JP2647489B2 - Low noise circulation water tank - Google Patents

Low noise circulation water tank

Info

Publication number
JP2647489B2
JP2647489B2 JP7867789A JP7867789A JP2647489B2 JP 2647489 B2 JP2647489 B2 JP 2647489B2 JP 7867789 A JP7867789 A JP 7867789A JP 7867789 A JP7867789 A JP 7867789A JP 2647489 B2 JP2647489 B2 JP 2647489B2
Authority
JP
Japan
Prior art keywords
duct
water tank
water
noise
acrylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7867789A
Other languages
Japanese (ja)
Other versions
JPH02259440A (en
Inventor
正治 西村
秋生 東田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7867789A priority Critical patent/JP2647489B2/en
Publication of JPH02259440A publication Critical patent/JPH02259440A/en
Application granted granted Critical
Publication of JP2647489B2 publication Critical patent/JP2647489B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、回流水槽,詳しくは低雑音化した回流水槽
に関する。
Description: TECHNICAL FIELD The present invention relates to a circulating water tank, and more particularly to a circulating water tank with reduced noise.

〔従来の技術〕[Conventional technology]

第7図に従来の回流水槽の代表例を示す。ポンプ1で
駆動された水は上流ダクト2から、流路を横断して設け
られたハニカム31などを潜り抜け、整流胴3,縮流胴4を
経て測定胴5に流れ込む。更に流れは拡散胴6から下流
ダクト7を通って、ポンプ1に入り込むといったルート
で回流する。
FIG. 7 shows a typical example of a conventional circulating water tank. The water driven by the pump 1 passes through the upstream duct 2 through a honeycomb 31 provided across the flow path and the like, and flows into the measuring cylinder 5 via the rectifying cylinder 3 and the contraction cylinder 4. Further, the flow circulates from the diffusion cylinder 6 through the downstream duct 7 and enters the pump 1 by a route.

測定胴5には、供試模型10を設置し、流体力学的な性
能計測やフローノイズ,キャビテーションノイズ等の放
射雑音計測等を行うことを目的としている。
The test model 10 is installed on the measuring cylinder 5 to measure hydrodynamic performance and measure radiation noise such as flow noise and cavitation noise.

上記のような例では通常,上流ダクト2,下流ダクト7
や整流胴3〜拡散胴6等は剛性の高い鋼板またはコンク
リートで作られており、測定胴5のみがアクリル板やガ
ラスのような透明材料で作られるか或は透明材料の窓を
設けられている。
In the above example, usually, the upstream duct 2 and the downstream duct 7
The rectifying cylinder 3 to the diffusion cylinder 6 are made of a rigid steel plate or concrete, and only the measuring cylinder 5 is made of a transparent material such as an acrylic plate or glass, or provided with a window of a transparent material. I have.

また、ポンプ1の振動がダクト壁を伝播し、測定胴に
悪影響を及ぼさないように、上流ダクト,下流ダクトを
水没させることがよく行われている。
It is common practice to submerge the upstream duct and the downstream duct so that the vibration of the pump 1 does not propagate through the duct wall and adversely affect the measuring cylinder.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来の回流水槽には解決すべき次の課題があっ
た。
The conventional circulating water tank has the following problems to be solved.

即ち、ダクト壁が剛壁であるため、ポンプで発生した
水中音がダクト内を減衰せずに測定胴に伝わってくる。
そのため供試模型で発生した音が、その背景雑音(バッ
クグラウンドノイズ;BGN)に埋もれ、計測するのが難し
いという問題があった。
That is, since the duct wall is a rigid wall, the underwater sound generated by the pump is transmitted to the measuring cylinder without attenuating the inside of the duct.
Therefore, the sound generated by the test model was buried in the background noise (background noise; BGN), and there was a problem that it was difficult to measure.

風洞での消音対策を習って、ダクト内部に水中吸音材
を張ったり、リサーバタンクを設置したりすることも考
えられるが、対策が大がかりで、高価であるとともに圧
損が増すという欠点があり、実用化は難しい。
It is also conceivable to install underwater sound absorbing material inside the duct or install a reservoir tank, learning the noise suppression measures in the wind tunnel, but there is a disadvantage that the measures are large, expensive and pressure loss increases, Practical application is difficult.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は上記課題の解決手段として、閉ループ管路の
任意の個所にポンプを設置し、同閉ループ管路の別の個
所を供試模型の流体性能や供試模型から発生するフロー
ノイズ,キャビテーションノイズ等を計測するための測
定胴で構成した回流水槽において、前記測定胴の上流側
及び下流側の所定の位置の各管路が水とほぼ等しい音響
インピーダンスの材質より構成されたことを特徴とする
低雑音回流水槽を提供しようとするものである。
The present invention provides a means for solving the above-mentioned problems, in which a pump is installed at an arbitrary point in a closed loop pipe, and another point in the closed loop pipe is used for fluid performance of a test model, flow noise and cavitation noise generated from the test model. In a circulating water tank configured with a measuring cylinder for measuring the like, each of the pipelines at predetermined positions on the upstream and downstream sides of the measuring cylinder is made of a material having an acoustic impedance substantially equal to water. It is intended to provide a low-noise circulating water tank.

〔作 用〕(Operation)

本発明は上記のように構成されるので次の作用を有す
る。
The present invention has the following effects because it is configured as described above.

即ち、測定胴の上流側及び下流側の管路の一部を音響
インピーダンスが水とほぼ等しい材質で構成するので、
管路の外周が水と空気(ないしは外周を取巻く環境物
質)との境界と同等となり、音が空気等の環境物質中に
通過してゆくのでその分管路内を伝播する雑音等が減
る。
That is, since a part of the pipeline on the upstream side and the downstream side of the measuring cylinder is made of a material whose acoustic impedance is almost equal to water,
The outer circumference of the pipe is equivalent to the boundary between water and air (or an environmental substance surrounding the outer circumference), and the sound passes through the environmental material such as air, so that noise and the like that propagates in the pipe are reduced accordingly.

〔実施例〕〔Example〕

本発明の実施例の説明に入る前に、理解を容易にする
ため、管路の外周が水で満たされている場合の管路内の
音の減衰原理を第3図により説明しておく。
Before describing the embodiment of the present invention, the principle of sound attenuation in the pipeline when the outer periphery of the pipeline is filled with water will be described with reference to FIG. 3 for easy understanding.

第3図に示すように一部がアクリルダクト30のように
水と音響インピーダンスが同等な樹脂やゴムで構成さ
れ、内部に水を満たしたダクト(管路)31を水中32に沈
めると、音響的にはアクリルダクト30は無いのと同等で
あり、ダクト31内の水中33を伝播してきた音は、一部、
剛壁ダクト34とアクリルダクト30との境界で反射し、他
の一部はアクリルダクト30から外部水中32に漏れ出す。
従ってダクト31内を更に先へと伝播する音波は大巾に減
衰してしまう。即ち、雑音源と測定胴との間の管路の一
部がアクリル等の、水と音響インピーダンスのほぼ等し
い材質で構成されている場合は、測定胴に達する雑音
は、剛なる管路のままの場合より減衰して伝わることに
なる。
As shown in FIG. 3, when a part of a duct (pipe) 31 filled with water is submerged in water 32, a part of the resin is made of resin or rubber having the same acoustic impedance as water, like an acrylic duct 30, as shown in FIG. Is equivalent to the absence of the acrylic duct 30, and the sound that has propagated through the underwater 33 in the duct 31,
The light is reflected at the boundary between the rigid wall duct 34 and the acrylic duct 30, and another part leaks from the acrylic duct 30 into the external water 32.
Therefore, the sound wave propagating further in the duct 31 is greatly attenuated. In other words, if a part of the conduit between the noise source and the measuring cylinder is made of a material such as acrylic, which has almost the same acoustic impedance as water, the noise reaching the measuring cylinder remains a rigid conduit. It will be transmitted more attenuated than in the case of.

次に本発明の第1実施例を第1図により説明する。な
お、従来例と同様の構成部材には同符号を付し、説明を
省略する。
Next, a first embodiment of the present invention will be described with reference to FIG. The same reference numerals are given to the same components as those in the conventional example, and the description is omitted.

第1図は本実施例の側断面図で、図において測定胴5
の上流ダクト2および下流ダクト7の大部分を水没さ
せ、上流ダクト2および下流ダクト7の水没した任意の
個所に図示のようにそれぞれアクリルダクト8,9を設置
してある。
FIG. 1 is a side sectional view of the present embodiment.
Most of the upstream duct 2 and the downstream duct 7 are submerged, and acrylic ducts 8 and 9 are respectively installed at arbitrary locations of the upstream duct 2 and the downstream duct 7 as shown in the figure.

アクリルダクト8,9の構造は任意でよく、たとえば矩
形断面でも円形断面でもよい。また、鋼材その他で補強
してもよく、或は鋼製ダクトにアクリル板の窓を設けた
ものでもよい。
The structure of the acrylic ducts 8 and 9 may be arbitrary, and may be, for example, a rectangular cross section or a circular cross section. Further, it may be reinforced with a steel material or the like, or an acrylic plate window may be provided in a steel duct.

第4図はこれらダクト8,9の諸実施例の斜視図で、
(a)〜(e)はそれぞれの図である。
FIG. 4 is a perspective view of various embodiments of these ducts 8, 9.
(A)-(e) is each figure.

更にアクリル板のかわりに水と同等な音響インピーダ
ンスをもった他の可塑性樹脂やゴム等を使用してもよ
い。
Further, instead of the acrylic plate, another plastic resin or rubber having the same acoustic impedance as water may be used.

本実施例は上記のように構成されているのでアクリル
ダクト8,9を通過して外に出た音は水に吸収されて減衰
する。
Since the present embodiment is configured as described above, the sound that has passed through the acrylic ducts 8 and 9 to the outside is absorbed by water and attenuated.

次に本発明の第2実施例を第2図により説明する。な
お、第1実施例と同様の構成部材には同符号を付し、説
明を省略する。
Next, a second embodiment of the present invention will be described with reference to FIG. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.

第2図においてアクリルダクト8,9の周囲には水を満
たす環状の容器21,22が設けられ、容器21,22の内側は水
中吸音材23で吸音処理されている。
In FIG. 2, annular containers 21 and 22 filled with water are provided around the acrylic ducts 8 and 9, and the insides of the containers 21 and 22 are subjected to sound absorbing treatment by a water absorbing material 23.

本実施例は上記のように構成されているのでアクリル
ダクト8,9を通過して容器21,22に出た音は水中吸音材23
に吸収され、消音される。
Since the present embodiment is configured as described above, the sound that has passed through the acrylic ducts 8 and 9 and exited to the containers 21 and 22 is underwater sound absorbing material 23.
It is absorbed and muted.

以上、第1,第2実施例はアクリルダクト8,9の外側の
水が満たす環境としたが、環境を水とすることを条件と
するものではなく、単にアクリルダクト8,9又は他の水
と音響インピーダンスのほぼ等しい材質のダクトのまま
でもよい。即ち、アクリルダクト8,9の外側は大気のま
まであってもよい。その場合でも次に説明する通り、相
応した効果を有するものである。
As described above, in the first and second embodiments, the environment outside the acrylic ducts 8 and 9 is filled with water. However, the environment is not limited to water, and the acrylic ducts 8 and 9 or other water are merely used. It may be a duct made of a material having almost the same acoustic impedance as that of the duct. That is, the outside of the acrylic ducts 8 and 9 may be left as air. Even in such a case, as described below, it has a corresponding effect.

第5図に示すような水ダクトの中の音圧は通常断面内
で特定の音圧モードを形成して伝播していく。ダクト内
任意点(x,y,z)で(m,n)モードを形成する音圧P
mn(x,y,z)は次式のように表わされる。
The sound pressure in a water duct as shown in FIG. 5 usually propagates while forming a specific sound pressure mode in a cross section. Sound pressure P that forms (m, n) mode at any point (x, y, z) in the duct
mn (x, y, z) is represented by the following equation.

ここで、ly,lzはそれぞれy方向,z方向のダクト断面
寸法,Amnはx=0断面における振巾gymgznはそれぞれy
方向z方向のm次,n次の固有値で、ダクト壁の境界条件
によって求まる。ωは角周波数、tは時刻,cは音速であ
る。τmnは(m,n)モードでx方向に伝播する音波の透
過係数で、次式で与えられる。
Here, l y and l z are the cross-sectional dimensions of the duct in the y and z directions, respectively, and A mn is the amplitude g ym g zn of the cross section at x = 0.
The m-th and n-th eigenvalues in the direction z, which are determined by the boundary conditions of the duct wall. ω is an angular frequency, t is time, and c is sound speed. τ mn is a transmission coefficient of a sound wave propagating in the x direction in the (m, n) mode, and is given by the following equation.

複号−は下流方向伝播,+は上流方向伝播を表わす。
λは波長である。
The symbol-indicates downstream propagation, and + indicates upstream propagation.
λ is the wavelength.

ここで、τmnの根号内が正の場合はx方向に音圧の減
衰は無いが、複素数または純虚数のときはx方向に減衰
する。単位長さ当りの減音量 は次式で表わされる。
Here, when the root of τ mn is positive, there is no attenuation of the sound pressure in the x direction, but when it is a complex number or a pure imaginary number, the sound pressure attenuates in the x direction. Volume reduction per unit length Is represented by the following equation.

ここで、Im( )はアーギュメントの虚数部を示す。 Here, I m () denotes the imaginary part of the argument.

一方 はダクト壁の表面インピーダンスを境界条件とした、次
式の解である。
on the other hand Is a solution of the following equation with the surface impedance of the duct wall as a boundary condition.

ここで、πは円周率,iは虚数単位,ζyはそれぞ
れy方向,z方向に垂直なダクト壁表面の表面インピーダ
ンスである。
Here, π is the pi, i is the imaginary unit, and ζ y and z z are the surface impedance of the duct wall surface perpendicular to the y and z directions, respectively.

通常の鋼製やコンクリート製の剛壁ダクトでは、ζy,
ζ→∞となり、 m,n=0,1,2,3………となる。つまりm=n=0なる解が
存在し、式(2)から、あらゆる波長(周波数)に対し
なる解が存在し、Im(τoo)=0となって式(3)より なる解が存在する。つまり、どのような周波数に対して
もダクト断面内を平面波(断面内で、音圧Gain,位相が
一定な音波モード)として減衰無く伝播する。
For regular steel or concrete rigid wall ducts, ζ y ,
z z → ∞, m, n = 0, 1, 2, 3... That is, there exists a solution of m = n = 0, and from equation (2), for every wavelength (frequency), Made solutions exist, the equation (3) becomes I moo) = 0 There exists a solution. That is, for any frequency, the wave propagates as a plane wave (sound pressure G ain , a sound wave mode with a constant phase in the cross section) within the duct cross section without attenuation.

一方、アクリル板のように水と音響インピーダンスの
ほぼ等しい材料でダクト壁が形成され、その外側が空気
の場合、音響的にはダクトは水と同一物性とみなされ、
ダクトの外側(空気との接触点)が境界となる。空気の
音響特性インピーダンスは水の音響特性インピーダンス
に比べ非常に小さく、その場合ζy≒0となる。こ
の関係を式(4),(5)に代入すると、 m,n=1,2,3…… となり、m=0又はn=0なる解は存在しない。この場
合、透過係数は次式のようになる。
On the other hand, if the duct wall is made of a material with almost the same acoustic impedance as water, such as an acrylic plate, and the outside is air, the duct is acoustically regarded as having the same physical properties as water,
The outside of the duct (point of contact with air) is the boundary. The acoustic characteristic impedance of air is much smaller than the acoustic characteristic impedance of water, in which case ζ y , z z ≒ 0. Substituting this relationship into equations (4) and (5) gives m, n = 1,2,3..., and there is no solution where m = 0 or n = 0. In this case, the transmission coefficient is as follows.

前述のように根号内≧0の場合はIm(τmn)=0とな
り減音量=0となるが根号内<0の場合Im(τmn)>0
となり減音が生じる。つまり とすると、 で(m,n) モードは伝播し、 で(m,n) モードは減衰する。
As described above, if the value within the root is ≧ 0, I mmn ) = 0 and the sound reduction is 0, but if the value within the root is <0, I mmn )> 0
And noise reduction occurs. I mean Then And the (m, n) mode propagates, Then the (m, n) mode is attenuated.

アクリル板のように水と音響インピーダンスが同等な
材料をダクト壁に用いると、 の最小値は となる。つまり、 以下の周波数はどのようなモードも形成できず減衰して
しまうことになる。
If a material with the same acoustic impedance as water as the acrylic plate is used for the duct wall, The minimum value of Becomes That is, The following frequencies cannot be formed in any mode and are attenuated.

剛壁の場合にはm=n=0が存在するから の最小値は となり、すべての周波数が伝播モードを形成できる。In the case of a rigid wall, m = n = 0 exists The minimum value of And all frequencies can form a propagation mode.

ちなみにly=lz=lmのダクトとすると、C≒1500m/se
cだから となり、それ以下の周波数は減衰することになる。この
場合、ちなみにf=500Hzについて、式(8),(3)
を用いて、減衰量を求めると となり、理論的には非常に大きな減音効果が得られるこ
とになる。
By the way, if it is assumed that l y = l z = l m , C ≒ 1500m / se
c , And the lower frequencies are attenuated. In this case, for f = 500 Hz, equations (8) and (3)
Is used to determine the amount of attenuation. Thus, a very large noise reduction effect can be obtained theoretically.

なお参考に剛壁の場合と、アクリル板のように水と音
響インピーダンスの同等な壁を持つダクトの場合の内部
音圧モードを2次元表示で第6図に示しておく。(a)
は剛壁の場合、(b)は水と音響インピーダンスの同等
な材料の壁の場合である。前者では壁面で音圧腹のモー
ドであるのに対し、後者では壁外面で音圧節のモードが
成り立つ必要があり、これからみてもm=0が成り立た
ないことが容易に推察される。即ち、減音効果が生じる
ことになる。
For reference, FIG. 6 shows two-dimensional internal sound pressure modes in the case of a rigid wall and the case of a duct having a wall having the same acoustic impedance as water as an acrylic plate. (A)
Is a case of a rigid wall, and (b) is a case of a wall made of a material having the same acoustic impedance as water. In the former, the sound pressure antinode mode is set on the wall surface, whereas in the latter, the sound pressure node mode needs to be set on the outer surface of the wall. From this, it is easily presumed that m = 0 does not hold. That is, a sound reduction effect is produced.

また、ここでは矩形断面ダクトについて述べたが、円
形断面ダクトやその他の任意断面ダクトについても同様
である。
Although the rectangular section duct has been described here, the same applies to a circular section duct and other arbitrary section ducts.

以上の通り、アクリルダクト8,9の外側が空気の場合
でも十分な減音効果が生じるものである。
As described above, even when the outside of the acrylic ducts 8 and 9 is air, a sufficient sound reduction effect is produced.

〔発明の効果〕〔The invention's effect〕

本発明は上記のように構成されるので次の効果を有す
る。即ち、ポンプで発生した雑音は測定胴の上流側,下
流側ダクト内を伝播していくが、水と音響インピーダン
スのほぼ等しい材質のダクトを通過するとき減衰され、
測定胴まで伝播する雑音は大きく減衰する。この結果、
供試模型に関する正確な測定データが得られる。
The present invention has the following effects because it is configured as described above. That is, the noise generated by the pump propagates in the ducts on the upstream and downstream sides of the measuring cylinder, but is attenuated when passing through a duct made of a material having almost the same acoustic impedance as water.
Noise propagating to the measuring cylinder is greatly attenuated. As a result,
Accurate measurement data on the test model can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の第1実施例に係る低雑音回流水槽の
側断面図,第2図は本発明の第2実施例に係る低雑音回
流水槽の側断面図,第3図は上記第1,第2実施例の作用
等のうち、管路の外側が水の場合の減音原理の説明図,
第4図は本発明の実施例の一部をなすアクリルダクトの
諸例の斜視図,第5図は別の実施例の作用等のうち、管
路の外側が空気の場合の減音原理の説明図,第6図は別
の実施例の作用等の説明図で、(a)は管路が剛壁の場
合、(b)は管路が水と音響インピーダンスの同等な材
料よりなる場合の各説明図,第7図は従来例の側断面図
である。 1……ポンプ,2……上流ダクト,3……整流胴, 4……縮流胴,5……測定胴,6……拡散胴, 7……下流ダクト,8,9……アクリルダクト, 10……供試模型,21,22……容器,23……水中吸音材, 31……ハニカム。
FIG. 1 is a side sectional view of a low noise circulating water tank according to a first embodiment of the present invention, FIG. 2 is a side sectional view of a low noise circulating water tank according to a second embodiment of the present invention, and FIG. Explanatory drawing of the sound reduction principle in the case where the outside of the pipe is water, among the functions of the first and second embodiments,
FIG. 4 is a perspective view of various examples of an acrylic duct forming a part of the embodiment of the present invention, and FIG. 5 is a diagram showing the principle of sound reduction when the outside of the pipe is air. FIG. 6 is an explanatory view showing the operation of another embodiment, etc., wherein (a) shows a case where the pipe is a rigid wall, and (b) shows a case where the pipe is made of a material having the same acoustic impedance as water. FIG. 7 is a side sectional view of a conventional example. 1 ... Pump, 2 ... Upstream duct, 3 ... Rectifying cylinder, 4 ... Contraction cylinder, 5 ... Measurement cylinder, 6 ... Diffusion cylinder, 7 ... Downstream duct, 8, 9 ... Acrylic duct, 10… Test sample, 21,22… Container, 23… Underwater sound absorbing material, 31… Honeycomb.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】閉ループ管路の任意の個所にポンプを設置
し、同閉ループ管路の別の個所を供試模型の流体性能や
供試模型から発生するフローノイズ,キャビテーション
ノイズ等を計測するための測定胴で構成した回流水槽に
おいて、前記測定胴の上流側及び下流側の所定の位置の
各管路が水とほぼ等しい音響インピーダンスの材質より
構成されたことを特徴とする低雑音回流水槽。
1. A pump is installed at an arbitrary point in a closed loop pipe, and another point in the closed loop pipe is used to measure fluid performance of a test model, flow noise generated from the test model, cavitation noise, and the like. A low-noise circulating water tank comprising: a circulating water tank constituted by a measuring cylinder according to any one of the preceding claims, wherein each pipe at predetermined positions on the upstream and downstream sides of the measuring cylinder is made of a material having an acoustic impedance substantially equal to that of water.
JP7867789A 1989-03-31 1989-03-31 Low noise circulation water tank Expired - Lifetime JP2647489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7867789A JP2647489B2 (en) 1989-03-31 1989-03-31 Low noise circulation water tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7867789A JP2647489B2 (en) 1989-03-31 1989-03-31 Low noise circulation water tank

Publications (2)

Publication Number Publication Date
JPH02259440A JPH02259440A (en) 1990-10-22
JP2647489B2 true JP2647489B2 (en) 1997-08-27

Family

ID=13668505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7867789A Expired - Lifetime JP2647489B2 (en) 1989-03-31 1989-03-31 Low noise circulation water tank

Country Status (1)

Country Link
JP (1) JP2647489B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0485145U (en) * 1990-11-29 1992-07-23

Also Published As

Publication number Publication date
JPH02259440A (en) 1990-10-22

Similar Documents

Publication Publication Date Title
US5289436A (en) Ultrasonic waveguide
EP1434039A1 (en) Liquid level measuring device
Hynna et al. Prediction of structure-borne sound transmission in large welded ship structures using statistical energy analysis
Gao et al. Axisymmetric fluid-dominated wave in fluid-filled plastic pipes: Loading effects of surrounding elastic medium
JPS6238355A (en) Method and device for measuring fluid characteristic by using capacity search signal of surface generation
Baik et al. Acoustic attenuation, phase and group velocities in liquid-filled pipes III: Nonaxisymmetric propagation and circumferential modes in lossless conditions
JP2647489B2 (en) Low noise circulation water tank
Maksimov et al. Scattering from a pair of closely spaced bubbles
Williams et al. Mode matching in axisymmetric fluid-filled pipes: scattering by a flange
JPH06117894A (en) Ultrasonic flowmeter
Blair et al. Sound pressure levels generated by internal combustion engine exhaust systems
KR20040004050A (en) Porous duct configured with a thin film
Chambers Acoustically driven vibrations in cylindrical structures
JP6348409B2 (en) Ultrasonic flow meter, flow measurement method, and ultrasonic flow meter kit for ultrasonic absorber
JP2874649B2 (en) Acoustic circulating water tank measuring device
US5781508A (en) Optimizing the compressional wave energy response of an elastic fluid-filled cylinder
Jeyaselvan Sound Quality improvement through tonal noise reduction of a screw air compressor with an extended bandwidth tuned resonator
Selamet et al. Whistles with a generic sidebranch: production and suppression
JP3030132B2 (en) Valve seat leakage diagnosis
JP2998927B2 (en) Underwater sound insulation structure
Cole III Vibrations of a framed cylindrical shell submerged in and filled with acoustic fluids: spectral solution
Song et al. Investigation on low-frequency sound propagation characteristics of fluid-filled steel pipeline
Murphy et al. A seismo-acoustic finite element model for underwater acoustic propagation
Fedor et al. Modeling and estimation of acoustic pulse energy dissipation in a waveguide with elastic walls
Pacaut et al. On the use of a tailored fluid-fluid Green's function to predict scattering from two-phase fluid interfaces

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 12

EXPY Cancellation because of completion of term