気を行なった後、外容器2のゲート
部9、9’およびこれらを取り囲む部分のゲート部周囲
の表面を光沢電気銅メッキ層6の上から低融点ハンダ1
0によって完全に被覆するとともに、上記封止板11を
封止面2Dに固着させて上記空間部3の真空封止を行な
って、真空断熱層を形成する。なお、封止板11は、金
属製かあるいはあらかじめ内外容器1、2と同様のメッ
キを施した合成樹脂製のものを用いることにより低融点
ハンダで内容器1と外容器2との間に空間部3を気密に
封止することができる。
After this, the joint surface 1C of the inner container 1 and the outer container 2
The joint surface 2C of 1 is joined and integrated with the low melting point solder 12 to form a double-structured body. Then, after the sealing plate 11 is held outside the exhaust opening 8 at the bottom of the outer container 2 and the space 3 is evacuated, the gate parts 9 and 9'of the outer container 2 and these The low-melting-point solder 1 on the surface around the gate part of the part surrounding the
While completely covering with 0, the sealing plate 11 is fixed to the sealing surface 2D and the space 3 is vacuum-sealed to form a vacuum heat insulating layer. It should be noted that the sealing plate 11 is made of metal or is made of synthetic resin which is plated in advance in the same manner as the inner and outer containers 1 and 2 so that a space between the inner container 1 and the outer container 2 can be formed with low melting point solder. The part 3 can be hermetically sealed.

【0019】上記実施例の合成樹脂製真空断熱容器で
は、合成樹脂製内外容器の射出成形の際に生じたゲート
部4、9、9’およびこれらを取り囲む部分のゲート部
周囲の表面を光沢電気銅メッキ層6の上から低融点ハン
ダ9、10で被覆したたものであるので、輻射による熱
損失の減少効果が金属製の真空断熱容器と同等な上に、
ゲート部においてメッキ密着性の低下や無メッキ部等の
メッキ欠陥が生じることがなく、より完全なガスバリア
ー性を有し、アウトガスによる真空断熱層の真空劣化を
防止し、断熱容器としての性能を長期間維持することが
できるものである。また、従来の合成樹脂製の真空断熱
容器と比べてゲート部の位置の制限がなくなり、かつ金
属製真空断熱容器と比べて成形が容易であるため形状や
デザインの自由度が大きいものである。さらに、金属製
の真空断熱容器と比べて非常に軽量であるため携帯に便
利である。
In the synthetic resin vacuum heat insulating container of the above-mentioned embodiment, the surfaces around the gate parts 4, 9, 9'and the gate parts surrounding them generated during the injection molding of the synthetic resin inner and outer containers have a glossy electric property. Since the copper plating layer 6 is covered with the low melting point solders 9 and 10, the effect of reducing the heat loss due to radiation is equivalent to that of the vacuum insulating container made of metal.
There is no deterioration of plating adhesion at the gate part or plating defects such as non-plated part, it has a more complete gas barrier property, prevents vacuum deterioration of the vacuum heat insulation layer due to outgas, and improves the performance as a heat insulation container. It can be maintained for a long time. Further, since the position of the gate portion is not restricted as compared with the conventional vacuum heat insulating container made of synthetic resin, and the molding is easier than that of the metal vacuum heat insulating container, the degree of freedom in shape and design is large. Further, it is very lightweight compared to a metal vacuum heat insulating container, which makes it convenient to carry.

【0020】つぎに、図1に示したような本考案の合成
樹脂製真空断熱容器の具体例を詳しく説明する。 (実施例1) まず、メッキグレードABS樹脂を用いて射出成形によ
り鍔部1Bを有する内容器1と、鍔部2Bおよび排気用
開口部8を有する外容器2を形成した。ついで、導電性
を付与するために、内外容器1の外容器2との接合面1
C上と、空間部3に面する内容器1の壁面上とに、化学
ニッケルメッキを厚さ約1μm形成し、さらにこの上面
に光沢電気銅メッキを厚さ約15μm形成した。
Next, a concrete example of the synthetic resin vacuum heat insulating container of the present invention as shown in FIG. 1 will be described in detail. Example 1 First, an inner container 1 having a collar portion 1B and an outer container 2 having a collar portion 2B and an exhaust opening 8 were formed by injection molding using a plating grade ABS resin. Then, in order to impart conductivity, the joint surface 1 of the inner and outer container 1 with the outer container 2
Chemical nickel plating was formed on the surface of C and on the wall surface of the inner container 1 facing the space 3 to a thickness of about 1 μm, and bright electrolytic copper plating was formed on the upper surface of the thickness to about 15 μm.

【0021】そして、内容器1のゲート部4およびこれ
を取り囲む部分のゲート部周辺の表面を光沢電気銅メッ
キの上から融点95℃の低融点ハンダ7によって完全に
被覆した。ついで、外容器2の内容器1との接合面2C
上と、空間部3に面する外容器2の壁面上と、封止面2
D上とに、化学ニッケルメッキを厚さ約1μm形成し、
さらにこの上面に光沢電気銅メッキを厚さ約15μm形
成した。この後、外容器2の接合面2Cに上記低融点ハ
ンダ7と同様の低融点ハンダ12をのせ、この上に内容
器1をのせて、接合部を95〜100℃に加熱し低融点
ハンダ12を溶融して、内容器1の接合面1Cと外容器
2の接合面2Cとを接合一体化して二重構造の本体を形
成した。そして、上記外容器2の底部の排気用開口部8
の外方に厚さ1mmの銅製封止板11を保持せしめ、空間
部3を10-5トール以下まで排気し、封止面2Dに融点
95℃の低融点ハンダ10をのせ外容器2のゲート部
9、9’の表面を完全に被覆し、さらにその上に封止板
11をのせた後、封止部を95〜100℃に加熱し低融
点ハンダを溶融させ、真空封止すると同時にメッキグレ
ードABS樹脂製真空断熱容器を得た。
Then, the surface of the gate portion 4 of the inner container 1 and the peripheral portion of the gate portion surrounding the gate portion 4 was completely covered with a low melting point solder 7 having a melting point of 95 ° C. on the bright electrolytic copper plating. Then, the joint surface 2C of the outer container 2 with the inner container 1
Above, on the wall surface of the outer container 2 facing the space 3, and the sealing surface 2
Chemical nickel plating with a thickness of about 1 μm is formed on D and
Further, a glossy electrolytic copper plating was formed on the upper surface to a thickness of about 15 μm. Then, a low melting point solder 12 similar to the above low melting point solder 7 is placed on the joint surface 2C of the outer container 2, the inner container 1 is placed thereon, and the joint portion is heated to 95 to 100 ° C. Was melted and the joint surface 1C of the inner container 1 and the joint surface 2C of the outer container 2 were joined and integrated to form a double-structured body. Then, the exhaust opening 8 at the bottom of the outer container 2
A copper sealing plate 11 having a thickness of 1 mm is held on the outside of the container, the space 3 is evacuated to 10 -5 Torr or less, and a low melting point solder 10 having a melting point of 95 ° C. is placed on the sealing surface 2D to form a gate of the outer container 2. After completely covering the surfaces of the parts 9 and 9 ′ and further mounting the sealing plate 11 thereon, the sealing part is heated to 95 to 100 ° C. to melt the low melting point solder, vacuum sealing and plating at the same time. A vacuum insulation container made of grade ABS resin was obtained.

【0022】(比較例1) 実施例1において、ゲート部の表面を低融点ハンダにて
被覆していない以外は同様にしてメッキグレードABS
樹脂製真空断熱容器を得た。
Comparative Example 1 A plating grade ABS was prepared in the same manner as in Example 1 except that the surface of the gate portion was not covered with low melting point solder.
A resin vacuum insulation container was obtained.

【0023】ついで、上のようにして得られたメッキグ
レードABS樹脂製真空断熱容器の断熱性能の比較試験
を以下のようにして行なった。まず、比較例1の内容器
および外容器に形成された化学ニッケルメッキと光沢電
気銅メッキとからなるメッキ層のガスバリア性をヘリウ
ム透過試験により測定した。その結果、内容器、外容器
ともにメッキ層からのヘリウムの透過が認められた。こ
れは、内容器および外容器のゲート部の表面がメッキ欠
陥となっているためである。
Then, a comparative test of the heat insulating performance of the vacuum insulating container made of the plating grade ABS resin obtained as described above was conducted as follows. First, the gas barrier property of the plating layer formed on the inner container and the outer container of Comparative Example 1 formed of chemical nickel plating and bright electrolytic copper plating was measured by a helium permeation test. As a result, permeation of helium from the plating layer was observed in both the inner and outer containers. This is because the surfaces of the gate portions of the inner container and the outer container have plating defects.

【0024】つぎに、実施例1のものについてメッキ層
のガスバリア性をヘリウム透過試験により測定した。そ
の結果、内容器、外容器ともにメッキ層からのヘリウム
の透過は認められなかった。さらに、雰囲気温度−20
℃に1時間、室温に15分、80℃に1時間を1サイク
ルとして、これを10サイクル繰り返すヒートサイクル
試験でメッキ層と低融点ハンダの密着性を評価した。そ
の結果、内容器、外容器ともにガスバリア性に異常は認
められず、ヒートサイクル試験後も初期の断熱性能を維
持していた。
Next, the gas barrier property of the plating layer of Example 1 was measured by a helium permeation test. As a result, no permeation of helium from the plating layer was observed in both the inner container and the outer container. Furthermore, ambient temperature -20
Adhesion between the plated layer and the low melting point solder was evaluated by a heat cycle test in which 10 cycles of 1 hour at ℃, 15 minutes at room temperature and 1 hour at 80 ° C. were repeated for 10 cycles. As a result, no abnormality was found in the gas barrier properties of both the inner container and the outer container, and the initial heat insulation performance was maintained even after the heat cycle test.

【0025】上の試験結果から、合成樹脂製容器のゲー
ト部の表面を光沢電気銅メッキ層の上から低融点ハンダ
で完全に被覆することにより、合成樹脂製容器のガスバ
リア性を完全なものにしうることがわかる。
From the above test results, the gas barrier property of the synthetic resin container was perfected by completely covering the surface of the gate portion of the synthetic resin container with a low melting point solder on the bright electrolytic copper plating layer. I know you can get it.

【0026】[0026]

【考案の効果】以上説明したように、本考案の合成樹脂
製真空断熱容器は、内外容器間の真空断熱空間に面する
内外容器壁面にメッキ層を形成するとともに、合成樹脂
製容器のゲート部の表面をメッキ層の上からハンダで被
覆したものであるので、輻射による熱損失の減少効果が
金属製の真空断熱容器と同等な上に、ゲート部において
メッキ密着性の低下や無メッキ部等のメッキ欠陥が生じ
ることがなく、より完全なガスバリア性を有し、アウト
ガスによる真空断熱層の真空劣化を防止し、断熱容器と
しての性能を長期間維持することができるものである。
また、従来の合成樹脂製の真空断熱容器と比べてゲート
部の位置の制限がなく、かつ金属製の真空断熱容器と比
べて成形が容易であるため形状てやデザインの自由度が
高いものである。さらに、金属製の真空断熱容器と比べ
て非常に軽量であるため携帯に便利である。
As described above, the synthetic resin vacuum heat insulating container of the present invention has a plating layer formed on the inner and outer container wall surfaces facing the vacuum heat insulating space between the inner and outer containers and the gate portion of the synthetic resin container. Since the surface of the is coated with solder from above the plating layer, the effect of reducing heat loss due to radiation is equivalent to that of a metal vacuum insulation container, and the adhesion of plating at the gate part is reduced and unplated parts, etc. It has a more complete gas barrier property without the occurrence of plating defects, prevents vacuum deterioration of the vacuum heat insulating layer due to outgas, and can maintain the performance as a heat insulating container for a long period of time.
In addition, compared to conventional vacuum insulation containers made of synthetic resin, there is no restriction on the position of the gate part, and since it is easier to mold than metal vacuum insulation containers, it has a high degree of freedom in shape and design. is there. Further, it is very lightweight compared to a metal vacuum heat insulating container, which makes it convenient to carry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の合成樹脂製真空断熱容器の実施例を示
した縦断面図である。
1 is a vertical cross-sectional view showing an embodiment of a synthetic resin vacuum heat insulating container of the present invention.

【図2】図1に示した外容器メッキ層の拡大縦断面図で
ある。
FIG. 2 is an enlarged vertical sectional view of an outer container plating layer shown in FIG.

【図3】図1に示した内容器の縦断面図である。3 is a vertical cross-sectional view of the inner container shown in FIG.

【図4】図1に示した外容器の縦断面図である。FIG. 4 is a vertical cross-sectional view of the outer container shown in FIG.

【符号の説明】[Explanation of symbols]

1 内容器 1A 口部 2 外容器 2A 口部 3 空間部 4 ゲート部 5 メッキ層 6 メッキ層 7 ハンダ 9 ゲート部 9’ ゲート部 10 ハンダ 12 ハンダ 1 inner container 1A mouth 2 outer container 2A mouth 3 space 4 gate 5 plating layer 6 plating 7 solder 9 gate 9'gate 10 solder 12 solder

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 少なくともいずれか一方が合成樹脂から
なる内容器と外容器とを口部で接合一体化して二重壁構
造とし、これら内容器と外容器との空間部を真空排気し
て真空断熱層を形成してなる合成樹脂製真空断熱容器に
おいて、前記内外容器間の真空断熱空間に面する内外容
器壁面にメッキ層を形成するとともに、合成樹脂製容器
のゲート部の表面をメッキ層の上からハンダで被覆した
ことを特徴とする合成樹脂製真空断熱容器。
1. A double-walled structure in which an inner container and an outer container, at least one of which is made of a synthetic resin, are joined and integrated at a mouth portion to form a double wall structure, and the space between the inner container and the outer container is evacuated to vacuum. In a synthetic resin vacuum heat insulating container formed with a heat insulating layer, a plating layer is formed on the inner and outer container wall surfaces facing the vacuum heat insulating space between the inner and outer containers, and the surface of the gate portion of the synthetic resin container is covered with the plating layer. A vacuum insulation container made of synthetic resin, which is covered with solder from above.
JP8787091U 1991-10-25 1991-10-25 Vacuum insulation container made of synthetic resin Expired - Lifetime JPH0747078Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8787091U JPH0747078Y2 (en) 1991-10-25 1991-10-25 Vacuum insulation container made of synthetic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8787091U JPH0747078Y2 (en) 1991-10-25 1991-10-25 Vacuum insulation container made of synthetic resin

Publications (2)

Publication Number Publication Date
JPH067633U JPH067633U (en) 1994-02-01
JPH0747078Y2 true JPH0747078Y2 (en) 1995-11-01

Family

ID=13926907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8787091U Expired - Lifetime JPH0747078Y2 (en) 1991-10-25 1991-10-25 Vacuum insulation container made of synthetic resin

Country Status (1)

Country Link
JP (1) JPH0747078Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133313U (en) * 1981-02-14 1982-08-19
JP4637598B2 (en) * 2005-01-31 2011-02-23 ダイキョーニシカワ株式会社 Resin ring-shaped product and injection molding method thereof

Also Published As

Publication number Publication date
JPH067633U (en) 1994-02-01

Similar Documents

Publication Publication Date Title
CA2243186C (en) Thermally insulated synthetic resin container and thermally insulated synthetic resin lid
US6179155B1 (en) Insulated vessel and method of production therefor
KR100260956B1 (en) Plastic insulating double wall receptacle and cover
CA2419437C (en) Thermally insulated container
JPH0747078Y2 (en) Vacuum insulation container made of synthetic resin
JP3009832B2 (en) Insulating container made of synthetic resin and method of manufacturing the same
JPS58157580A (en) Vacuum sealing of metallic vacuum bottle
JP3049220B2 (en) Method for producing synthetic resin double-walled thermal insulation
JP2552524Y2 (en) Cylindrical vacuum insulated container
JPH0591533U (en) Vacuum insulation container made of synthetic resin
KR19980024184A (en) Synthetic resin insulation container and synthetic resin insulation cap
JPH0622865A (en) Vacuum heat-insulating vessel and its production
KR100221279B1 (en) Vessle and cap of synthetic resin
JP2517021Y2 (en) Vacuum insulation container made of synthetic resin
JPH04276222A (en) Synthetic resin vacuum insulation vessel and manufacture thereof
JP2971799B2 (en) Method of manufacturing heat insulating double wall container made of synthetic resin and method of manufacturing heat insulating double wall lid made of synthetic resin
JP2576181Y2 (en) Vacuum insulation container made of synthetic resin
US20230106849A1 (en) Vacuum insulator and insulated container
JP2945342B2 (en) Synthetic resin insulated container and synthetic resin insulated lid
JPH02286110A (en) Production of vacuum bottle made of titanium
JPH07213442A (en) Rectangular vacuum insulation container made of synthetic resin and manufacture thereof
JPS6350789Y2 (en)
JPS64797B2 (en)
JPH10287378A (en) Heat-insulating container and heat-insulating lid made of synthetic resin, and their manufacture
JPH07149378A (en) Heat insulating container and method for production thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960430