JPH0747034Y2 - Receiver - Google Patents

Receiver

Info

Publication number
JPH0747034Y2
JPH0747034Y2 JP873989U JP873989U JPH0747034Y2 JP H0747034 Y2 JPH0747034 Y2 JP H0747034Y2 JP 873989 U JP873989 U JP 873989U JP 873989 U JP873989 U JP 873989U JP H0747034 Y2 JPH0747034 Y2 JP H0747034Y2
Authority
JP
Japan
Prior art keywords
receiving element
wave
wave receiving
receiver
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP873989U
Other languages
Japanese (ja)
Other versions
JPH02100392U (en
Inventor
芳典 濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP873989U priority Critical patent/JPH0747034Y2/en
Publication of JPH02100392U publication Critical patent/JPH02100392U/ja
Application granted granted Critical
Publication of JPH0747034Y2 publication Critical patent/JPH0747034Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は受波器に関し、特に水中を伝搬する音波を電気
信号に変換する受波器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a wave receiver, and more particularly to a wave receiver that converts a sound wave propagating in water into an electric signal.

〔従来の技術〕[Conventional technology]

従来、この種の受波器は、ゴムモールドあるいはゴム被
覆を施して、海水等に浸漬した場合の機械的損傷に対す
る保護及び電気的絶縁を行なっている。
Conventionally, this type of wave receiver is provided with a rubber mold or a rubber coating for protection against mechanical damage when immersed in seawater or the like and for electrical insulation.

ソノブイ等、限られた容積の中に受波器を収納しなけれ
ばならない場合には、小型化のために第8図に示すよう
に薄いゴム被覆を施した受波器17とするか、振動子に絶
縁コーティングを施すなどして被覆を省略することも多
い。全体に吊下ケーブル13で海中に吊下される。
If you need to store the wave receiver in a limited volume such as a sonobuoy, use a wave receiver 17 with a thin rubber coating as shown in Fig. 8 to reduce the size, or vibrate. In many cases, the coating is omitted by applying an insulating coating to the child. It is suspended in the sea by a suspension cable 13 throughout.

このような、ソノブイ等では、受波器17を海中に吊下保
持するフロートが波浪により上下するため、受波器にも
上下動が加わり、受波器が周囲の海水に対して相対速度
を持つ。また潮流がある場合も、受波器が潮流と同じ速
度で流れることは無いため、受波器と周囲の海水の間に
相対速度を生ずる。
In such a sonobuoy, etc., the float that holds the wave receiver 17 suspended in the sea moves up and down due to the waves, so vertical movement is also applied to the wave receiver, and the wave receiver moves relative speed to the surrounding seawater. To have. Even if there is a tidal current, the receiver does not flow at the same speed as the tidal current, so a relative speed is generated between the receiver and the surrounding seawater.

受波器が周囲の海水と相対速度を持つと、受波器のまわ
りには乱流が発生し、この乱流が雑音を発生する。
When the receiver has a relative velocity with the surrounding seawater, turbulence is generated around the receiver, and this turbulence causes noise.

乱流により発生する雑音は本来検出すべき音波が微弱な
場合には、これを検出不可能とする。すなわち、最小検
出可能音圧が、乱流により生じた雑音音圧のために上昇
してしまうことになる。乱流雑音は、第5図に示すよう
に、乱流層18の内部に生ずる渦19により発生するもので
あり、乱流層18は相対的な流れ16の方向に対して、受波
器17の側面あるいは上下面に沿った場所や受波器17の後
に発生する。従って、雑音源が受波器17のすぐ近傍にあ
るため、その影響は大きなものとなり、たとえば1ノッ
トの相対速度の場合でも雑音レベルが20〜30dBにも上昇
することがある。
The noise generated by the turbulence is undetectable when the sound wave to be originally detected is weak. That is, the minimum detectable sound pressure rises due to the noise sound pressure generated by the turbulence. As shown in FIG. 5, the turbulent noise is generated by the vortex 19 generated inside the turbulent layer 18, and the turbulent layer 18 is placed in the wave receiver 17 with respect to the direction of the relative flow 16. It is generated at a place along the side surface or the upper and lower surfaces of or after the receiver 17. Therefore, since the noise source is in the immediate vicinity of the wave receiver 17, the influence thereof becomes great, and the noise level may rise to 20 to 30 dB even at a relative speed of 1 knot, for example.

このように乱流雑音の影響は大きなものであるから、乱
流を防ぐ手段を講じることが多い。例えば、上下方向の
相対速度を低減するためには、第6図に示すように、伸
縮性ケーブル21やダンパー20を用いて、フロート22から
伝わる振動の振幅を吊下ケーブル13から吊下した受波器
17に対して減少させることが行なわれている。
Since the influence of turbulence noise is great as described above, measures are often taken to prevent turbulence. For example, in order to reduce the relative speed in the vertical direction, as shown in FIG. 6, the elastic cable 21 and the damper 20 are used, and the amplitude of the vibration transmitted from the float 22 is suspended from the suspension cable 13. Wave instrument
Reductions to 17 have been made.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

上述した従来の受波器は、乱流雑音を低減するために、
フロート等から伝達する振動により生ずる相対速度を少
なくする構成となっていた。しかし、振動を完全に除去
することはできず、これらの対策を施しても、周囲雑音
を上まわる乱流雑音が発生していた。このように、最小
検出可能音圧を低減し、より微弱な音波を検出するため
には従来の方法だけでは性能改善に限界があるという問
題点がある。
The conventional receiver described above has the following features to reduce turbulent noise.
It is configured to reduce the relative speed generated by the vibration transmitted from the float or the like. However, the vibration could not be completely removed, and even if these measures were taken, turbulent noise exceeding the ambient noise was generated. As described above, in order to reduce the minimum detectable sound pressure and detect a weaker sound wave, there is a problem that the performance improvement is limited only by the conventional method.

本考案の目的は上述した問題を除去し、乱流雑音を大幅
に抑圧しうる受波器を提供することにある。
An object of the present invention is to eliminate the above-mentioned problems and to provide a receiver capable of significantly suppressing turbulent noise.

〔課題を解決するための手段〕[Means for Solving the Problems]

本考案の一つによる受波器は、水中音波を受音し電気信
号に変換する受波素子と、前記受波素子の周囲を密着被
覆する高吸水性ポリマーによる被覆構造とを備える。ま
た、本考案の別の一つによる受波器は、水中音波を受音
し電気信号に変換する受波素子と、高吸水性ポリマーを
含む高吸水性層により前記受波素子の周囲を密着被覆す
る被覆構造とを備える。さらに、本考案のさらに別の一
つによる受波器は、水中音波を受音し電気信号に変換す
る受波素子と、前記受波素子の周囲に隙間を設けて被覆
するように配設されしかも前記水中音波の伝搬媒体の浸
透性が高い被覆材料と、前記隙間に充填した高吸水性ポ
リマーからなる被覆構造とを備える。
A wave receiver according to one aspect of the present invention includes a wave receiving element that receives underwater sound waves and converts the sound wave into an electric signal, and a coating structure of a super absorbent polymer that tightly covers the periphery of the wave receiving element. In addition, a wave receiver according to another aspect of the present invention includes a wave receiving element that receives an underwater sound wave and converts it into an electric signal, and a highly water-absorbing layer containing a super-water-absorbing polymer in close contact with the periphery of the wave-receiving element. And a coating structure for coating. Furthermore, a wave receiver according to yet another aspect of the present invention is provided with a wave receiving element that receives underwater sound waves and converts the wave into an electrical signal, and a wave receiving element surrounding the wave receiving element so as to cover the wave receiving element. In addition, it is provided with a coating material having a high permeability of the underwater acoustic wave propagation medium, and a coating structure made of a highly water-absorbent polymer filling the gap.

〔実施例〕〔Example〕

次に本考案について図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.

第1図は本考案の第1の実施例であり、この受波器は受
波素子11の周囲を高吸水性層12で覆った構造を有してい
る。
FIG. 1 shows a first embodiment of the present invention, and this wave receiver has a structure in which the periphery of a wave receiving element 11 is covered with a super absorbent layer 12.

水中音波の伝搬媒体である海水に浸漬する前には、高吸
水性層12は比較的薄い層を成している。第2図は海水等
液体中に浸漬した状態を示したもので、高吸水性層12は
膨潤状態となって厚くなっている。一般に、高吸水性層
に使用される高吸水性ポリマー、例えばポリビニルアル
コール系の合成ポリマー等は、1gの重量に対して約50g
の海水を吸水するので、高吸水性層12の厚みがそれだけ
著しく増すことになる。ここで、高吸水性層12として
は、高吸水性ポリマー単体だけでなく、ゴムあるいは合
成樹脂に高吸水性ポリマーを混ぜた材料が使用できる。
Before being immersed in seawater, which is a medium for propagating sound waves in water, the superabsorbent layer 12 is a relatively thin layer. FIG. 2 shows a state of being immersed in a liquid such as seawater, and the superabsorbent layer 12 is in a swollen state and is thick. Generally, a superabsorbent polymer used in the superabsorbent layer, for example, a polyvinyl alcohol-based synthetic polymer, is about 50 g per 1 g weight.
Since it absorbs the seawater, the thickness of the highly water-absorbent layer 12 is significantly increased. Here, as the superabsorbent layer 12, not only a superabsorbent polymer alone but also a material in which a superabsorbent polymer is mixed with rubber or synthetic resin can be used.

第3図は本考案の第2の実施例である。受波素子11の周
囲を海水の透過可能な膜あるいは布でできた被覆層14で
覆い、その間に高吸水性ポリマー15を充填した構造を有
する。これを海水中に入れると、第4図に示すように第
2図に示す第1の実施例の場合と同様に高吸水性ポリマ
ー15が膨潤し、被覆層14が外側に膨らむ。
FIG. 3 shows a second embodiment of the present invention. It has a structure in which the surroundings of the wave receiving element 11 are covered with a coating layer 14 made of a membrane or cloth permeable to seawater, and a super absorbent polymer 15 is filled between them. When this is placed in seawater, as shown in FIG. 4, the superabsorbent polymer 15 swells and the coating layer 14 swells outward as in the case of the first embodiment shown in FIG.

こうして、第1および第2の実施例のいずれの場合も、
受波素子11の周囲に水で膨潤した高吸水性ポリマーを含
んだゲル,ゴムあるいは合成樹脂の高吸水性層が存在
し、この層内に吸収された水は受波素子11の振動に追従
して動くため、高吸水性層と受波素子11との相対速度が
非常に小さくなる。
Thus, in both cases of the first and second embodiments,
There is a super absorbent layer of gel, rubber or synthetic resin containing a super absorbent polymer swollen with water around the wave receiving element 11, and the water absorbed in this layer follows the vibration of the wave receiving element 11. As a result, the relative speed between the superabsorbent layer and the wave receiving element 11 becomes very small.

こうして、従来、受波素子11と周囲の海水との相対速度
から生ずる境界は、受波素子11の表面であったのに対し
高吸水性層の外側となり、乱流層はさらに外側に発生す
るから雑音源が受波素子から離れた場所に発生し雑音を
大幅に抑圧できることとなる。
Thus, conventionally, the boundary generated from the relative velocity between the wave receiving element 11 and the surrounding seawater is outside the superabsorbent layer, whereas the boundary is the surface of the wave receiving element 11, and the turbulent layer is generated further outside. Therefore, the noise source is generated at a place distant from the receiving element, and the noise can be significantly suppressed.

受波素子11の表面に乱流層がある場合には、第5図に示
すように、受波器17の極く近くの渦19内で発生する雑音
が直接受波器17に加わり大きなレベルを示すのに対し、
受波素子11から離れた位置に乱流層18がある場合には第
7図に示すように、離れた場所にある複数の渦19で発生
する雑音が高吸水性層12を伝搬してから受波素子11に加
わるためそのレベルは大幅に低下する。
When there is a turbulent layer on the surface of the wave receiving element 11, the noise generated in the vortex 19 which is very close to the wave receiving element 17 is directly added to the wave receiving element 17 and has a large level, as shown in FIG. While showing
When the turbulent layer 18 is located at a position distant from the wave receiving element 11, noise generated by a plurality of vortices 19 located at distant positions propagates through the superabsorbent layer 12 as shown in FIG. Since it is added to the wave receiving element 11, its level is significantly reduced.

これは、この種の雑音は距離が離れるにつれて著しく減
衰する特性を有することと、個個の雑音源の間には相関
が無く、これらの雑音成分が積分された形になるためで
ある。
This is because this type of noise has the characteristic of being significantly attenuated as the distance increases, and there is no correlation between the individual noise sources, and these noise components are in an integrated form.

一般に、1ノット程度の相対速度に対して、乱流層外に
放射される雑音レベルは乱流層内に生ずる雑音レベルよ
り50dB以上低い。従って本考案によれば乱流により生ず
る雑音の影響を著しく低減することができる。
Generally, for a relative velocity of about 1 knot, the noise level emitted outside the turbulent layer is lower than the noise level generated inside the turbulent layer by 50 dB or more. Therefore, according to the present invention, the influence of noise caused by turbulence can be significantly reduced.

また、高吸水性層の膨潤したゲル、あるいは高吸水性ポ
リマを混ぜたゴムや、合成樹脂の表面は、高吸水性ポリ
マーが半溶解ゲル状になっており、このような高分子粘
弾性流体が表面に存在すると、さらに乱流雑音が低減さ
れることが知られている。
Further, the swollen gel of the super absorbent layer, the rubber mixed with the super absorbent polymer, or the surface of the synthetic resin is a semi-dissolved gel of super absorbent polymer. It is known that turbulence noise is further reduced by the presence of s on the surface.

従って、雑音源を受波器表面より離しただけの場合と比
較して極めて低雑音の受波器が実現できる。
Therefore, as compared with the case where the noise source is merely separated from the surface of the receiver, a receiver with extremely low noise can be realized.

さらに、高吸水性ポリマーは親水性であるから受波素子
表面に要求され媒質との親和性の尺度となる水ぬれ性を
向上させ、海水等の水中音波の伝搬媒質と受波素子の音
波の伝達を有効に行なわせることができるという特徴も
付与される。
Further, since the super absorbent polymer is hydrophilic, it improves water wettability, which is required for the surface of the wave receiving element and is a measure of affinity with the medium, so that the propagation medium of the underwater sound wave such as seawater and the sound wave of the wave receiving element are improved. The feature that transmission can be effectively performed is also added.

なお、高吸水性ポリマーは水を吸収して膨潤するもので
あるから、水を吸収する前は小さな体積で済み、ソノブ
イ等限られた空間内に受波器を組み込まなければならな
い場合に極めて有用な構造である。特に、第3図および
第4図に示す第2の実施例において、被覆層14の材料と
して水のみを選択的に浸透する材料を使用すれば、高吸
水性ポリマー1gに対して、海水の場合には約50gしか吸
収できなかったのに対し約1000gもの水を吸収すること
が可能となる。従って、吸収前の小型化をはかれると同
時に、液体中では高吸水性層がそれだけ厚くなるため、
極めて低雑音な受波器も構成できる。
Since the super absorbent polymer swells by absorbing water, it has a small volume before absorbing water, and is extremely useful when the wave receiver must be installed in a limited space such as Sonobui. It has a simple structure. In particular, in the second embodiment shown in FIG. 3 and FIG. 4, if a material that selectively permeates only water is used as the material of the coating layer 14, in the case of seawater with respect to 1 g of the superabsorbent polymer. It can absorb about 1000g of water, while it can absorb only about 50g. Therefore, the size before absorption can be reduced, and at the same time, the super absorbent layer becomes thicker in the liquid,
An extremely low noise receiver can also be constructed.

〔考案の効果〕[Effect of device]

以上説明したように本考案によれば、受波素子の周囲を
覆う高吸水性ポリマー、あるいは高吸水性ポリマーを含
むゴムまたは合成樹脂から成る高吸水性層を持つ構造、
もしくは受波素子を液体が浸透する被覆層で覆い、その
隙間を高吸水性ポリマーで充填した構造のいずれかの被
覆構造を有することにより、乱流による雑音の影響を著
しく抑圧した受波器が実現できるという効果がある。
As described above, according to the present invention, a structure having a super absorbent polymer that covers the periphery of the wave receiving element, or a super absorbent layer made of rubber or synthetic resin containing the super absorbent polymer,
Alternatively, by covering the wave receiving element with a coating layer that allows liquid to permeate, and by filling the gap with a super absorbent polymer, it is possible to reduce the effect of noise due to turbulence on the receiver. There is an effect that it can be realized.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案による受波器の第1の実施例の水中浸漬
前の状態を示す断面図、第2図は第1の実施例の浸漬後
の状態を示す断面図、第3図は第2の実施例の水中浸漬
前の状態を示す断面図、第4図は第2の実施例の浸漬後
状態を示す断面図、第5図は乱流雑音の説明図、第6図
は従来の乱流雑音の低減方法示す説明図、第7図は本考
案のよる乱流雑音の減少抑圧の説明図、第8図は従来の
受波器の一例を示す断面図である。 11……受波素子、12……高吸水性層、13……吊下ケーブ
ル、14……被覆層、15……高吸水性ポリマー、16……流
れ、17……受波器、18……乱流層、19……渦、20……ダ
ンパー、21……伸縮性ケーブル、22……フロート、23…
…ゴム被覆。
FIG. 1 is a sectional view showing a first embodiment of a wave receiver according to the present invention before being immersed in water, FIG. 2 is a sectional view showing a condition after soaking of the first embodiment, and FIG. A sectional view showing a state before immersion in water of the second embodiment, FIG. 4 is a sectional view showing a state after immersion of the second embodiment, FIG. 5 is an explanatory view of turbulent noise, and FIG. 6 is conventional. FIG. 7 is an explanatory view showing a method for reducing turbulent noise, FIG. 7 is an explanatory view for reducing and suppressing turbulent noise according to the present invention, and FIG. 8 is a sectional view showing an example of a conventional receiver. 11 ... Wave receiving element, 12 ... Super absorbent layer, 13 ... Suspended cable, 14 ... Coating layer, 15 ... Super absorbent polymer, 16 ... Flow, 17 ... Wave receiver, 18 ... … Turbulent layer, 19 …… Vortex, 20 …… Damper, 21 …… Stretchable cable, 22 …… Float, 23…
… Rubber coating.

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】水中音波を受音し電気信号に変換する受波
素子と、前記受波素子の周囲を密着被覆する高吸水性ポ
リマーによる被覆構造とを備えることを特徴とする受波
器。
1. A wave receiver comprising: a wave receiving element that receives underwater sound waves and converts it into an electric signal; and a coating structure of a super absorbent polymer that closely coats the periphery of the wave receiving element.
【請求項2】水中音波を受音し電気信号に変換する受波
素子と、高吸水性ポリマーを含む高吸水性層により前記
受波素子の周囲を密着被覆する被覆構造とを備えること
を特徴とする受波器。
2. A wave receiving element for receiving an underwater acoustic wave and converting it into an electric signal, and a coating structure for tightly covering the periphery of the wave receiving element with a superabsorbent layer containing a superabsorbent polymer. And a receiver.
【請求項3】水中音波を受音し電気信号に変換する受波
素子と、前記受波素子の周囲に隙間を設けて被覆するよ
うに配設されしかも前記水中音波の伝搬媒体の浸透性が
高い被覆材料と、前記隙間に充填した高吸水性ポリマー
からなる被覆構造とを備えることを特徴とする受波器。
3. A wave receiving element that receives underwater sound waves and converts the sound waves into an electric signal, and a wave receiving element that is arranged so as to cover the wave receiving element with a gap provided between the wave receiving element and the penetrability of the underwater sound wave propagation medium. A wave receiver comprising a high coating material and a coating structure made of a highly water-absorbent polymer filling the gap.
JP873989U 1989-01-27 1989-01-27 Receiver Expired - Lifetime JPH0747034Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP873989U JPH0747034Y2 (en) 1989-01-27 1989-01-27 Receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP873989U JPH0747034Y2 (en) 1989-01-27 1989-01-27 Receiver

Publications (2)

Publication Number Publication Date
JPH02100392U JPH02100392U (en) 1990-08-09
JPH0747034Y2 true JPH0747034Y2 (en) 1995-10-25

Family

ID=31214881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP873989U Expired - Lifetime JPH0747034Y2 (en) 1989-01-27 1989-01-27 Receiver

Country Status (1)

Country Link
JP (1) JPH0747034Y2 (en)

Also Published As

Publication number Publication date
JPH02100392U (en) 1990-08-09

Similar Documents

Publication Publication Date Title
DK168317B1 (en) Ultrasonic transducer
JP5099175B2 (en) Ultrasonic sensor
Hovem Underwater acoustics: Propagation, devices and systems
US4450544A (en) Absorptive sonar baffle
KR20210090553A (en) Apparatus and method for measuring underwater radiated noise of vessel in particular dockyard
GB2063007A (en) Ultrasonic transducer
JPH0747034Y2 (en) Receiver
US4669573A (en) Underwater acoustic baffle enhancer
JPH0737438Y2 (en) Receiver
CN208800353U (en) A kind of ultrasonic transducer
US1051543A (en) Direction-finder for submarine signals.
USH387H (en) Wavelength filter for marine seismic cables
JPS5910871Y2 (en) ultrasonic probe
RU2199835C2 (en) Hydroacoustic measuring system
US2831177A (en) Delay line for hydrophones
JPH0543422Y2 (en)
CN212220522U (en) Hydrophone probe mounting structure
KR960016396B1 (en) Sonar device
RU148276U1 (en) HYDROACOUSTIC SOUND-ABSORBING PANEL
JP2647489B2 (en) Low noise circulation water tank
JPH10111168A (en) Fluid noise measuring sensor
JPH04114286U (en) Ultrasonic transducer dome
KR100386445B1 (en) Hydrophone having a Elastic Water-proof Material
JP2807802B2 (en) Waterproof structure of water immersion ultrasonic probe
JPH04130287A (en) Underwater sound-absorbing body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term